Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +8 -8
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.62 +/- 0.25
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a68f4791ed8013e692143a27af0a48f6556839cf751cbb1b4aced3b405bd7f6
|
3 |
+
size 108159
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -24,7 +24,7 @@
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
@@ -33,10 +33,10 @@
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[0.
|
38 |
-
"desired_goal": "[[-1.
|
39 |
-
"observation": "[[
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[ 0.
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,7 +56,7 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1684316159043922155,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtPzpPmkda7zTdBE/tPzpPmkda7zTdBE/tPzpPmkda7zTdBE/tPzpPmkda7zTdBE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA00kov4woiD/WrIe/dKCzvwlthL9Txba/bcq9v0kYBj9WDCQ/0DeYP8QEzr+qpZg/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC0/Ok+aR1rvNN0ET8nX0w8ckkGukA1dTy0/Ok+aR1rvNN0ET8nX0w8ckkGukA1dTy0/Ok+aR1rvNN0ET8nX0w8ckkGukA1dTy0/Ok+aR1rvNN0ET8nX0w8ckkGukA1dTyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.4570061 -0.01435027 0.56818885]\n [ 0.4570061 -0.01435027 0.56818885]\n [ 0.4570061 -0.01435027 0.56818885]\n [ 0.4570061 -0.01435027 0.56818885]]",
|
38 |
+
"desired_goal": "[[-0.65737647 1.0637374 -1.059962 ]\n [-1.4033341 -1.0345775 -1.4278969 ]\n [-1.48274 0.52380806 0.64081323]\n [ 1.1892033 -1.6095204 1.1925557 ]]",
|
39 |
+
"observation": "[[ 4.5700610e-01 -1.4350274e-02 5.6818885e-01 1.2473858e-02\n -5.1226385e-04 1.4966309e-02]\n [ 4.5700610e-01 -1.4350274e-02 5.6818885e-01 1.2473858e-02\n -5.1226385e-04 1.4966309e-02]\n [ 4.5700610e-01 -1.4350274e-02 5.6818885e-01 1.2473858e-02\n -5.1226385e-04 1.4966309e-02]\n [ 4.5700610e-01 -1.4350274e-02 5.6818885e-01 1.2473858e-02\n -5.1226385e-04 1.4966309e-02]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqCxKPSqRPr0kA1M+2H32PeGPFT5TmYM+ucbrPFoFtj1Atfg7x90VvmcUg70cupI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.04935899 -0.04652516 0.20606667]\n [ 0.12035722 0.14605667 0.25702915]\n [ 0.02878128 0.08887739 0.00758997]\n [-0.14635383 -0.06400376 0.07164404]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7kPecvVj5r+UhpRSlIwBbJRLMowBdJRHQKb+O3azu4R1fZQoaAZoCWgPQwhok8Mnncjsv5SGlFKUaBVLMmgWR0Cm/eJD/lySdX2UKGgGaAloD0MIwFlKlpPQ6b+UhpRSlGgVSzJoFkdApv2Td8Aq/nV9lChoBmgJaA9DCArYDkbsU/e/lIaUUpRoFUsyaBZHQKb9QpwS8J51fZQoaAZoCWgPQwh6HXHIBlLxv5SGlFKUaBVLMmgWR0Cm/0vnbItEdX2UKGgGaAloD0MI3jr/dtkv97+UhpRSlGgVSzJoFkdApv7yu2Zy/HV9lChoBmgJaA9DCMh4lEp4QuG/lIaUUpRoFUsyaBZHQKb+pBAOav11fZQoaAZoCWgPQwhGXAAapQv6v5SGlFKUaBVLMmgWR0Cm/lNLL6k7dX2UKGgGaAloD0MIc56xL9l47b+UhpRSlGgVSzJoFkdApwBQ62fCh3V9lChoBmgJaA9DCLgf8MAAwgDAlIaUUpRoFUsyaBZHQKb/96By0a91fZQoaAZoCWgPQwiAme/gJ075v5SGlFKUaBVLMmgWR0Cm/6js2NvPdX2UKGgGaAloD0MI5wDBHD1+6L+UhpRSlGgVSzJoFkdApv9YCbMHKXV9lChoBmgJaA9DCIY5QZscPuC/lIaUUpRoFUsyaBZHQKcBX8w5/9Z1fZQoaAZoCWgPQwjswaT4+OQAwJSGlFKUaBVLMmgWR0CnAQauOjqOdX2UKGgGaAloD0MIBwsnaf7Y9L+UhpRSlGgVSzJoFkdApwC4CW/rSnV9lChoBmgJaA9DCNtrQe+NIe2/lIaUUpRoFUsyaBZHQKcAZzZHuqp1fZQoaAZoCWgPQwi+3v3xXrXmv5SGlFKUaBVLMmgWR0CnAnGI9C/odX2UKGgGaAloD0MISfdzCvJz/r+UhpRSlGgVSzJoFkdApwIYTqSowXV9lChoBmgJaA9DCH1cGyrGuQLAlIaUUpRoFUsyaBZHQKcByZAprk91fZQoaAZoCWgPQwhcPSe9b7wDwJSGlFKUaBVLMmgWR0CnAXi4BmwrdX2UKGgGaAloD0MIlgUTfxR17b+UhpRSlGgVSzJoFkdApwOPdbgTAXV9lChoBmgJaA9DCNNnB1xXzNW/lIaUUpRoFUsyaBZHQKcDNlPJq7B1fZQoaAZoCWgPQwj3ItqOqXv1v5SGlFKUaBVLMmgWR0CnAueuV5bAdX2UKGgGaAloD0MIwlCHFW557b+UhpRSlGgVSzJoFkdApwKWz4UN8XV9lChoBmgJaA9DCHTtC+iFu/G/lIaUUpRoFUsyaBZHQKcEnweeWfN1fZQoaAZoCWgPQwhjmuleJ3X3v5SGlFKUaBVLMmgWR0CnBEXH7xd6dX2UKGgGaAloD0MIXoO+9PYn9L+UhpRSlGgVSzJoFkdApwP3BeokzHV9lChoBmgJaA9DCEERixh22Pu/lIaUUpRoFUsyaBZHQKcDpgtvn8t1fZQoaAZoCWgPQwh6w33k1mT5v5SGlFKUaBVLMmgWR0CnBbXvH93sdX2UKGgGaAloD0MIrcH7qlyo27+UhpRSlGgVSzJoFkdApwVcvPC2t3V9lChoBmgJaA9DCD83NGWnH+2/lIaUUpRoFUsyaBZHQKcFDgrpaA51fZQoaAZoCWgPQwjgumJGePvqv5SGlFKUaBVLMmgWR0CnBL029+PSdX2UKGgGaAloD0MIsHCS5o/p+7+UhpRSlGgVSzJoFkdApwddymygPHV9lChoBmgJaA9DCPc6qS9Le/C/lIaUUpRoFUsyaBZHQKcHBW4mTkh1fZQoaAZoCWgPQwiyR6gZUsX5v5SGlFKUaBVLMmgWR0CnBreXiR4hdX2UKGgGaAloD0MIDcNHxJRI4b+UhpRSlGgVSzJoFkdApwZnmmtQsXV9lChoBmgJaA9DCBwIyQImMPa/lIaUUpRoFUsyaBZHQKcJHr30wrV1fZQoaAZoCWgPQwjX9+EgIQryv5SGlFKUaBVLMmgWR0CnCMZm7J4jdX2UKGgGaAloD0MIg7709uei6L+UhpRSlGgVSzJoFkdApwh4bEP1+XV9lChoBmgJaA9DCDpY/+cwX/O/lIaUUpRoFUsyaBZHQKcIKGcnVoZ1fZQoaAZoCWgPQwgZyol2FVLyv5SGlFKUaBVLMmgWR0CnCtWYF7ladX2UKGgGaAloD0MIgUOoUrMH8L+UhpRSlGgVSzJoFkdApwp9aW5Yo3V9lChoBmgJaA9DCGQe+YOBZ+i/lIaUUpRoFUsyaBZHQKcKL59E1EV1fZQoaAZoCWgPQwhnYU87/DXmv5SGlFKUaBVLMmgWR0CnCd+5vtMPdX2UKGgGaAloD0MI1esWgbE+4L+UhpRSlGgVSzJoFkdApwy2wA2hqXV9lChoBmgJaA9DCC7iOzHrxeO/lIaUUpRoFUsyaBZHQKcMXoL5RCR1fZQoaAZoCWgPQwiGOUGbHL7hv5SGlFKUaBVLMmgWR0CnDBDdP+GXdX2UKGgGaAloD0MIMh8Q6Eza6L+UhpRSlGgVSzJoFkdApwvA7/4qPXV9lChoBmgJaA9DCBVYAFMGDu6/lIaUUpRoFUsyaBZHQKcOjdSl3yJ1fZQoaAZoCWgPQwjo9/2bF6f2v5SGlFKUaBVLMmgWR0CnDjVt4zJqdX2UKGgGaAloD0MIEticg2dC4b+UhpRSlGgVSzJoFkdApw3nwb2lEnV9lChoBmgJaA9DCNMUAU7v4uK/lIaUUpRoFUsyaBZHQKcNl9w3o9t1fZQoaAZoCWgPQwhETl/P16zqv5SGlFKUaBVLMmgWR0CnEGMKsuFpdX2UKGgGaAloD0MIAkpDjUKS7L+UhpRSlGgVSzJoFkdApxAKksSTQnV9lChoBmgJaA9DCBkBFY4glda/lIaUUpRoFUsyaBZHQKcPvJ9RaX91fZQoaAZoCWgPQwiUopV7gVnRv5SGlFKUaBVLMmgWR0CnD2xxT850dX2UKGgGaAloD0MIgm+aPjvg5L+UhpRSlGgVSzJoFkdApxHkOskpqnV9lChoBmgJaA9DCLrXSX1Z2um/lIaUUpRoFUsyaBZHQKcRiyAQQMB1fZQoaAZoCWgPQwj2B8pt+x7Zv5SGlFKUaBVLMmgWR0CnETyowVTKdX2UKGgGaAloD0MIkpbK2xFO67+UhpRSlGgVSzJoFkdApxDrvoePrHV9lChoBmgJaA9DCBIxJZLo5fW/lIaUUpRoFUsyaBZHQKcS58xbjcV1fZQoaAZoCWgPQwiD29rC81Lcv5SGlFKUaBVLMmgWR0CnEo6j3225dX2UKGgGaAloD0MIrMYS1sbY3r+UhpRSlGgVSzJoFkdApxI/5N47inV9lChoBmgJaA9DCLK8qx4wT/C/lIaUUpRoFUsyaBZHQKcR7wcYIjZ1fZQoaAZoCWgPQwjiHeBJCxfiv5SGlFKUaBVLMmgWR0CnE/n2ZiNLdX2UKGgGaAloD0MIP8QGCycp8b+UhpRSlGgVSzJoFkdApxOgz+FUQ3V9lChoBmgJaA9DCM0Ew7mGGfK/lIaUUpRoFUsyaBZHQKcTUjJMg2Z1fZQoaAZoCWgPQwgTtp+M8eHov5SGlFKUaBVLMmgWR0CnEwFSS/0vdX2UKGgGaAloD0MIUwWjkjoB2L+UhpRSlGgVSzJoFkdApxUERzzVc3V9lChoBmgJaA9DCGO0jqomiPe/lIaUUpRoFUsyaBZHQKcUqzZYgaF1fZQoaAZoCWgPQwgm4xjJHuH6v5SGlFKUaBVLMmgWR0CnFFyIP9UCdX2UKGgGaAloD0MI5ldzgGCO47+UhpRSlGgVSzJoFkdApxQLkELYw3V9lChoBmgJaA9DCBBdUN8yJ+y/lIaUUpRoFUsyaBZHQKcWIrEtNBZ1fZQoaAZoCWgPQwgG9MKdCyPWv5SGlFKUaBVLMmgWR0CnFcmW2PT5dX2UKGgGaAloD0MIOPbsuUwN8r+UhpRSlGgVSzJoFkdApxV6xPfsNXV9lChoBmgJaA9DCFUYWwhyUOG/lIaUUpRoFUsyaBZHQKcVKd5IH1R1fZQoaAZoCWgPQwjqdYvAWN/pv5SGlFKUaBVLMmgWR0CnFyJKBd2QdX2UKGgGaAloD0MIRdjw9EpZ27+UhpRSlGgVSzJoFkdApxbJFLFn7HV9lChoBmgJaA9DCFUuVP61POe/lIaUUpRoFUsyaBZHQKcWemP5pJx1fZQoaAZoCWgPQwgs2EY82Q3yv5SGlFKUaBVLMmgWR0CnFinymQ8wdX2UKGgGaAloD0MIKh+CqtEr8L+UhpRSlGgVSzJoFkdApxgx4rz5GnV9lChoBmgJaA9DCOFASBYwgee/lIaUUpRoFUsyaBZHQKcX2K2KEWZ1fZQoaAZoCWgPQwg8vr1r0Bfkv5SGlFKUaBVLMmgWR0CnF4oa1kUcdX2UKGgGaAloD0MIfm5oyk6/5b+UhpRSlGgVSzJoFkdApxc5T2nKn3V9lChoBmgJaA9DCH1bsFQXcO+/lIaUUpRoFUsyaBZHQKcZT863iJh1fZQoaAZoCWgPQwhXryKjA5Lav5SGlFKUaBVLMmgWR0CnGPaGYa5xdX2UKGgGaAloD0MId06zQLvD4b+UhpRSlGgVSzJoFkdApxin3evZAnV9lChoBmgJaA9DCNlg4STNn+W/lIaUUpRoFUsyaBZHQKcYVy1/lQx1fZQoaAZoCWgPQwi2D3nL1Q/uv5SGlFKUaBVLMmgWR0CnGl+XAuZkdX2UKGgGaAloD0MICDvFqkGY47+UhpRSlGgVSzJoFkdApxoGhsZYP3V9lChoBmgJaA9DCFHex9Ec2ei/lIaUUpRoFUsyaBZHQKcZt97Wuox1fZQoaAZoCWgPQwh6VtKKbyjZv5SGlFKUaBVLMmgWR0CnGWcTJyQxdX2UKGgGaAloD0MIzJiCNc4m77+UhpRSlGgVSzJoFkdApxuMsJ6Y3XV9lChoBmgJaA9DCHjuPVxyHPO/lIaUUpRoFUsyaBZHQKcbM3pfQa91fZQoaAZoCWgPQwjAXIsWoO3kv5SGlFKUaBVLMmgWR0CnGuS/j81odX2UKGgGaAloD0MI+5P43Al25L+UhpRSlGgVSzJoFkdApxqTynUDuHV9lChoBmgJaA9DCNz2Peqv1+C/lIaUUpRoFUsyaBZHQKccl+8XenB1fZQoaAZoCWgPQwgJ3SVxVkTkv5SGlFKUaBVLMmgWR0CnHD6z/p+udX2UKGgGaAloD0MIuHNhpBc16L+UhpRSlGgVSzJoFkdApxvv8TBZZHV9lChoBmgJaA9DCN3T1R2Lbeu/lIaUUpRoFUsyaBZHQKcbnxDLKV91ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82451afce6bb11744c9a93ed13fe54db9663970fb111dddf5f6abb1371eea50a
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af9c159cc6e2896829cdc3f0311c45b5f9e3359b6ab9937659db48a2e306eb83
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f909ac5ee60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f909ac64d40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684309101799374295, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAO/rSPlTiKzxkUBI/O/rSPlTiKzxkUBI/O/rSPlTiKzxkUBI/O/rSPlTiKzxkUBI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASXepv0nJgr/53d69bS6tv0fAib5sXMg+yvHavIuRsr55Gum+9H66PxIwjz+EMby/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA7+tI+VOIrPGRQEj+ImBA8RQYvuzgH9Ts7+tI+VOIrPGRQEj+ImBA8RQYvuzgH9Ts7+tI+VOIrPGRQEj+ImBA8RQYvuzgH9Ts7+tI+VOIrPGRQEj+ImBA8RQYvuzgH9TuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.41206536 