NessrineT commited on
Commit
f0760a0
1 Parent(s): 9e88fe3

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 265.98 +/- 9.31
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb8bc6d7320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb8bc6d73b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb8bc6d7440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb8bc6d74d0>", "_build": "<function ActorCriticPolicy._build at 0x7fb8bc6d7560>", "forward": "<function ActorCriticPolicy.forward at 0x7fb8bc6d75f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb8bc6d7680>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb8bc6d7710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb8bc6d77a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb8bc6d7830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb8bc6d78c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb8bc7294b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651692105.6051726, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALO/YL3hgvK6TJUUvG0hurwW9CO85RClvQAAgD8AAIA/jYmePSYzQj9Fx829926Tvo9KeDuOJHG9AAAAAAAAAACwp4K+oakkvTA/OLvh+MO5s+eTPsrykToAAIA/AACAP6YQjj3t278++O7XvTWBQb74XAm6MtKhOwAAAAAAAAAAmsitvSZUTj/CAD893wLOvufmAb0HJao9AAAAAAAAAABmgJE84SSHupDyQTP3nD2w0OvCuk7HzLMAAIA/AACAP6ZNLT6wfYM/reVhvUv/er6Z6VU9mIJUPAAAAAAAAAAABnk5Pho4BD/bDPy9FGePvnxpIT0qfaI8AAAAAAAAAAD95JE+bu0RP/Mka74z7mi+rC/aPbmQkr4AAAAAAAAAAKZa5T1wyaA/drR2PoaSwr48W1s+0n1wPQAAAAAAAAAAZgr4u49qGLpbUBq1M/xhsPMH8DoCHmU0AACAPwAAgD/66wk+m/SRvPfAgTs1+bm9DAnRvW8Ktr4AAIA/AACAP+BlAj5Ip+I+hGQyvltFkb5FJZ+8m3uUvQAAAAAAAAAA8xaVvf/mlT8y+Ge9D4y2vhYyAr6MLRk8AAAAAAAAAAAzCVI8qSxqvPvxPDvGa808TqXevTaboz0AAIA/AACAP7Onob1IuRI/jdrtPWK8pb7SAXI9eoJgvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIx5v8Fh10cECUhpRSlIwBbJRNKQGMAXSUR0CXk+n8sMAndX2UKGgGaAloD0MIbazEPGsucECUhpRSlGgVTWoBaBZHQJeUaKvV3EB1fZQoaAZoCWgPQwg0aVN1z0VxQJSGlFKUaBVNXAFoFkdAl5TasU7CBXV9lChoBmgJaA9DCDZ2ieotgG9AlIaUUpRoFU0zAWgWR0CXlOgcLjPwdX2UKGgGaAloD0MIQiPYuH7HckCUhpRSlGgVTTkBaBZHQJeVGsIVuaZ1fZQoaAZoCWgPQwhQ+62dKAJxQJSGlFKUaBVNJgFoFkdAl5UkkGA09HV9lChoBmgJaA9DCFFLcysEOnBAlIaUUpRoFU0RAWgWR0CXlov6CUX6dX2UKGgGaAloD0MIQUerWlJTckCUhpRSlGgVTRoBaBZHQJeXflIVdop1fZQoaAZoCWgPQwjartAHyyxyQJSGlFKUaBVNIgFoFkdAl5fF/2Cd0HV9lChoBmgJaA9DCCV1ApqIknJAlIaUUpRoFU0eAWgWR0CXmH7jT8YRdX2UKGgGaAloD0MIRGlv8MXacUCUhpRSlGgVTR4BaBZHQJeZI0vXbud1fZQoaAZoCWgPQwi+27xxUnpxQJSGlFKUaBVNPAFoFkdAl5nS/bj943V9lChoBmgJaA9DCGx2pPoOa3FAlIaUUpRoFU2KAWgWR0CXmymY0EX+dX2UKGgGaAloD0MI71UrE36PckCUhpRSlGgVTT0BaBZHQJeeVgH/tIF1fZQoaAZoCWgPQwhDjq1nCIVvQJSGlFKUaBVNQgFoFkdAl55jJhfBvnV9lChoBmgJaA9DCGKBr+jW/W9AlIaUUpRoFU0YAWgWR0CXnw1dxAB1dX2UKGgGaAloD0MIns4VpUSKcECUhpRSlGgVTQsBaBZHQJefuzollbx1fZQoaAZoCWgPQwgt7dRcbgNwQJSGlFKUaBVNMAFoFkdAl5/qQiiZfHV9lChoBmgJaA9DCCPb+X5qlHBAlIaUUpRoFU0ZAWgWR0CXoBX+2mYTdX2UKGgGaAloD0MIi/7QzBO4b0CUhpRSlGgVTRoBaBZHQJegFMPBi1B1fZQoaAZoCWgPQwh2xYzwdiltQJSGlFKUaBVNQwFoFkdAl6EtTDO1OXV9lChoBmgJaA9DCNy5MNKLKnFAlIaUUpRoFU0FAWgWR0CXoeoSL61tdX2UKGgGaAloD0MIsaTcfc5ScECUhpRSlGgVTUQBaBZHQJeh5cY64lR1fZQoaAZoCWgPQwiCdRw/VFBvQJSGlFKUaBVNPAFoFkdAl6L/Q8fV7XV9lChoBmgJaA9DCOpb5nSZs3BAlIaUUpRoFU0YAWgWR0CXo52kSElFdX2UKGgGaAloD0MILbKd72dZckCUhpRSlGgVTQwBaBZHQJej12pyZKF1fZQoaAZoCWgPQwjMJOoF3zhxQJSGlFKUaBVNUgFoFkdAl6Tt5yEL6XV9lChoBmgJaA9DCOBpMuPtNXBAlIaUUpRoFU0zAWgWR0CXpef/FR51dX2UKGgGaAloD0MIcjPcgM9EbkCUhpRSlGgVTS0BaBZHQJenBB9kSVZ1fZQoaAZoCWgPQwiyhSAHpblvQJSGlFKUaBVNCgFoFkdAl6iEGqxTsXV9lChoBmgJaA9DCCZuFcTA3G9AlIaUUpRoFUv8aBZHQJepnavicXp1fZQoaAZoCWgPQwhz9s5oa3dwQJSGlFKUaBVNIgFoFkdAl6o/w7T2FnV9lChoBmgJaA9DCOAT61T5Lh5AlIaUUpRoFUvkaBZHQJeqzSNOuaF1fZQoaAZoCWgPQwhYrOEi9yxuQJSGlFKUaBVNJwFoFkdAl6suDBdld3V9lChoBmgJaA9DCO2akNaYbnBAlIaUUpRoFU0QAWgWR0CXq9Y3Ns3ydX2UKGgGaAloD0MIDJBoAsVScECUhpRSlGgVTUMBaBZHQJesjjcVQAN1fZQoaAZoCWgPQwi0kIDR5cdtQJSGlFKUaBVNSAFoFkdAl6zr1EmY0HV9lChoBmgJaA9DCG3jT1T29HFAlIaUUpRoFU1zAWgWR0CXrQe8wpOOdX2UKGgGaAloD0MIXvbrTnfYcUCUhpRSlGgVTSYBaBZHQJetieFtbcJ1fZQoaAZoCWgPQwjJVwIpcWByQJSGlFKUaBVNHAFoFkdAl67u2Zy+6HV9lChoBmgJaA9DCPNV8rH74nBAlIaUUpRoFU0mAWgWR0CXr4jT8YQ8dX2UKGgGaAloD0MI+HE0R1YHbkCUhpRSlGgVTQ8BaBZHQJev2xB3Roh1fZQoaAZoCWgPQwhDqihe5a1uQJSGlFKUaBVNTAFoFkdAl7ARzmwJPnV9lChoBmgJaA9DCJ0v9l48pXFAlIaUUpRoFU0fAWgWR0CXsUp0wJw9dX2UKGgGaAloD0MIAVDFjRtScUCUhpRSlGgVTRkBaBZHQJeyE/pt78h1fZQoaAZoCWgPQwj35cx2hd5HQJSGlFKUaBVL6WgWR0CXspo9cKPXdX2UKGgGaAloD0MI0zO9xBjAckCUhpRSlGgVS/ZoFkdAl7QhLf1pTXV9lChoBmgJaA9DCH5yFCAK9m1AlIaUUpRoFU0TAWgWR0CXtM9ehPCVdX2UKGgGaAloD0MIkL3e/fEwQkCUhpRSlGgVS/9oFkdAl7TZ6Uqx1XV9lChoBmgJaA9DCKlpF9OMZXJAlIaUUpRoFU1AAWgWR0CXtQplz2eydX2UKGgGaAloD0MIZhGKreDackCUhpRSlGgVS+BoFkdAl7VQKa5PM3V9lChoBmgJaA9DCAahvI+jSW1AlIaUUpRoFU0RAWgWR0CX1OXJo0yhdX2UKGgGaAloD0MIBcHj27txcUCUhpRSlGgVTT4BaBZHQJfXsvBacI91fZQoaAZoCWgPQwjmH32TZtpyQJSGlFKUaBVNBQFoFkdAl9fuZgG8mXV9lChoBmgJaA9DCJ31KcekVXFAlIaUUpRoFU1lAWgWR0CX2FvZyuIRdX2UKGgGaAloD0MIMlcG1YZ2bECUhpRSlGgVTYoBaBZHQJfZQgq3Eyd1fZQoaAZoCWgPQwhA9nr3xx1yQJSGlFKUaBVL+WgWR0CX2lHT7VJ+dX2UKGgGaAloD0MI0QSKWEROcUCUhpRSlGgVTTQBaBZHQJfaTzQNTcZ1fZQoaAZoCWgPQwixM4XO6xxwQJSGlFKUaBVNUgFoFkdAl9rsR6F/QXV9lChoBmgJaA9DCKwBSkNNfXFAlIaUUpRoFU18AWgWR0CX2/Q7cO9WdX2UKGgGaAloD0MIaYzWUVWAb0CUhpRSlGgVTRwBaBZHQJfe4rnTy8V1fZQoaAZoCWgPQwjg9gSJ7ehtQJSGlFKUaBVNJwFoFkdAl98nHmzSkXV9lChoBmgJaA9DCKlNnNwvuXBAlIaUUpRoFU09AWgWR0CX31jD8+A3dX2UKGgGaAloD0MIA3tMpDTUcECUhpRSlGgVTZYBaBZHQJff90q6OHZ1fZQoaAZoCWgPQwj20akr339xQJSGlFKUaBVNggFoFkdAl+Cbv9cbBHV9lChoBmgJaA9DCIknu5lRPXBAlIaUUpRoFU1cAWgWR0CX4UjENvwWdX2UKGgGaAloD0MI5wEs8uuPRUCUhpRSlGgVS6BoFkdAl+GGXHBDX3V9lChoBmgJaA9DCNANTdlpRnFAlIaUUpRoFU0zAWgWR0CX4gc0tRNzdX2UKGgGaAloD0MImzdOCnNKcECUhpRSlGgVTXQBaBZHQJfitdY4hll1fZQoaAZoCWgPQwjtZdtpa6hsQJSGlFKUaBVNNwFoFkdAl+S3bmEGq3V9lChoBmgJaA9DCJYhjnUx6XFAlIaUUpRoFU0PAWgWR0CX5UPCl7+