Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 265.98 +/- 9.31
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb8bc6d7320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb8bc6d73b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb8bc6d7440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb8bc6d74d0>", "_build": "<function ActorCriticPolicy._build at 0x7fb8bc6d7560>", "forward": "<function ActorCriticPolicy.forward at 0x7fb8bc6d75f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb8bc6d7680>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb8bc6d7710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb8bc6d77a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb8bc6d7830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb8bc6d78c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb8bc7294b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651692105.6051726, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALO/YL3hgvK6TJUUvG0hurwW9CO85RClvQAAgD8AAIA/jYmePSYzQj9Fx829926Tvo9KeDuOJHG9AAAAAAAAAACwp4K+oakkvTA/OLvh+MO5s+eTPsrykToAAIA/AACAP6YQjj3t278++O7XvTWBQb74XAm6MtKhOwAAAAAAAAAAmsitvSZUTj/CAD893wLOvufmAb0HJao9AAAAAAAAAABmgJE84SSHupDyQTP3nD2w0OvCuk7HzLMAAIA/AACAP6ZNLT6wfYM/reVhvUv/er6Z6VU9mIJUPAAAAAAAAAAABnk5Pho4BD/bDPy9FGePvnxpIT0qfaI8AAAAAAAAAAD95JE+bu0RP/Mka74z7mi+rC/aPbmQkr4AAAAAAAAAAKZa5T1wyaA/drR2PoaSwr48W1s+0n1wPQAAAAAAAAAAZgr4u49qGLpbUBq1M/xhsPMH8DoCHmU0AACAPwAAgD/66wk+m/SRvPfAgTs1+bm9DAnRvW8Ktr4AAIA/AACAP+BlAj5Ip+I+hGQyvltFkb5FJZ+8m3uUvQAAAAAAAAAA8xaVvf/mlT8y+Ge9D4y2vhYyAr6MLRk8AAAAAAAAAAAzCVI8qSxqvPvxPDvGa808TqXevTaboz0AAIA/AACAP7Onob1IuRI/jdrtPWK8pb7SAXI9eoJgvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIx5v8Fh10cECUhpRSlIwBbJRNKQGMAXSUR0CXk+n8sMAndX2UKGgGaAloD0MIbazEPGsucECUhpRSlGgVTWoBaBZHQJeUaKvV3EB1fZQoaAZoCWgPQwg0aVN1z0VxQJSGlFKUaBVNXAFoFkdAl5TasU7CBXV9lChoBmgJaA9DCDZ2ieotgG9AlIaUUpRoFU0zAWgWR0CXlOgcLjPwdX2UKGgGaAloD0MIQiPYuH7HckCUhpRSlGgVTTkBaBZHQJeVGsIVuaZ1fZQoaAZoCWgPQwhQ+62dKAJxQJSGlFKUaBVNJgFoFkdAl5UkkGA09HV9lChoBmgJaA9DCFFLcysEOnBAlIaUUpRoFU0RAWgWR0CXlov6CUX6dX2UKGgGaAloD0MIQUerWlJTckCUhpRSlGgVTRoBaBZHQJeXflIVdop1fZQoaAZoCWgPQwjartAHyyxyQJSGlFKUaBVNIgFoFkdAl5fF/2Cd0HV9lChoBmgJaA9DCCV1ApqIknJAlIaUUpRoFU0eAWgWR0CXmH7jT8YRdX2UKGgGaAloD0MIRGlv8MXacUCUhpRSlGgVTR4BaBZHQJeZI0vXbud1fZQoaAZoCWgPQwi+27xxUnpxQJSGlFKUaBVNPAFoFkdAl5nS/bj943V9lChoBmgJaA9DCGx2pPoOa3FAlIaUUpRoFU2KAWgWR0CXmymY0EX+dX2UKGgGaAloD0MI71UrE36PckCUhpRSlGgVTT0BaBZHQJeeVgH/tIF1fZQoaAZoCWgPQwhDjq1nCIVvQJSGlFKUaBVNQgFoFkdAl55jJhfBvnV9lChoBmgJaA9DCGKBr+jW/W9AlIaUUpRoFU0YAWgWR0CXnw1dxAB1dX2UKGgGaAloD0MIns4VpUSKcECUhpRSlGgVTQsBaBZHQJefuzollbx1fZQoaAZoCWgPQwgt7dRcbgNwQJSGlFKUaBVNMAFoFkdAl5/qQiiZfHV9lChoBmgJaA9DCCPb+X5qlHBAlIaUUpRoFU0ZAWgWR0CXoBX+2mYTdX2UKGgGaAloD0MIi/7QzBO4b0CUhpRSlGgVTRoBaBZHQJegFMPBi1B1fZQoaAZoCWgPQwh2xYzwdiltQJSGlFKUaBVNQwFoFkdAl6EtTDO1OXV9lChoBmgJaA9DCNy5MNKLKnFAlIaUUpRoFU0FAWgWR0CXoeoSL61tdX2UKGgGaAloD0MIsaTcfc5ScECUhpRSlGgVTUQBaBZHQJeh5cY64lR1fZQoaAZoCWgPQwiCdRw/VFBvQJSGlFKUaBVNPAFoFkdAl6L/Q8fV7XV9lChoBmgJaA9DCOpb5nSZs3BAlIaUUpRoFU0YAWgWR0CXo52kSElFdX2UKGgGaAloD0MILbKd72dZckCUhpRSlGgVTQwBaBZHQJej12pyZKF1fZQoaAZoCWgPQwjMJOoF3zhxQJSGlFKUaBVNUgFoFkdAl6Tt5yEL6XV9lChoBmgJaA9DCOBpMuPtNXBAlIaUUpRoFU0zAWgWR0CXpef/FR51dX2UKGgGaAloD0MIcjPcgM9EbkCUhpRSlGgVTS0BaBZHQJenBB9kSVZ1fZQoaAZoCWgPQwiyhSAHpblvQJSGlFKUaBVNCgFoFkdAl6iEGqxTsXV9lChoBmgJaA9DCCZuFcTA3G9AlIaUUpRoFUv8aBZHQJepnavicXp1fZQoaAZoCWgPQwhz9s5oa3dwQJSGlFKUaBVNIgFoFkdAl6o/w7T2FnV9lChoBmgJaA9DCOAT61T5Lh5AlIaUUpRoFUvkaBZHQJeqzSNOuaF1fZQoaAZoCWgPQwhYrOEi9yxuQJSGlFKUaBVNJwFoFkdAl6suDBdld3V9lChoBmgJaA9DCO2akNaYbnBAlIaUUpRoFU0QAWgWR0CXq9Y3Ns3ydX2UKGgGaAloD0MIDJBoAsVScECUhpRSlGgVTUMBaBZHQJesjjcVQAN1fZQoaAZoCWgPQwi0kIDR5cdtQJSGlFKUaBVNSAFoFkdAl6zr1EmY0HV9lChoBmgJaA9DCG3jT1T29HFAlIaUUpRoFU1zAWgWR0CXrQe8wpOOdX2UKGgGaAloD0MIXvbrTnfYcUCUhpRSlGgVTSYBaBZHQJetieFtbcJ1fZQoaAZoCWgPQwjJVwIpcWByQJSGlFKUaBVNHAFoFkdAl67u2Zy+6HV9lChoBmgJaA9DCPNV8rH74nBAlIaUUpRoFU0mAWgWR0CXr4jT8YQ8dX2UKGgGaAloD0MI+HE0R1YHbkCUhpRSlGgVTQ8BaBZHQJev2xB3Roh1fZQoaAZoCWgPQwhDqihe5a1uQJSGlFKUaBVNTAFoFkdAl7ARzmwJPnV9lChoBmgJaA9DCJ0v9l48pXFAlIaUUpRoFU0fAWgWR0CXsUp0wJw9dX2UKGgGaAloD0MIAVDFjRtScUCUhpRSlGgVTRkBaBZHQJeyE/pt78h1fZQoaAZoCWgPQwj35cx2hd5HQJSGlFKUaBVL6WgWR0CXspo9cKPXdX2UKGgGaAloD0MI0zO9xBjAckCUhpRSlGgVS/ZoFkdAl7QhLf1pTXV9lChoBmgJaA9DCH5yFCAK9m1AlIaUUpRoFU0TAWgWR0CXtM9ehPCVdX2UKGgGaAloD0MIkL3e/fEwQkCUhpRSlGgVS/9oFkdAl7TZ6Uqx1XV9lChoBmgJaA9DCKlpF9OMZXJAlIaUUpRoFU1AAWgWR0CXtQplz2eydX2UKGgGaAloD0MIZhGKreDackCUhpRSlGgVS+BoFkdAl7VQKa5PM3V9lChoBmgJaA9DCAahvI+jSW1AlIaUUpRoFU0RAWgWR0CX1OXJo0yhdX2UKGgGaAloD0MIBcHj27txcUCUhpRSlGgVTT4BaBZHQJfXsvBacI91fZQoaAZoCWgPQwjmH32TZtpyQJSGlFKUaBVNBQFoFkdAl9fuZgG8mXV9lChoBmgJaA9DCJ31KcekVXFAlIaUUpRoFU1lAWgWR0CX2FvZyuIRdX2UKGgGaAloD0MIMlcG1YZ2bECUhpRSlGgVTYoBaBZHQJfZQgq3Eyd1fZQoaAZoCWgPQwhA9nr3xx1yQJSGlFKUaBVL+WgWR0CX2lHT7VJ+dX2UKGgGaAloD0MI0QSKWEROcUCUhpRSlGgVTTQBaBZHQJfaTzQNTcZ1fZQoaAZoCWgPQwixM4XO6xxwQJSGlFKUaBVNUgFoFkdAl9rsR6F/QXV9lChoBmgJaA9DCKwBSkNNfXFAlIaUUpRoFU18AWgWR0CX2/Q7cO9WdX2UKGgGaAloD0MIaYzWUVWAb0CUhpRSlGgVTRwBaBZHQJfe4rnTy8V1fZQoaAZoCWgPQwjg9gSJ7ehtQJSGlFKUaBVNJwFoFkdAl98nHmzSkXV9lChoBmgJaA9DCKlNnNwvuXBAlIaUUpRoFU09AWgWR0CX31jD8+A3dX2UKGgGaAloD0MIA3tMpDTUcECUhpRSlGgVTZYBaBZHQJff90q6OHZ1fZQoaAZoCWgPQwj20akr339xQJSGlFKUaBVNggFoFkdAl+Cbv9cbBHV9lChoBmgJaA9DCIknu5lRPXBAlIaUUpRoFU1cAWgWR0CX4UjENvwWdX2UKGgGaAloD0MI5wEs8uuPRUCUhpRSlGgVS6BoFkdAl+GGXHBDX3V9lChoBmgJaA9DCNANTdlpRnFAlIaUUpRoFU0zAWgWR0CX4gc0tRNzdX2UKGgGaAloD0MImzdOCnNKcECUhpRSlGgVTXQBaBZHQJfitdY4hll1fZQoaAZoCWgPQwjtZdtpa6hsQJSGlFKUaBVNNwFoFkdAl+S3bmEGq3V9lChoBmgJaA9DCJYhjnUx6XFAlIaUUpRoFU0PAWgWR0CX5UPCl7+ldX2UKGgGaAloD0MIcM6I0h7wcUCUhpRSlGgVTV4BaBZHQJfmqFh5Pdl1fZQoaAZoCWgPQwgHKA01CqBwQJSGlFKUaBVNSAFoFkdAl+eLKaG5+nV9lChoBmgJaA9DCEaaeAf4I3BAlIaUUpRoFU18AWgWR0CX6LknCwbEdX2UKGgGaAloD0MI0ZUIVP9WckCUhpRSlGgVTUcBaBZHQJfpLxG2Cul1fZQoaAZoCWgPQwhIFjCBWylxQJSGlFKUaBVNIwFoFkdAl+xh6v7m+3V9lChoBmgJaA9DCGSw4lTr7nBAlIaUUpRoFU1FAWgWR0CX7JGh24d7dX2UKGgGaAloD0MIy74rgn8Dc0CUhpRSlGgVTScBaBZHQJftUysS00F1fZQoaAZoCWgPQwgjLgCNkrRxQJSGlFKUaBVNawFoFkdAl+4Gpda+vnV9lChoBmgJaA9DCI50BkZeh3FAlIaUUpRoFU1+AWgWR0CX7po73fygdX2UKGgGaAloD0MIm+Wy0fmucECUhpRSlGgVTTABaBZHQJfvW/vfCQ91fZQoaAZoCWgPQwj2twTgX6FwQJSGlFKUaBVNUgFoFkdAl+9z50r9VHV9lChoBmgJaA9DCDwRxHl4enFAlIaUUpRoFU0GAWgWR0CX77dPci4bdX2UKGgGaAloD0MItyizQSaFOkCUhpRSlGgVS9hoFkdAl+/PAO8TSXV9lChoBmgJaA9DCGBWKNJ9nHFAlIaUUpRoFU0BAWgWR0CX8BK77Kq5dX2UKGgGaAloD0MI6q9XWPCEckCUhpRSlGgVTacBaBZHQJfxFTR6WxB1fZQoaAZoCWgPQwhcOuY8o6lxQJSGlFKUaBVNdQFoFkdAl/ExGhEjPnV9lChoBmgJaA9DCK5/12dOPnBAlIaUUpRoFU0PAWgWR0CX85phnanKdX2UKGgGaAloD0MIk4ychf0zcUCUhpRSlGgVTRYBaBZHQJf0WOzY2891fZQoaAZoCWgPQwgUJoxmpTpxQJSGlFKUaBVNWgFoFkdAl/VjUd7v5XV9lChoBmgJaA9DCO0rD9KTcXBAlIaUUpRoFU08AWgWR0CX+Td3B55adX2UKGgGaAloD0MIj4zV5n85cUCUhpRSlGgVTSABaBZHQJf5sw/PgNx1fZQoaAZoCWgPQwiR09fzNUpuQJSGlFKUaBVNTAFoFkdAl/oyFXaJynV9lChoBmgJaA9DCGozTkPUwW9AlIaUUpRoFU0XAWgWR0CX+taoMrmRdX2UKGgGaAloD0MIfIDuy5kcc0CUhpRSlGgVS/hoFkdAl/t/CEYfn3V9lChoBmgJaA9DCJ/L1CT4m3BAlIaUUpRoFU05AWgWR0CX+3+sHSncdX2UKGgGaAloD0MI7FBNSVblbkCUhpRSlGgVTR8BaBZHQJf75zdUKiR1fZQoaAZoCWgPQwhyUwPNJ0ZyQJSGlFKUaBVNLAFoFkdAl/wx1xKg7HV9lChoBmgJaA9DCK2h1F6E6nFAlIaUUpRoFU06AWgWR0CX/K7lq8DkdX2UKGgGaAloD0MIp+hILj+rcUCUhpRSlGgVTZcBaBZHQJf+KoegctJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b13d645b3e920b20b25988dd6b629871561ce179cdb2d97ead5ea69f5175d2e9
|
3 |
+
size 144038