0.01049097 0.57153916]\n [0.41206536 0.01049097 0.57153916]\n [0.41206536 0.01049097 0.57153916]\n [0.41206536 0.01049097 0.57153916]]", "desired_goal": "[[-1.3239528 -1.0217677 -0.10882182]\n [-1.3529793 -0.26904508 0.39133012]\n [-0.02672662 -0.34876665 -0.4552801 ]\n [ 1.4569993 1.1186545 -1.4702611 ]]", "observation": "[[ 0.41206536 0.01049097 0.57153916 0.00882543 -0.00267066 0.00747767]\n [ 0.41206536 0.01049097 0.57153916 0.00882543 -0.00267066 0.00747767]\n [ 0.41206536 0.01049097 0.57153916 0.00882543 -0.00267066 0.00747767]\n [ 0.41206536 0.01049097 0.57153916 0.00882543 -0.00267066 0.00747767]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAz9gfPa6/Cr7duYY9Cj8HPgTUKDy9tB09ar4IvhuZGD7r+Ys+gJ2nvfd3GL42/Nk9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03902512 -0.13549682 0.06578419]\n [ 0.13207641 0.01030445 0.03850244]\n [-0.13353887 0.14902155 0.2733911 ]\n [-0.08184338 -0.14889513 0.10643809]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkIgpkURPB8CUhpRSlIwBbJRLMowBdJRHQKbqpGAkLQZ1fZQoaAZoCWgPQwhWYTPABRkKwJSGlFKUaBVLMmgWR0Cm6mdv0h/zdX2UKGgGaAloD0MIyEW1iCim/L+UhpRSlGgVSzJoFkdApuopsQ/X5HV9lChoBmgJaA9DCLSvPEhPUf6/lIaUUpRoFUsyaBZHQKbp6MVDa5B1fZQoaAZoCWgPQwj/PXjt0kYBwJSGlFKUaBVLMmgWR0Cm66XBP9DQdX2UKGgGaAloD0MIqwg3GVXG+b+UhpRSlGgVSzJoFkdAputoWk8A73V9lChoBmgJaA9DCM9r7BLVWwHAlIaUUpRoFUsyaBZHQKbrKj1wo9d1fZQoaAZoCWgPQwjEI/HydO4NwJSGlFKUaBVLMmgWR0Cm6uluWKMvdX2UKGgGaAloD0MIrOC3IcZr/L+UhpRSlGgVSzJoFkdApuzLUb1h9nV9lChoBmgJaA9DCMmwijcyzwDAlIaUUpRoFUsyaBZHQKbsjtCzC1t1fZQoaAZoCWgPQwjTwfo/h1kEwJSGlFKUaBVLMmgWR0Cm7FFum78OdX2UKGgGaAloD0MISYWxhSBHA8CUhpRSlGgVSzJoFkdApuwRTMqz7nV9lChoBmgJaA9DCHbgnBGlXQzAlIaUUpRoFUsyaBZHQKbuY4aP0Zp1fZQoaAZoCWgPQwgYsU8AxSgNwJSGlFKUaBVLMmgWR0Cm7ibI91U3dX2UKGgGaAloD0MIGVQbnIi+/b+UhpRSlGgVSzJoFkdApu3peqrBCXV9lChoBmgJaA9DCNfZkH9mUAHAlIaUUpRoFUsyaBZHQKbtqWCVbA11fZQoaAZoCWgPQwisPIGwU2wOwJSGlFKUaBVLMmgWR0Cm8CLNnoPkdX2UKGgGaAloD0MIVOV7RiL0AMCUhpRSlGgVSzJoFkdApu/mTs6aLHV9lChoBmgJaA9DCBqH+l3YugbAlIaUUpRoFUsyaBZHQKbvqQ4CIUJ1fZQoaAZoCWgPQwirzJTW3/IKwJSGlFKUaBVLMmgWR0Cm72nVXmvGdX2UKGgGaAloD0MId9uF5jrNAMCUhpRSlGgVSzJoFkdApvHYXdj5K3V9lChoBmgJaA9DCFpj0AmhYwDAlIaUUpRoFUsyaBZHQKbxm8EFGG51fZQoaAZoCWgPQwgRct7/x4n5v5SGlFKUaBVLMmgWR0Cm8V5FXq7idX2UKGgGaAloD0MIKbAApgwc/b+UhpRSlGgVSzJoFkdApvEeW8h9s3V9lChoBmgJaA9DCF3+Q/rta/+/lIaUUpRoFUsyaBZHQKbzoNWluWN1fZQoaAZoCWgPQwiHwfwVMpfyv5SGlFKUaBVLMmgWR0Cm82Q/5ckddX2UKGgGaAloD0MIDjFe86oO97+UhpRSlGgVSzJoFkdApvMnJo0yg3V9lChoBmgJaA9DCJhr0QK0bfm/lIaUUpRoFUsyaBZHQKby5xz7uUl1fZQoaAZoCWgPQwipFabvNUT5v5SGlFKUaBVLMmgWR0Cm9VbedkJ8dX2UKGgGaAloD0MI+gj84effCsCUhpRSlGgVSzJoFkdApvUaYPXkHXV9lChoBmgJaA9DCHswKT4+QQbAlIaUUpRoFUsyaBZHQKb03Tho/Rp1fZQoaAZoCWgPQwjlm21uTG8CwJSGlFKUaBVLMmgWR0Cm9J2XkYGddX2UKGgGaAloD0MIhsd+FktRBMCUhpRSlGgVSzJoFkdApvcQsmOU+3V9lChoBmgJaA9DCMFu2LYoMwfAlIaUUpRoFUsyaBZHQKb202Yv38J1fZQoaAZoCWgPQwiCyvj3GRfvv5SGlFKUaBVLMmgWR0Cm9pVrhzeXdX2UKGgGaAloD0MItWytLxK6AcCUhpRSlGgVSzJoFkdApvZUwevIO3V9lChoBmgJaA9DCOOqsu+KIAzAlIaUUpRoFUsyaBZHQKb4D6HCXQd1fZQoaAZoCWgPQwgGnRA66FIFwJSGlFKUaBVLMmgWR0Cm99JfYzzmdX2UKGgGaAloD0MI6spneR48B8CUhpRSlGgVSzJoFkdApveUKsuFpXV9lChoBmgJaA9DCFmmXyLeGgTAlIaUUpRoFUsyaBZHQKb3U3Ov+wV1fZQoaAZoCWgPQwgkufyH9Bv0v5SGlFKUaBVLMmgWR0Cm+RH2RJVbdX2UKGgGaAloD0MItrkxPWGJA8CUhpRSlGgVSzJoFkdApvjUnTiKi3V9lChoBmgJaA9DCOoj8IefXwnAlIaUUpRoFUsyaBZHQKb4lpt78el1fZQoaAZoCWgPQwh00ZDxKFX7v5SGlFKUaBVLMmgWR0Cm+FXlS0jUdX2UKGgGaAloD0MIVyJQ/YPI6b+UhpRSlGgVSzJoFkdApvoVNpM6BHV9lChoBmgJaA9DCJ8ENufg2fu/lIaUUpRoFUsyaBZHQKb51+2mYSh1fZQoaAZoCWgPQwi/ub963Lf4v5SGlFKUaBVLMmgWR0Cm+ZnrpqyodX2UKGgGaAloD0MI5zki36VUBcCUhpRSlGgVSzJoFkdApvlZGz8gp3V9lChoBmgJaA9DCAh2/BcI4gTAlIaUUpRoFUsyaBZHQKb7EsunMt91fZQoaAZoCWgPQwi0rPvHQlQBwJSGlFKUaBVLMmgWR0Cm+tW4uscRdX2UKGgGaAloD0MIehfvx+2XAcCUhpRSlGgVSzJoFkdApvqXtnf2snV9lChoBmgJaA9DCIz2eCEdHgzAlIaUUpRoFUsyaBZHQKb6VwNsnAt1fZQoaAZoCWgPQwglrfiGwucAwJSGlFKUaBVLMmgWR0Cm/A1mz0HydX2UKGgGaAloD0MIQgjIl1AhAMCUhpRSlGgVSzJoFkdApvvQHs1KoXV9lChoBmgJaA9DCGeasP1k7AHAlIaUUpRoFUsyaBZHQKb7kjbBXS11fZQoaAZoCWgPQwhWnGotzAICwJSGlFKUaBVLMmgWR0Cm+1GIsRQKdX2UKGgGaAloD0MIWaMeotFdBMCUhpRSlGgVSzJoFkdApv0IEdNnG3V9lChoBmgJaA9DCLsKKT+pdgLAlIaUUpRoFUsyaBZHQKb8yqDK5kN1fZQoaAZoCWgPQwigOIB+3//7v5SGlFKUaBVLMmgWR0Cm/IxusLfDdX2UKGgGaAloD0MI/RLx1vk3AsCUhpRSlGgVSzJoFkdApvxLrX18LXV9lChoBmgJaA9DCFUTRN0HYAXAlIaUUpRoFUsyaBZHQKb+BRtxdY51fZQoaAZoCWgPQwgr+64I/tcAwJSGlFKUaBVLMmgWR0Cm/ce3QUpNdX2UKGgGaAloD0MIOCwN/KjG/L+UhpRSlGgVSzJoFkdApv2JdQfp2XV9lChoBmgJaA9DCAN64c6F0fu/lIaUUpRoFUsyaBZHQKb9SJVsDW91fZQoaAZoCWgPQwgxXB0Acdf+v5SGlFKUaBVLMmgWR0Cm/wBStNi6dX2UKGgGaAloD0MIKEaWzLEcAcCUhpRSlGgVSzJoFkdApv7C97F85XV9lChoBmgJaA9DCG6jAbwFcgDAlIaUUpRoFUsyaBZHQKb+hM495hV1fZQoaAZoCWgPQwhupddmYyX6v5SGlFKUaBVLMmgWR0Cm/kPuPV/ddX2UKGgGaAloD0MIMISc9/8RDMCUhpRSlGgVSzJoFkdApv/0OmR/3HV9lChoBmgJaA9DCEeSIFwBRfu/lIaUUpRoFUsyaBZHQKb/tuuzQeF1fZQoaAZoCWgPQwhrD3uhgG3/v5SGlFKUaBVLMmgWR0Cm/3jRtxdZdX2UKGgGaAloD0MIuagWEcWk97+UhpRSlGgVSzJoFkdApv84GyHEdnV9lChoBmgJaA9DCCU8odef5APAlIaUUpRoFUsyaBZHQKcA6rwOOKh1fZQoaAZoCWgPQwhTXiuhu4QBwJSGlFKUaBVLMmgWR0CnAK1c+qzadX2UKGgGaAloD0MI7L34oj2eAcCUhpRSlGgVSzJoFkdApwBvNxEORXV9lChoBmgJaA9DCBBAahMn9wHAlIaUUpRoFUsyaBZHQKcALkGRmsh1fZQoaAZoCWgPQwjJq3MMyN79v5SGlFKUaBVLMmgWR0CnAdUL2HtXdX2UKGgGaAloD0MI8WQ3M/oRB8CUhpRSlGgVSzJoFkdApwGXoNd7fHV9lChoBmgJaA9DCDwXRnpRewDAlIaUUpRoFUsyaBZHQKcBWUvf0mN1fZQoaAZoCWgPQwjHEAAcexYKwJSGlFKUaBVLMmgWR0CnARhvBJqZdX2UKGgGaAloD0MI1J0nnrNFDMCUhpRSlGgVSzJoFkdApwLDuc+aB3V9lChoBmgJaA9DCM4WEFoPvwHAlIaUUpRoFUsyaBZHQKcChlLeyiV1fZQoaAZoCWgPQwhSEDy+vSsDwJSGlFKUaBVLMmgWR0CnAkgnc+JQdX2UKGgGaAloD0MIKChFK/dCAcCUhpRSlGgVSzJoFkdApwIHYHxBmnV9lChoBmgJaA9DCKW9wRcm0wjAlIaUUpRoFUsyaBZHQKcDuoHcDbJ1fZQoaAZoCWgPQwjxf0dUqI4GwJSGlFKUaBVLMmgWR0CnA30wztTldX2UKGgGaAloD0MInFCIgEMoB8CUhpRSlGgVSzJoFkdApwM/BacI7nV9lChoBmgJaA9DCJmaBG9IgwfAlIaUUpRoFUsyaBZHQKcC/j2i+L51fZQoaAZoCWgPQwjIfECgM+n9v5SGlFKUaBVLMmgWR0CnBLaAWi1zdX2UKGgGaAloD0MI1/fhICFKCcCUhpRSlGgVSzJoFkdApwR5B1LamHV9lChoBmgJaA9DCHB87ZklQQLAlIaUUpRoFUsyaBZHQKcEOvDgqEx1fZQoaAZoCWgPQwgcl3FTA03+v5SGlFKUaBVLMmgWR0CnA/qEFnqWdX2UKGgGaAloD0MIGqN1VDWB/7+UhpRSlGgVSzJoFkdApwXEUXYUWXV9lChoBmgJaA9DCKtf6Xx4lv+/lIaUUpRoFUsyaBZHQKcFhwgDA8B1fZQoaAZoCWgPQwiGHFvPEM76v5SGlFKUaBVLMmgWR0CnBUjmjj7zdX2UKGgGaAloD0MIA7NCke5HAcCUhpRSlGgVSzJoFkdApwUIjY7JXHV9lChoBmgJaA9DCE9cjlcg+vi/lIaUUpRoFUsyaBZHQKcGt0Zm7J51fZQoaAZoCWgPQwiGkzR/TAsAwJSGlFKUaBVLMmgWR0CnBnnmig01dX2UKGgGaAloD0MILev+sRDdAcCUhpRSlGgVSzJoFkdApwY7xLCemXV9lChoBmgJaA9DCGK7e4DuC/i/lIaUUpRoFUsyaBZHQKcF+uZCv5h1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f909ac5ee60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f909ac64d40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684316159043922155, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtPzpPmkda7zTdBE/tPzpPmkda7zTdBE/tPzpPmkda7zTdBE/tPzpPmkda7zTdBE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA00kov4woiD/WrIe/dKCzvwlthL9Txba/bcq9v0kYBj9WDCQ/0DeYP8QEzr+qpZg/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC0/Ok+aR1rvNN0ET8nX0w8ckkGukA1dTy0/Ok+aR1rvNN0ET8nX0w8ckkGukA1dTy0/Ok+aR1rvNN0ET8nX0w8ckkGukA1dTy0/Ok+aR1rvNN0ET8nX0w8ckkGukA1dTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4570061 -0.01435027 0.56818885]\n [ 0.4570061 -0.01435027 0.56818885]\n [ 0.4570061 -0.01435027 0.56818885]\n [ 0.4570061 -0.01435027 0.56818885]]", "desired_goal": "[[-0.65737647 1.0637374 -1.059962 ]\n [-1.4033341 -1.0345775 -1.4278969 ]\n [-1.48274 0.52380806 0.64081323]\n [ 1.1892033 -1.6095204 1.1925557 ]]", "observation": "[[ 4.5700610e-01 -1.4350274e-02 5.6818885e-01 1.2473858e-02\n -5.1226385e-04 1.4966309e-02]\n [ 4.5700610e-01 -1.4350274e-02 5.6818885e-01 1.2473858e-02\n -5.1226385e-04 1.4966309e-02]\n [ 4.5700610e-01 -1.4350274e-02 5.6818885e-01 1.2473858e-02\n -5.1226385e-04 1.4966309e-02]\n [ 4.5700610e-01 -1.4350274e-02 5.6818885e-01 1.2473858e-02\n -5.1226385e-04 1.4966309e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqCxKPSqRPr0kA1M+2H32PeGPFT5TmYM+ucbrPFoFtj1Atfg7x90VvmcUg70cupI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.04935899 -0.04652516 0.20606667]\n [ 0.12035722 0.14605667 0.25702915]\n [ 0.02878128 0.08887739 0.00758997]\n [-0.14635383 -0.06400376 0.07164404]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7kPecvVj5r+UhpRSlIwBbJRLMowBdJRHQKb+O3azu4R1fZQoaAZoCWgPQwhok8Mnncjsv5SGlFKUaBVLMmgWR0Cm/eJD/lySdX2UKGgGaAloD0MIwFlKlpPQ6b+UhpRSlGgVSzJoFkdApv2Td8Aq/nV9lChoBmgJaA9DCArYDkbsU/e/lIaUUpRoFUsyaBZHQKb9QpwS8J51fZQoaAZoCWgPQwh6HXHIBlLxv5SGlFKUaBVLMmgWR0Cm/0vnbItEdX2UKGgGaAloD0MI3jr/dtkv97+UhpRSlGgVSzJoFkdApv7yu2Zy/HV9lChoBmgJaA9DCMh4lEp4QuG/lIaUUpRoFUsyaBZHQKb+pBAOav11fZQoaAZoCWgPQwhGXAAapQv6v5SGlFKUaBVLMmgWR0Cm/lNLL6k7dX2UKGgGaAloD0MIc56xL9l47b+UhpRSlGgVSzJoFkdApwBQ62fCh3V9lChoBmgJaA9DCLgf8MAAwgDAlIaUUpRoFUsyaBZHQKb/96By0a91fZQoaAZoCWgPQwiAme/gJ075v5SGlFKUaBVLMmgWR0Cm/6js2NvPdX2UKGgGaAloD0MI5wDBHD1+6L+UhpRSlGgVSzJoFkdApv9YCbMHKXV9lChoBmgJaA9DCIY5QZscPuC/lIaUUpRoFUsyaBZHQKcBX8w5/9Z1fZQoaAZoCWgPQwjswaT4+OQAwJSGlFKUaBVLMmgWR0CnAQauOjqOdX2UKGgGaAloD0MIBwsnaf7Y9L+UhpRSlGgVSzJoFkdApwC4CW/rSnV9lChoBmgJaA9DCNtrQe+NIe2/lIaUUpRoFUsyaBZHQKcAZzZHuqp1fZQoaAZoCWgPQwi+3v3xXrXmv5SGlFKUaBVLMmgWR0CnAnGI9C/odX2UKGgGaAloD0MISfdzCvJz/r+UhpRSlGgVSzJoFkdApwIYTqSowXV9lChoBmgJaA9DCH1cGyrGuQLAlIaUUpRoFUsyaBZHQKcByZAprk91fZQoaAZoCWgPQwhcPSe9b7wDwJSGlFKUaBVLMmgWR0CnAXi4BmwrdX2UKGgGaAloD0MIlgUTfxR17b+UhpRSlGgVSzJoFkdApwOPdbgTAXV9lChoBmgJaA9DCNNnB1xXzNW/lIaUUpRoFUsyaBZHQKcDNlPJq7B1fZQoaAZoCWgPQwj3ItqOqXv1v5SGlFKUaBVLMmgWR0CnAueuV5bAdX2UKGgGaAloD0MIwlCHFW557b+UhpRSlGgVSzJoFkdApwKWz4UN8XV9lChoBmgJaA9DCHTtC+iFu/G/lIaUUpRoFUsyaBZHQKcEnweeWfN1fZQoaAZoCWgPQwhjmuleJ3X3v5SGlFKUaBVLMmgWR0CnBEXH7xd6dX2UKGgGaAloD0MIXoO+9PYn9L+UhpRSlGgVSzJoFkdApwP3BeokzHV9lChoBmgJaA9DCEERixh22Pu/lIaUUpRoFUsyaBZHQKcDpgtvn8t1fZQoaAZoCWgPQwh6w33k1mT5v5SGlFKUaBVLMmgWR0CnBbXvH93sdX2UKGgGaAloD0MIrcH7qlyo27+UhpRSlGgVSzJoFkdApwVcvPC2t3V9lChoBmgJaA9DCD83NGWnH+2/lIaUUpRoFUsyaBZHQKcFDgrpaA51fZQoaAZoCWgPQwjgumJGePvqv5SGlFKUaBVLMmgWR0CnBL029+PSdX2UKGgGaAloD0MIsHCS5o/p+7+UhpRSlGgVSzJoFkdApwddymygPHV9lChoBmgJaA9DCPc6qS9Le/C/lIaUUpRoFUsyaBZHQKcHBW4mTkh1fZQoaAZoCWgPQwiyR6gZUsX5v5SGlFKUaBVLMmgWR0CnBreXiR4hdX2UKGgGaAloD0MIDcNHxJRI4b+UhpRSlGgVSzJoFkdApwZnmmtQsXV9lChoBmgJaA9DCBwIyQImMPa/lIaUUpRoFUsyaBZHQKcJHr30wrV1fZQoaAZoCWgPQwjX9+EgIQryv5SGlFKUaBVLMmgWR0CnCMZm7J4jdX2UKGgGaAloD0MIg7709uei6L+UhpRSlGgVSzJoFkdApwh4bEP1+XV9lChoBmgJaA9DCDpY/+cwX/O/lIaUUpRoFUsyaBZHQKcIKGcnVoZ1fZQoaAZoCWgPQwgZyol2FVLyv5SGlFKUaBVLMmgWR0CnCtWYF7ladX2UKGgGaAloD0MIgUOoUrMH8L+UhpRSlGgVSzJoFkdApwp9aW5Yo3V9lChoBmgJaA9DCGQe+YOBZ+i/lIaUUpRoFUsyaBZHQKcKL59E1EV1fZQoaAZoCWgPQwhnYU87/DXmv5SGlFKUaBVLMmgWR0CnCd+5vtMPdX2UKGgGaAloD0MI1esWgbE+4L+UhpRSlGgVSzJoFkdApwy2wA2hqXV9lChoBmgJaA9DCC7iOzHrxeO/lIaUUpRoFUsyaBZHQKcMXoL5RCR1fZQoaAZoCWgPQwiGOUGbHL7hv5SGlFKUaBVLMmgWR0CnDBDdP+GXdX2UKGgGaAloD0MIMh8Q6Eza6L+UhpRSlGgVSzJoFkdApwvA7/4qPXV9lChoBmgJaA9DCBVYAFMGDu6/lIaUUpRoFUsyaBZHQKcOjdSl3yJ1fZQoaAZoCWgPQwjo9/2bF6f2v5SGlFKUaBVLMmgWR0CnDjVt4zJqdX2UKGgGaAloD0MIEticg2dC4b+UhpRSlGgVSzJoFkdApw3nwb2lEnV9lChoBmgJaA9DCNMUAU7v4uK/lIaUUpRoFUsyaBZHQKcNl9w3o9t1fZQoaAZoCWgPQwhETl/P16zqv5SGlFKUaBVLMmgWR0CnEGMKsuFpdX2UKGgGaAloD0MIAkpDjUKS7L+UhpRSlGgVSzJoFkdApxAKksSTQnV9lChoBmgJaA9DCBkBFY4glda/lIaUUpRoFUsyaBZHQKcPvJ9RaX91fZQoaAZoCWgPQwiUopV7gVnRv5SGlFKUaBVLMmgWR0CnD2xxT850dX2UKGgGaAloD0MIgm+aPjvg5L+UhpRSlGgVSzJoFkdApxHkOskpqnV9lChoBmgJaA9DCLrXSX1Z2um/lIaUUpRoFUsyaBZHQKcRiyAQQMB1fZQoaAZoCWgPQwj2B8pt+x7Zv5SGlFKUaBVLMmgWR0CnETyowVTKdX2UKGgGaAloD0MIkpbK2xFO67+UhpRSlGgVSzJoFkdApxDrvoePrHV9lChoBmgJaA9DCBIxJZLo5fW/lIaUUpRoFUsyaBZHQKcS58xbjcV1fZQoaAZoCWgPQwiD29rC81Lcv5SGlFKUaBVLMmgWR0CnEo6j3225dX2UKGgGaAloD0MIrMYS1sbY3r+UhpRSlGgVSzJoFkdApxI/5N47inV9lChoBmgJaA9DCLK8qx4wT/C/lIaUUpRoFUsyaBZHQKcR7wcYIjZ1fZQoaAZoCWgPQwjiHeBJCxfiv5SGlFKUaBVLMmgWR0CnE/n2ZiNLdX2UKGgGaAloD0MIP8QGCycp8b+UhpRSlGgVSzJoFkdApxOgz+FUQ3V9lChoBmgJaA9DCM0Ew7mGGfK/lIaUUpRoFUsyaBZHQKcTUjJMg2Z1fZQoaAZoCWgPQwgTtp+M8eHov5SGlFKUaBVLMmgWR0CnEwFSS/0vdX2UKGgGaAloD0MIUwWjkjoB2L+UhpRSlGgVSzJoFkdApxUERzzVc3V9lChoBmgJaA9DCGO0jqomiPe/lIaUUpRoFUsyaBZHQKcUqzZYgaF1fZQoaAZoCWgPQwgm4xjJHuH6v5SGlFKUaBVLMmgWR0CnFFyIP9UCdX2UKGgGaAloD0MI5ldzgGCO47+UhpRSlGgVSzJoFkdApxQLkELYw3V9lChoBmgJaA9DCBBdUN8yJ+y/lIaUUpRoFUsyaBZHQKcWIrEtNBZ1fZQoaAZoCWgPQwgG9MKdCyPWv5SGlFKUaBVLMmgWR0CnFcmW2PT5dX2UKGgGaAloD0MIOPbsuUwN8r+UhpRSlGgVSzJoFkdApxV6xPfsNXV9lChoBmgJaA9DCFUYWwhyUOG/lIaUUpRoFUsyaBZHQKcVKd5IH1R1fZQoaAZoCWgPQwjqdYvAWN/pv5SGlFKUaBVLMmgWR0CnFyJKBd2QdX2UKGgGaAloD0MIRdjw9EpZ27+UhpRSlGgVSzJoFkdApxbJFLFn7HV9lChoBmgJaA9DCFUuVP61POe/lIaUUpRoFUsyaBZHQKcWemP5pJx1fZQoaAZoCWgPQwgs2EY82Q3yv5SGlFKUaBVLMmgWR0CnFinymQ8wdX2UKGgGaAloD0MIKh+CqtEr8L+UhpRSlGgVSzJoFkdApxgx4rz5GnV9lChoBmgJaA9DCOFASBYwgee/lIaUUpRoFUsyaBZHQKcX2K2KEWZ1fZQoaAZoCWgPQwg8vr1r0Bfkv5SGlFKUaBVLMmgWR0CnF4oa1kUcdX2UKGgGaAloD0MIfm5oyk6/5b+UhpRSlGgVSzJoFkdApxc5T2nKn3V9lChoBmgJaA9DCH1bsFQXcO+/lIaUUpRoFUsyaBZHQKcZT863iJh1fZQoaAZoCWgPQwhXryKjA5Lav5SGlFKUaBVLMmgWR0CnGPaGYa5xdX2UKGgGaAloD0MId06zQLvD4b+UhpRSlGgVSzJoFkdApxin3evZAnV9lChoBmgJaA9DCNlg4STNn+W/lIaUUpRoFUsyaBZHQKcYVy1/lQx1fZQoaAZoCWgPQwi2D3nL1Q/uv5SGlFKUaBVLMmgWR0CnGl+XAuZkdX2UKGgGaAloD0MICDvFqkGY47+UhpRSlGgVSzJoFkdApxoGhsZYP3V9lChoBmgJaA9DCFHex9Ec2ei/lIaUUpRoFUsyaBZHQKcZt97Wuox1fZQoaAZoCWgPQwh6VtKKbyjZv5SGlFKUaBVLMmgWR0CnGWcTJyQxdX2UKGgGaAloD0MIzJiCNc4m77+UhpRSlGgVSzJoFkdApxuMsJ6Y3XV9lChoBmgJaA9DCHjuPVxyHPO/lIaUUpRoFUsyaBZHQKcbM3pfQa91fZQoaAZoCWgPQwjAXIsWoO3kv5SGlFKUaBVLMmgWR0CnGuS/j81odX2UKGgGaAloD0MI+5P43Al25L+UhpRSlGgVSzJoFkdApxqTynUDuHV9lChoBmgJaA9DCNz2Peqv1+C/lIaUUpRoFUsyaBZHQKccl+8XenB1fZQoaAZoCWgPQwgJ3SVxVkTkv5SGlFKUaBVLMmgWR0CnHD6z/p+udX2UKGgGaAloD0MIuHNhpBc16L+UhpRSlGgVSzJoFkdApxvv8TBZZHV9lChoBmgJaA9DCN3T1R2Lbeu/lIaUUpRoFUsyaBZHQKcbnxDLKV91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.6182108681532554, "std_reward": 0.24783390542723369, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-17T10:25:19.911253"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88e4e8e34f16d9e6037f873caca7139e2bd4bf4611cce9e2a78066bedb11000c
|
3 |
size 2387
|