ldX2UKGgGaAloD0MIcM6I0h7wcUCUhpRSlGgVTV4BaBZHQJfmqFh5Pdl1fZQoaAZoCWgPQwgHKA01CqBwQJSGlFKUaBVNSAFoFkdAl+eLKaG5+nV9lChoBmgJaA9DCEaaeAf4I3BAlIaUUpRoFU18AWgWR0CX6LknCwbEdX2UKGgGaAloD0MI0ZUIVP9WckCUhpRSlGgVTUcBaBZHQJfpLxG2Cul1fZQoaAZoCWgPQwhIFjCBWylxQJSGlFKUaBVNIwFoFkdAl+xh6v7m+3V9lChoBmgJaA9DCGSw4lTr7nBAlIaUUpRoFU1FAWgWR0CX7JGh24d7dX2UKGgGaAloD0MIy74rgn8Dc0CUhpRSlGgVTScBaBZHQJftUysS00F1fZQoaAZoCWgPQwgjLgCNkrRxQJSGlFKUaBVNawFoFkdAl+4Gpda+vnV9lChoBmgJaA9DCI50BkZeh3FAlIaUUpRoFU1+AWgWR0CX7po73fygdX2UKGgGaAloD0MIm+Wy0fmucECUhpRSlGgVTTABaBZHQJfvW/vfCQ91fZQoaAZoCWgPQwj2twTgX6FwQJSGlFKUaBVNUgFoFkdAl+9z50r9VHV9lChoBmgJaA9DCDwRxHl4enFAlIaUUpRoFU0GAWgWR0CX77dPci4bdX2UKGgGaAloD0MItyizQSaFOkCUhpRSlGgVS9hoFkdAl+/PAO8TSXV9lChoBmgJaA9DCGBWKNJ9nHFAlIaUUpRoFU0BAWgWR0CX8BK77Kq5dX2UKGgGaAloD0MI6q9XWPCEckCUhpRSlGgVTacBaBZHQJfxFTR6WxB1fZQoaAZoCWgPQwhcOuY8o6lxQJSGlFKUaBVNdQFoFkdAl/ExGhEjPnV9lChoBmgJaA9DCK5/12dOPnBAlIaUUpRoFU0PAWgWR0CX85phnanKdX2UKGgGaAloD0MIk4ychf0zcUCUhpRSlGgVTRYBaBZHQJf0WOzY2891fZQoaAZoCWgPQwgUJoxmpTpxQJSGlFKUaBVNWgFoFkdAl/VjUd7v5XV9lChoBmgJaA9DCO0rD9KTcXBAlIaUUpRoFU08AWgWR0CX+Td3B55adX2UKGgGaAloD0MIj4zV5n85cUCUhpRSlGgVTSABaBZHQJf5sw/PgNx1fZQoaAZoCWgPQwiR09fzNUpuQJSGlFKUaBVNTAFoFkdAl/oyFXaJynV9lChoBmgJaA9DCGozTkPUwW9AlIaUUpRoFU0XAWgWR0CX+taoMrmRdX2UKGgGaAloD0MIfIDuy5kcc0CUhpRSlGgVS/hoFkdAl/t/CEYfn3V9lChoBmgJaA9DCJ/L1CT4m3BAlIaUUpRoFU05AWgWR0CX+3+sHSncdX2UKGgGaAloD0MI7FBNSVblbkCUhpRSlGgVTR8BaBZHQJf75zdUKiR1fZQoaAZoCWgPQwhyUwPNJ0ZyQJSGlFKUaBVNLAFoFkdAl/wx1xKg7HV9lChoBmgJaA9DCK2h1F6E6nFAlIaUUpRoFU06AWgWR0CX/K7lq8DkdX2UKGgGaAloD0MIp+hILj+rcUCUhpRSlGgVTZcBaBZHQJf+KoegctJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b13d645b3e920b20b25988dd6b629871561ce179cdb2d97ead5ea69f5175d2e9
3
+ size 144038