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb8bc6d7320>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb8bc6d73b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb8bc6d7440>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb8bc6d74d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb8bc6d7560>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb8bc6d75f0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb8bc6d7680>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb8bc6d7710>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb8bc6d77a0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb8bc6d7830>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb8bc6d78c0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fb8bc7294b0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651692105.6051726,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALO/YL3hgvK6TJUUvG0hurwW9CO85RClvQAAgD8AAIA/jYmePSYzQj9Fx829926Tvo9KeDuOJHG9AAAAAAAAAACwp4K+oakkvTA/OLvh+MO5s+eTPsrykToAAIA/AACAP6YQjj3t278++O7XvTWBQb74XAm6MtKhOwAAAAAAAAAAmsitvSZUTj/CAD893wLOvufmAb0HJao9AAAAAAAAAABmgJE84SSHupDyQTP3nD2w0OvCuk7HzLMAAIA/AACAP6ZNLT6wfYM/reVhvUv/er6Z6VU9mIJUPAAAAAAAAAAABnk5Pho4BD/bDPy9FGePvnxpIT0qfaI8AAAAAAAAAAD95JE+bu0RP/Mka74z7mi+rC/aPbmQkr4AAAAAAAAAAKZa5T1wyaA/drR2PoaSwr48W1s+0n1wPQAAAAAAAAAAZgr4u49qGLpbUBq1M/xhsPMH8DoCHmU0AACAPwAAgD/66wk+m/SRvPfAgTs1+bm9DAnRvW8Ktr4AAIA/AACAP+BlAj5Ip+I+hGQyvltFkb5FJZ+8m3uUvQAAAAAAAAAA8xaVvf/mlT8y+Ge9D4y2vhYyAr6MLRk8AAAAAAAAAAAzCVI8qSxqvPvxPDvGa808TqXevTaboz0AAIA/AACAP7Onob1IuRI/jdrtPWK8pb7SAXI9eoJgvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIx5v8Fh10cECUhpRSlIwBbJRNKQGMAXSUR0CXk+n8sMAndX2UKGgGaAloD0MIbazEPGsucECUhpRSlGgVTWoBaBZHQJeUaKvV3EB1fZQoaAZoCWgPQwg0aVN1z0VxQJSGlFKUaBVNXAFoFkdAl5TasU7CBXV9lChoBmgJaA9DCDZ2ieotgG9AlIaUUpRoFU0zAWgWR0CXlOgcLjPwdX2UKGgGaAloD0MIQiPYuH7HckCUhpRSlGgVTTkBaBZHQJeVGsIVuaZ1fZQoaAZoCWgPQwhQ+62dKAJxQJSGlFKUaBVNJgFoFkdAl5UkkGA09HV9lChoBmgJaA9DCFFLcysEOnBAlIaUUpRoFU0RAWgWR0CXlov6CUX6dX2UKGgGaAloD0MIQUerWlJTckCUhpRSlGgVTRoBaBZHQJeXflIVdop1fZQoaAZoCWgPQwjartAHyyxyQJSGlFKUaBVNIgFoFkdAl5fF/2Cd0HV9lChoBmgJaA9DCCV1ApqIknJAlIaUUpRoFU0eAWgWR0CXmH7jT8YRdX2UKGgGaAloD0MIRGlv8MXacUCUhpRSlGgVTR4BaBZHQJeZI0vXbud1fZQoaAZoCWgPQwi+27xxUnpxQJSGlFKUaBVNPAFoFkdAl5nS/bj943V9lChoBmgJaA9DCGx2pPoOa3FAlIaUUpRoFU2KAWgWR0CXmymY0EX+dX2UKGgGaAloD0MI71UrE36PckCUhpRSlGgVTT0BaBZHQJeeVgH/tIF1fZQoaAZoCWgPQwhDjq1nCIVvQJSGlFKUaBVNQgFoFkdAl55jJhfBvnV9lChoBmgJaA9DCGKBr+jW/W9AlIaUUpRoFU0YAWgWR0CXnw1dxAB1dX2UKGgGaAloD0MIns4VpUSKcECUhpRSlGgVTQsBaBZHQJefuzollbx1fZQoaAZoCWgPQwgt7dRcbgNwQJSGlFKUaBVNMAFoFkdAl5/qQiiZfHV9lChoBmgJaA9DCCPb+X5qlHBAlIaUUpRoFU0ZAWgWR0CXoBX+2mYTdX2UKGgGaAloD0MIi/7QzBO4b0CUhpRSlGgVTRoBaBZHQJegFMPBi1B1fZQoaAZoCWgPQwh2xYzwdiltQJSGlFKUaBVNQwFoFkdAl6EtTDO1OXV9lChoBmgJaA9DCNy5MNKLKnFAlIaUUpRoFU0FAWgWR0CXoeoSL61tdX2UKGgGaAloD0MIsaTcfc5ScECUhpRSlGgVTUQBaBZHQJeh5cY64lR1fZQoaAZoCWgPQwiCdRw/VFBvQJSGlFKUaBVNPAFoFkdAl6L/Q8fV7XV9lChoBmgJaA9DCOpb5nSZs3BAlIaUUpRoFU0YAWgWR0CXo52kSElFdX2UKGgGaAloD0MILbKd72dZckCUhpRSlGgVTQwBaBZHQJej12pyZKF1fZQoaAZoCWgPQwjMJOoF3zhxQJSGlFKUaBVNUgFoFkdAl6Tt5yEL6XV9lChoBmgJaA9DCOBpMuPtNXBAlIaUUpRoFU0zAWgWR0CXpef/FR51dX2UKGgGaAloD0MIcjPcgM9EbkCUhpRSlGgVTS0BaBZHQJenBB9kSVZ1fZQoaAZoCWgPQwiyhSAHpblvQJSGlFKUaBVNCgFoFkdAl6iEGqxTsXV9lChoBmgJaA9DCCZuFcTA3G9AlIaUUpRoFUv8aBZHQJepnavicXp1fZQoaAZoCWgPQwhz9s5oa3dwQJSGlFKUaBVNIgFoFkdAl6o/w7T2FnV9lChoBmgJaA9DCOAT61T5Lh5AlIaUUpRoFUvkaBZHQJeqzSNOuaF1fZQoaAZoCWgPQwhYrOEi9yxuQJSGlFKUaBVNJwFoFkdAl6suDBdld3V9lChoBmgJaA9DCO2akNaYbnBAlIaUUpRoFU0QAWgWR0CXq9Y3Ns3ydX2UKGgGaAloD0MIDJBoAsVScECUhpRSlGgVTUMBaBZHQJesjjcVQAN1fZQoaAZoCWgPQwi0kIDR5cdtQJSGlFKUaBVNSAFoFkdAl6zr1EmY0HV9lChoBmgJaA9DCG3jT1T29HFAlIaUUpRoFU1zAWgWR0CXrQe8wpOOdX2UKGgGaAloD0MIXvbrTnfYcUCUhpRSlGgVTSYBaBZHQJetieFtbcJ1fZQoaAZoCWgPQwjJVwIpcWByQJSGlFKUaBVNHAFoFkdAl67u2Zy+6HV9lChoBmgJaA9DCPNV8rH74nBAlIaUUpRoFU0mAWgWR0CXr4jT8YQ8dX2UKGgGaAloD0MI+HE0R1YHbkCUhpRSlGgVTQ8BaBZHQJev2xB3Roh1fZQoaAZoCWgPQwhDqihe5a1uQJSGlFKUaBVNTAFoFkdAl7ARzmwJPnV9lChoBmgJaA9DCJ0v9l48pXFAlIaUUpRoFU0fAWgWR0CXsUp0wJw9dX2UKGgGaAloD0MIAVDFjRtScUCUhpRSlGgVTRkBaBZHQJeyE/pt78h1fZQoaAZoCWgPQwj35cx2hd5HQJSGlFKUaBVL6WgWR0CXspo9cKPXdX2UKGgGaAloD0MI0zO9xBjAckCUhpRSlGgVS/ZoFkdAl7QhLf1pTXV9lChoBmgJaA9DCH5yFCAK9m1AlIaUUpRoFU0TAWgWR0CXtM9ehPCVdX2UKGgGaAloD0MIkL3e/fEwQkCUhpRSlGgVS/9oFkdAl7TZ6Uqx1XV9lChoBmgJaA9DCKlpF9OMZXJAlIaUUpRoFU1AAWgWR0CXtQplz2eydX2UKGgGaAloD0MIZhGKreDackCUhpRSlGgVS+BoFkdAl7VQKa5PM3V9lChoBmgJaA9DCAahvI+jSW1AlIaUUpRoFU0RAWgWR0CX1OXJo0yhdX2UKGgGaAloD0MIBcHj27txcUCUhpRSlGgVTT4BaBZHQJfXsvBacI91fZQoaAZoCWgPQwjmH32TZtpyQJSGlFKUaBVNBQFoFkdAl9fuZgG8mXV9lChoBmgJaA9DCJ31KcekVXFAlIaUUpRoFU1lAWgWR0CX2FvZyuIRdX2UKGgGaAloD0MIMlcG1YZ2bECUhpRSlGgVTYoBaBZHQJfZQgq3Eyd1fZQoaAZoCWgPQwhA9nr3xx1yQJSGlFKUaBVL+WgWR0CX2lHT7VJ+dX2UKGgGaAloD0MI0QSKWEROcUCUhpRSlGgVTTQBaBZHQJfaTzQNTcZ1fZQoaAZoCWgPQwixM4XO6xxwQJSGlFKUaBVNUgFoFkdAl9rsR6F/QXV9lChoBmgJaA9DCKwBSkNNfXFAlIaUUpRoFU18AWgWR0CX2/Q7cO9WdX2UKGgGaAloD0MIaYzWUVWAb0CUhpRSlGgVTRwBaBZHQJfe4rnTy8V1fZQoaAZoCWgPQwjg9gSJ7ehtQJSGlFKUaBVNJwFoFkdAl98nHmzSkXV9lChoBmgJaA9DCKlNnNwvuXBAlIaUUpRoFU09AWgWR0CX31jD8+A3dX2UKGgGaAloD0MIA3tMpDTUcECUhpRSlGgVTZYBaBZHQJff90q6OHZ1fZQoaAZoCWgPQwj20akr339xQJSGlFKUaBVNggFoFkdAl+Cbv9cbBHV9lChoBmgJaA9DCIknu5lRPXBAlIaUUpRoFU1cAWgWR0CX4UjENvwWdX2UKGgGaAloD0MI5wEs8uuPRUCUhpRSlGgVS6BoFkdAl+GGXHBDX3V9lChoBmgJaA9DCNANTdlpRnFAlIaUUpRoFU0zAWgWR0CX4gc0tRNzdX2UKGgGaAloD0MImzdOCnNKcECUhpRSlGgVTXQBaBZHQJfitdY4hll1fZQoaAZoCWgPQwjtZdtpa6hsQJSGlFKUaBVNNwFoFkdAl+S3bmEGq3V9lChoBmgJaA9DCJYhjnUx6XFAlIaUUpRoFU0PAWgWR0CX5UPCl7+ldX2UKGgGaAloD0MIcM6I0h7wcUCUhpRSlGgVTV4BaBZHQJfmqFh5Pdl1fZQoaAZoCWgPQwgHKA01CqBwQJSGlFKUaBVNSAFoFkdAl+eLKaG5+nV9lChoBmgJaA9DCEaaeAf4I3BAlIaUUpRoFU18AWgWR0CX6LknCwbEdX2UKGgGaAloD0MI0ZUIVP9WckCUhpRSlGgVTUcBaBZHQJfpLxG2Cul1fZQoaAZoCWgPQwhIFjCBWylxQJSGlFKUaBVNIwFoFkdAl+xh6v7m+3V9lChoBmgJaA9DCGSw4lTr7nBAlIaUUpRoFU1FAWgWR0CX7JGh24d7dX2UKGgGaAloD0MIy74rgn8Dc0CUhpRSlGgVTScBaBZHQJftUysS00F1fZQoaAZoCWgPQwgjLgCNkrRxQJSGlFKUaBVNawFoFkdAl+4Gpda+vnV9lChoBmgJaA9DCI50BkZeh3FAlIaUUpRoFU1+AWgWR0CX7po73fygdX2UKGgGaAloD0MIm+Wy0fmucECUhpRSlGgVTTABaBZHQJfvW/vfCQ91fZQoaAZoCWgPQwj2twTgX6FwQJSGlFKUaBVNUgFoFkdAl+9z50r9VHV9lChoBmgJaA9DCDwRxHl4enFAlIaUUpRoFU0GAWgWR0CX77dPci4bdX2UKGgGaAloD0MItyizQSaFOkCUhpRSlGgVS9hoFkdAl+/PAO8TSXV9lChoBmgJaA9DCGBWKNJ9nHFAlIaUUpRoFU0BAWgWR0CX8BK77Kq5dX2UKGgGaAloD0MI6q9XWPCEckCUhpRSlGgVTacBaBZHQJfxFTR6WxB1fZQoaAZoCWgPQwhcOuY8o6lxQJSGlFKUaBVNdQFoFkdAl/ExGhEjPnV9lChoBmgJaA9DCK5/12dOPnBAlIaUUpRoFU0PAWgWR0CX85phnanKdX2UKGgGaAloD0MIk4ychf0zcUCUhpRSlGgVTRYBaBZHQJf0WOzY2891fZQoaAZoCWgPQwgUJoxmpTpxQJSGlFKUaBVNWgFoFkdAl/VjUd7v5XV9lChoBmgJaA9DCO0rD9KTcXBAlIaUUpRoFU08AWgWR0CX+Td3B55adX2UKGgGaAloD0MIj4zV5n85cUCUhpRSlGgVTSABaBZHQJf5sw/PgNx1fZQoaAZoCWgPQwiR09fzNUpuQJSGlFKUaBVNTAFoFkdAl/oyFXaJynV9lChoBmgJaA9DCGozTkPUwW9AlIaUUpRoFU0XAWgWR0CX+taoMrmRdX2UKGgGaAloD0MIfIDuy5kcc0CUhpRSlGgVS/hoFkdAl/t/CEYfn3V9lChoBmgJaA9DCJ/L1CT4m3BAlIaUUpRoFU05AWgWR0CX+3+sHSncdX2UKGgGaAloD0MI7FBNSVblbkCUhpRSlGgVTR8BaBZHQJf75zdUKiR1fZQoaAZoCWgPQwhyUwPNJ0ZyQJSGlFKUaBVNLAFoFkdAl/wx1xKg7HV9lChoBmgJaA9DCK2h1F6E6nFAlIaUUpRoFU06AWgWR0CX/K7lq8DkdX2UKGgGaAloD0MIp+hILj+rcUCUhpRSlGgVTZcBaBZHQJf+KoegctJ1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd2745d916aaded240108303e474587dbc41c5c8ff09194ead25195f8af4214d
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9ec8300e952a26ceaff66b73da4c02f90946dcd18991e2ea67d7f5d971e76b5
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:988576bc8a6c978c0b78d234d2153478d34306ce08c0643e083d5c2bd27eedf8
|
3 |
+
size 201418
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 265.98049778172737, "std_reward": 9.311635136679485, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T19:55:09.153944"}
|