a2c-AntBulletEnv-v0 / config.json
Neronuser's picture
Initial commit
df6822d
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f909ac5e710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f909ac5e7a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f909ac5e830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f909ac5e8c0>", "_build": "<function ActorCriticPolicy._build at 0x7f909ac5e950>", "forward": "<function ActorCriticPolicy.forward at 0x7f909ac5e9e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f909ac5ea70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f909ac5eb00>", "_predict": "<function ActorCriticPolicy._predict at 0x7f909ac5eb90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f909ac5ec20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f909ac5ecb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f909ac5ed40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f909ac64c00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684312524063978401, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIA6mT/JOQk8UFQIP0Dhrz/WCRRA7OOmPw2W5T86Wry/sStBPlaRij8Oo2G/MIynN94k/z+idLU/yH8/PsjTAED8zaY/NwLHPk+1Zj9yZZG9l/oav4mw8z2uNT0+IXvmPhMgiL8c4As/hagDPzSsZD9uG5M/xd0lvpg2CT/FvTc/0qCJPZF4/z4bMg09Ij+PvwJY5jzfmxrAPt1Xv8Q5sT5+7LI/ZYqnvmrfIz/VhXq+lJ+cPzrJLL9ln6M+nkNIwPS+G78395M9yBMCQIHRNjwTIIi/HOALPwDj+L80rGQ/R4awP3ZVB8Ax/ry/D64ePnj2k79fRE4/lSgCP894jL5Sxjo/vlcevWscLkCrpzw+YyWov3Eulz1+zJy/lBIHP3e7774pDZ2/AFWevkshqj7UUe6+9otbP3nrab+tRX49K7hwP/xD6r+FqAM/6UuPv9dghT8uqzE/YiiVPjEVxr5DqYw/hKn9Pisjtj/hEgS+Q/A5P3w8f7ygiEA/vlFbwLUUSj8LTc8/3pbWvyc5qD7UKLE/BfYqQBXkYz+dI4s8hPghPK2v1D8c/y+9PlRHPhMgiL8c4As/AOP4vzSsZD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACukHA2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAuNmBvQAAAAD/7vO/AAAAAAIkq70AAAAAnznyPwAAAACRFIk9AAAAAEkz3D8AAAAA+3zivQAAAABGGe2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoOTPNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFOepr0AAAAAxoX5vwAAAAB70Vw9AAAAAFxNAUAAAAAAt7GEuwAAAAA6TPg/AAAAACkpDb4AAAAAPsDdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC5v2jYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICJkQK+AAAAAKRQ8r8AAAAAnEg8PQAAAAAsm9o/AAAAAHfjBz4AAAAAoar1PwAAAACsptw8AAAAABre+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVdac1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEiOmvQAAAAAkGPC/AAAAAAPTh70AAAAAXEb1PwAAAAAJPg49AAAAAEmW5j8AAAAAgRt+ugAAAAADSuW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJzeTp2U0N2MAWyUTegDjAF0lEdAqlT+cJ+lTHV9lChoBkdAk4L7xVhkRWgHTegDaAhHQKpVIi22G7B1fZQoaAZHQJpqHq1PWQRoB03oA2gIR0CqWHV0Lc9GdX2UKGgGR0CQt+RTjvNNaAdN6ANoCEdAqmMQY51eSnV9lChoBkdAj7yMpw0fo2gHTegDaAhHQKpkHsfq5b11fZQoaAZHQJfuDzCk43poB03oA2gIR0CqZDkvboKVdX2UKGgGR0Bq6oJokAxSaAdN6ANoCEdAqmaKP4mCy3V9lChoBkdAZ2QvovBacWgHTfEBaAhHQKppJtcfNiZ1fZQoaAZHQI0yr4BV+7VoB03oA2gIR0CqcGIBJZntdX2UKGgGR0CTe4N47ihnaAdN6ANoCEdAqnB8MNMGo3V9lChoBkdAiVBLzGxUvWgHTegDaAhHQKpzVIU8FIN1fZQoaAZHQIoGS+cpb2VoB03oA2gIR0CqdzwcPvrodX2UKGgGR0CMEJBAv+OwaAdN6ANoCEdAqoB0TrVvuXV9lChoBkdAfBu