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb8bc6d7320>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb8bc6d73b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb8bc6d7440>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb8bc6d74d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb8bc6d7560>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb8bc6d75f0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb8bc6d7680>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb8bc6d7710>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb8bc6d77a0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb8bc6d7830>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb8bc6d78c0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fb8bc7294b0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651692105.6051726,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALO/YL3hgvK6TJUUvG0hurwW9CO85RClvQAAgD8AAIA/jYmePSYzQj9Fx829926Tvo9KeDuOJHG9AAAAAAAAAACwp4K+oakkvTA/OLvh+MO5s+eTPsrykToAAIA/AACAP6YQjj3t278++O7XvTWBQb74XAm6MtKhOwAAAAAAAAAAmsitvSZUTj/CAD893wLOvufmAb0HJao9AAAAAAAAAABmgJE84SSHupDyQTP3nD2w0OvCuk7HzLMAAIA/AACAP6ZNLT6wfYM/reVhvUv/er6Z6VU9mIJUPAAAAAAAAAAABnk5Pho4BD/bDPy9FGePvnxpIT0qfaI8AAAAAAAAAAD95JE+bu0RP/Mka74z7mi+rC/aPbmQkr4AAAAAAAAAAKZa5T1wyaA/drR2PoaSwr48W1s+0n1wPQAAAAAAAAAAZgr4u49qGLpbUBq1M/xhsPMH8DoCHmU0AACAPwAAgD/66wk+m/SRvPfAgTs1+bm9DAnRvW8Ktr4AAIA/AACAP+BlAj5Ip+I+hGQyvltFkb5FJZ+8m3uUvQAAAAAAAAAA8xaVvf/mlT8y+Ge9D4y2vhYyAr6MLRk8AAAAAAAAAAAzCVI8qSxqvPvxPDvGa808TqXevTaboz0AAIA/AACAP7Onob1IuRI/jdrtPWK8pb7SAXI9eoJgvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIx5v8Fh10cECUhpRSlIwBbJRNKQGMAXSUR0CXk+n8sMAndX2UKGgGaAloD0MIbazEPGsucECUhpRSlGgVTWoBaBZHQJeUaKvV3EB1fZQoaAZoCWgPQwg0aVN1z0VxQJSGlFKUaBVNXAFoFkdAl5TasU7CBXV9lChoBmgJaA9DCDZ2ieotgG9AlIaUUpRoFU0zAWgWR0CXlOgcLjPwdX2UKGgGaAloD0MIQiPYuH7HckCUhpRSlGgVTTkBaBZHQJeVGsIVuaZ1fZQoaAZoCWgPQwhQ+62dKAJxQJSGlFKUaBVNJgFoFkdAl5UkkGA09HV9lChoBmgJaA9DCFFLcysEOnBAlIaUUpRoFU0RAWgWR0CXlov6CUX6dX2UKGgGaAloD0MIQUerWlJTckCUhpRSlGgVTRoBaBZHQJeXflIVdop1fZQoaAZoCWgPQwjartAHyyxyQJSGlFKUaBVNIgFoFkdAl5fF/2Cd0HV9lChoBmgJaA9DCCV1ApqIknJAlIaUUpRoFU0eAWgWR0CXmH7jT8YRdX2UKGgGaAloD0MIRGlv8MXacUCUhpRSlGgVTR4BaBZHQJeZI0vXbud1fZQoaAZoCWgPQwi+27xxUnpxQJSGlFKUaBVNPAFoFkdAl5nS/bj943V9lChoBmgJaA9DCGx2pPoOa3FAlIaUUpRoFU2KAWgWR0CXmymY0EX+dX2UKGgGaAloD0MI71UrE36PckCUhpRSlGgVTT0BaBZHQJeeVgH/tIF1fZQoaAZoCWgPQwhDjq1nCIVvQJSGlFKUaBVNQgFoFkdAl55jJhfBvnV9lChoBmgJaA9DCGKBr+jW/W9AlIaUUpRoFU0YAWgWR0CXnw1dxAB1dX2UKGgGaAloD0MIns4VpUSKcECUhpRSlGgVTQsBaBZHQJefuzollbx1fZQoaAZoCWgPQwgt7dRcbgNwQJSGlFKUaBVNMAFoFkdAl5/qQiiZfHV9lChoBmgJaA9DCCPb+X5qlHBAlIaUUpRoFU0ZAWgWR0CXoBX+2mYTdX2UKGgGaAloD0MIi/7QzBO4b0CUhpRSlGgVTRoBaBZHQJegFMPBi1B1fZQoaAZoCWgPQwh2xYzwdiltQJSGlFKUaBVNQwFoFkdAl6EtTDO1OXV9lChoBmgJaA9DCNy5MNKLKnFAlIaUUpRoFU0FAWgWR0CXoeoSL61tdX2UKGgGaAloD0MIsaTcfc5ScECUhpRSlGgVTUQBaBZHQJeh5cY64lR1fZQoaAZoCWgPQwiCdRw/VFBvQJSGlFKUaBVNPAFoFkdAl6L/Q8fV7XV9lChoBmgJaA9DCOpb5nSZs3BAlIaUUpRoFU0YAWgWR0CXo52kSElFdX2UKGgGaAloD0MILbKd72dZckCUhpRSlGgVTQwBaBZHQJej12pyZKF1fZQoaAZoCWgPQwjMJOoF3zhxQJSGlFKUaBVNUgFoFkdAl6Tt5yEL6XV9lChoBmgJaA9DCOBpMuPtNXBAlIaUUpRoFU0zAWgWR0CXpef/FR51dX2UKGgGaAloD0MIcjPcgM9EbkCUhpRSlGgVTS0BaBZHQJenBB9kSVZ1fZQoaAZoCWgPQwiyhSAHpblvQJSGlFKUaBVNCgFoFkdAl6iEGqxTsXV9lChoBmgJaA9DCCZuFcTA3G9AlIaUUpRoFUv8aBZHQJepnavicXp1fZQoaAZoCWgPQwhz9s5oa3dwQJSGlFKUaBVNIgFoFkdAl6o/w7T2FnV9lChoBmgJaA9DCOAT61T5Lh5AlIaUUpRoFUvkaBZHQJeqzSNOuaF1fZQoaAZoCWgPQwhYrOEi9yxuQJSGlFKUaBVNJwFoFkdAl6suDBdld3V9lChoBmgJaA9DCO2akNaYbnBAlIaUUpRoFU0QAWgWR0CXq9Y3Ns3ydX2UKGgGaAloD0MIDJBoAsVScECUhpRSlGgVTUMBaBZHQJesjjcVQAN1fZQoaAZoCWgPQwi0kIDR5cdtQJSGlFKUaBVNSAFoFkdAl6zr1EmY0HV9lChoBmgJaA9DCG3jT1T29HFAlIaUUpRoFU1zAWgWR0CXrQe8wpOOdX2UKGgGaAloD0MIXvbrTnfYcUCUhpRSlGgVTSYBaBZHQJetieFtbcJ1fZQoaAZoCWgPQwjJVwIpcWByQJSGlFKUaBVNHAFoFkdAl67u2Zy+6HV9lChoBmgJaA9DCPNV8rH74nBAlIaUUpRoFU0mAWgWR0CXr4jT8YQ8dX2UKGgGaAloD0MI+HE0R1YHbkCUhpRSlGgVTQ8BaBZHQJev2xB3Roh1fZQoaAZoCWgPQwhDqihe5a1uQJSGlFKUaBVNTAFoFkdAl7ARzmwJPnV9lChoBmgJaA9DCJ0v9l48pXFAlIaUUpRoFU0fAWgWR0CXsUp0wJw9dX2UKGgGaAloD0MIAVDFjRtScUCUhpRSlGgVTRkBaBZHQJeyE/pt78h1fZQoaAZoCWgPQwj35cx2hd5HQJSGlFKUaBVL6WgWR0CXspo9cKPXdX2UKGgGaAloD0MI0zO9xBjAckCUhpRSlGgVS/ZoFkdAl7QhLf1pTXV9lChoBmgJaA9DCH5yFCAK9m1AlIaUUpRoFU0TAWgWR0CXtM9ehPCVdX2UKGgGaAloD0MIkL3e/fEwQkCUhpRSlGgVS/9oFkdAl7TZ6Uqx1XV9lChoBmgJaA9DCKlpF9OMZXJAlIaUUpRoFU1AAWgWR0CXtQplz2eydX2UKGgGaAloD0MIZhGKreDackCUhpRSlGgVS+BoFkdAl7VQKa5PM3V9lChoBmgJaA9DCAahvI+jSW1AlIaUUpRoFU0RAWgWR0CX1OXJo0yhdX2UKGgGaAloD0MIBcHj27txcUCUhpRSlGgVTT4BaBZHQJfXsvBacI91fZQoaAZoCWgPQwjmH32TZtpyQJSGlFKUaBVNBQFoFkdAl9fuZgG8mXV9lChoBmgJaA9DCJ31KcekVXFAlIaUUpRoFU1lAWgWR0CX2FvZyuIRdX2UKGgGaAloD0MIMlcG1YZ2bECUhpRSlGgVTYoBaBZHQJfZQgq3Eyd1fZQoaAZoCWgPQwhA9nr3xx1yQJSGlFKUaBVL+WgWR0CX2lHT7VJ+dX2UKGgGaAloD0MI0QSKWEROcUCUhpRSlGgVTTQBaBZHQJfaTzQNTcZ1fZQoaAZoCWgPQwixM4XO6xxwQJSGlFKUaBVNUgFoFkdAl9rsR6F/QXV9lChoBmgJaA9DCKwBSkNNfXFAlIaUUpRoFU18AWgWR0CX2/Q7cO9WdX2UKGgGaAloD0MIaYzWUVWAb0CUhpRSlGgVTRwBaBZHQJfe4rnTy8V1fZQoaAZoCWgPQwjg9gSJ7ehtQJSGlFKUaBVNJwFoFkdAl98nHmzSkXV9lChoBmgJaA9DCKlNnNwvuXBAlIaUUpRoFU09AWgWR0CX31jD8+A3dX2UKGgGaAloD0MIA3tMpDTUcECUhpRSlGgVTZYBaBZHQJff90q6OHZ1fZQoaAZoCWgPQwj20akr339xQJSGlFKUaBVNggFoFkdAl+Cbv9cbBHV9lChoBmgJaA9DCIknu5lRPXBAlIaUUpRoFU1cAWgWR0CX4UjENvwWdX2UKGgGaAloD0MI5wEs8uuPRUCUhpRSlGgVS6BoFkdAl+GGXHBDX3V9lChoBmgJaA9DCNANTdlpRnFAlIaUUpRoFU0zAWgWR0CX4gc0tRNzdX2UKGgGaAloD0MImzdOCnNKcECUhpRSlGgVTXQBaBZHQJfitdY4hll1fZQoaAZoCWgPQwjtZdtpa6hsQJSGlFKUaBVNNwFoFkdAl+S3bmEGq3V9lChoBmgJaA9DCJYhjnUx6XFAlIaUUpRoFU0PAWgWR0CX5UPCl7+ldX2UKGgGaAloD0MIcM6I0h7wcUCUhpRSlGgVTV4BaBZHQJfmqFh5Pdl1fZQoaAZoCWgPQwgHKA01CqBwQJSGlFKUaBVNSAFoFkdAl+eLKaG5+nV9lChoBmgJaA9DCEaaeAf4I3BAlIaUUpRoFU18AWgWR0CX6LknCwbEdX2UKGgGaAloD0MI0ZUIVP9WckCUhpRSlGgVTUcBaBZHQJfpLxG2Cul1fZQoaAZoCWgPQwhIFjCBWylxQJSGlFKUaBVNIwFoFkdAl+xh6v7m+3V9lChoBmgJaA9DCGSw4lTr7nBAlIaUUpRoFU1FAWgWR0CX7JGh24d7dX2UKGgGaAloD0MIy74rgn8Dc0CUhpRSlGgVTScBaBZHQJftUysS00F1fZQoaAZoCWgPQwgjLgCNkrRxQJSGlFKUaBVNawFoFkdAl+4Gpda+vnV9lChoBmgJaA9DCI50BkZeh3FAlIaUUpRoFU1+AWgWR0CX7po73fygdX2UKGgGaAloD0MIm+Wy0fmucECUhpRSlGgVTTABaBZHQJfvW/vfCQ91fZQoaAZoCWgPQwj2twTgX6FwQJSGlFKUaBVNUgFoFkdAl+9z50r9VHV9lChoBmgJaA9DCDwRxHl4enFAlIaUUpRoFU0GAWgWR0CX77dPci4bdX2UKGgGaAloD0MItyizQSaFOkCUhpRSlGgVS9hoFkdAl+/PAO8TSXV9lChoBmgJaA9DCGBWKNJ9nHFAlIaUUpRoFU0BAWgWR0CX8BK77Kq5dX2UKGgGaAloD0MI6q9XWPCEckCUhpRSlGgVTacBaBZHQJfxFTR6WxB1fZQoaAZoCWgPQwhcOuY8o6lxQJSGlFKUaBVNdQFoFkdAl/ExGhEjPnV9lChoBmgJaA9DCK5/12dOPnBAlIaUUpRoFU0PAWgWR0CX85phnanKdX2UKGgGaAloD0MIk4ychf0zcUCUhpRSlGgVTRYBaBZHQJf0WOzY2891fZQoaAZoCWgPQwgUJoxmpTpxQJSGlFKUaBVNWgFoFkdAl/VjUd7v5XV9lChoBmgJaA9DCO0rD9KTcXBAlIaUUpRoFU08AWgWR0CX+Td3B55adX2UKGgGaAloD0MIj4zV5n85cUCUhpRSlGgVTSABaBZHQJf5sw/PgNx1fZQoaAZoCWgPQwiR09fzNUpuQJSGlFKUaBVNTAFoFkdAl/oyFXaJynV9lChoBmgJaA9DCGozTkPUwW9AlIaUUpRoFU0XAWgWR0CX+taoMrmRdX2UKGgGaAloD0MIfIDuy5kcc0CUhpRSlGgVS/hoFkdAl/t/CEYfn3V9lChoBmgJaA9DCJ/L1CT4m3BAlIaUUpRoFU05AWgWR0CX+3+sHSncdX2UKGgGaAloD0MI7FBNSVblbkCUhpRSlGgVTR8BaBZHQJf75zdUKiR1fZQoaAZoCWgPQwhyUwPNJ0ZyQJSGlFKUaBVNLAFoFkdAl/wx1xKg7HV9lChoBmgJaA9DCK2h1F6E6nFAlIaUUpRoFU06AWgWR0CX/K7lq8DkdX2UKGgGaAloD0MIp+hILj+rcUCUhpRSlGgVTZcBaBZHQJf+KoegctJ1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd2745d916aaded240108303e474587dbc41c5c8ff09194ead25195f8af4214d
3
+ size 84829
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9ec8300e952a26ceaff66b73da4c02f90946dcd18991e2ea67d7f5d971e76b5
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:988576bc8a6c978c0b78d234d2153478d34306ce08c0643e083d5c2bd27eedf8
3
+ size 201418
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 265.98049778172737, "std_reward": 9.311635136679485, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T19:55:09.153944"}