8pTdcjmgHTegDaAhHQKqAjL127nR1fZQoaAZHQH81NqQA+6loB03oA2gIR0CqgtzPrv9cdX2UKGgGR0CQKTDkU9IPaAdN6ANoCEdAqoWN2Rq46XV9lChoBkdAhBgI1UEPlWgHTegDaAhHQKqM41n/T9d1fZQoaAZHQIgEUPMB6rxoB03oA2gIR0CqjP48EFGHdX2UKGgGR0ByWQRBeHBUaAdN6ANoCEdAqo9dmapgkXV9lChoBkdAhiJEaVD8cmgHTegDaAhHQKqSrobGWD91fZQoaAZHQJIDQwTM7ltoB03oA2gIR0CqnUsVUModdX2UKGgGR0BzhuWldkauaAdN6ANoCEdAqp1k4R28qXV9lChoBkdAllyHHvMKTmgHTegDaAhHQKqfrj0cwQF1fZQoaAZHQJNmHOLR8dBoB03oA2gIR0CqolECNjsldX2UKGgGR0CWxEAzYVZcaAdN6ANoCEdAqqmg0Kqn33V9lChoBkdAeLCF0gbIcWgHTegDaAhHQKqpuy5Zr591fZQoaAZHQI2/C1uzhP1oB03oA2gIR0CqrAV94NZvdX2UKGgGR0CWtMTAFgUlaAdN6ANoCEdAqq6n0AcT8HV9lChoBkdAlWj6G+K0lmgHTegDaAhHQKq44fYBeX11fZQoaAZHQJdusCT2WY5oB03oA2gIR0CquQzLns9kdX2UKGgGR0CVOwARChN/aAdN6ANoCEdAqrvqULUkOnV9lChoBkdAnCQmsRxtHmgHTegDaAhHQKq+j67/XGx1fZQoaAZHQJ8J4kY4yXVoB03oA2gIR0CqxfoTGo73dX2UKGgGR0CeAS4bCJoCaAdN6ANoCEdAqsYUFGG21HV9lChoBkdAmjNsOf/WD2gHTegDaAhHQKrIXv+fh/B1fZQoaAZHQJKCOwB5ooNoB03oA2gIR0CqywmiHqNZdX2UKGgGR0CZKtm4AjptaAdN6ANoCEdAqtPyyIHkcXV9lChoBkdAl8jDSThYNmgHTegDaAhHQKrUGr4Fia11fZQoaAZHQJWt4BQvYe1oB03oA2gIR0Cq19Qi7kGSdX2UKGgGR0CVau8ox59maAdN6ANoCEdAqtsn8O09hnV9lChoBkdAlyPiF0xM4GgHTegDaAhHQKrifpKzzEt1fZQoaAZHQIlaNuxbB45oB03oA2gIR0Cq4pjfek57dX2UKGgGR0CaifXQdCE6aAdN6ANoCEdAquTiHVPN3XV9lChoBkdAhkQ7WVeKK2gHTegDaAhHQKrnhSb6P811fZQoaAZHQJmDXvgFX7toB03oA2gIR0Cq7zf779AHdX2UKGgGR0CXacflIVdpaAdN6ANoCEdAqu9cJa7mMnV9lChoBkdAmVJpn6Eal2gHTegDaAhHQKryv/bTMJR1fZQoaAZHQJvmv79AHFBoB03oA2gIR0Cq9urX18LKdX2UKGgGR0CR9I/EwWWQaAdN6ANoCEdAqv8HD1oQF3V9lChoBkdAnCO60dBBzGgHTegDaAhHQKr/IQg9vCN1fZQoaAZHQJXQRbW3BpJoB03oA2gIR0CrAWtPYWcjdX2UKGgGR0CQmKIeYD1XaAdN6ANoCEdAqwQiHO8kEHV9lChoBkdAmCggJTl1bWgHTegDaAhHQKsLjTm4iHJ1fZQoaAZHQJZKkcT8HfNoB03oA2gIR0CrC6gwXZXddX2UKGgGR0CZ1PAzHjp+aAdN6ANoCEdAqw6Anc+JQHV9lChoBkdAmF5Z0OmR/2gHTegDaAhHQKsSeGY8dPt1fZQoaAZHQJm02Mir1dxoB03oA2gIR0CrG9+A3DNydX2UKGgGR0CZAx+cH4XXaAdN6ANoCEdAqxv6TjebeHV9lChoBkdAmRsiWZ7Xx2gHTegDaAhHQKseRyBClad1fZQoaAZHQJpmaGKyfL9oB03oA2gIR0CrIPa6BiCrdX2UKGgGR0Ca0NAjps42aAdN6ANoCEdAqyhBi7TUiXV9lChoBkdAlFDMujASF2gHTegDaAhHQKsoW6nR9gF1fZQoaAZHQJkl/eoDPnloB03oA2gIR0CrKrflp48mdX2UKGgGR0CbS7Ox0MgEaAdN6ANoCEdAqy30jkdWAHV9lChoBkdAmodN/4Irv2gHTegDaAhHQKs4dRnezld1fZQoaAZHQJxNfU3GXHBoB03oA2gIR0CrOJDYh+vydX2UKGgGR0CZWhN0eU6gaAdN6ANoCEdAqzrdwHZ9NXV9lChoBkdAmySwjY7JXGgHTegDaAhHQKs9fTvy9VZ1fZQoaAZHQJbvsdLg4wRoB03oA2gIR0CrRNagdwNtdX2UKGgGR0CYBZ0nw5NoaAdN6ANoCEdAq0Tw8wHqvHV9lChoBkdAmTahf8dgfGgHTegDaAhHQKtHRHd43WF1fZQoaAZHQJiMCIZZSvVoB03oA2gIR0CrSfDLB9CvdX2UKGgGR0CYlBwi7kGSaAdN6ANoCEdAq1R0ZUDMeXV9lChoBkdAlysFYyO7x2gHTegDaAhHQKtUoLeANG51fZQoaAZHQJg+abjLjghoB03oA2gIR0CrV5SEL6UJdX2UKGgGR0CSk+JPIn0DaAdN6ANoCEdAq1pAeRxLkHV9lChoBkdAmNR1JHy3C2gHTegDaAhHQKthagpz90l1fZQoaAZHQJiqbTjNpudoB03oA2gIR0CrYYNyHVPOdX2UKGgGR0CWwoUeuFHsaAdN6ANoCEdAq2PLT6SDAnV9lChoBkdAnFKhUm2LHmgHTegDaAhHQKtmWl67dzp1fZQoaAZHQJl+pa0QbuNoB03oA2gIR0Crbxkt/WlNdX2UKGgGR0CZu0zg/C66aAdN6ANoCEdAq29CwGGEf3V9lChoBkdAmzZM5jpcHGgHTegDaAhHQKty3RTCLuR1fZQoaAZHQJlL+w9q1w5oB03oA2gIR0CrdmH1OCXhdX2UKGgGR0CcOqCBf8dgaAdN6ANoCEdAq32g08/2TXV9lChoBkdAm9Lz0th/iGgHTegDaAhHQKt9uvicXnB1fZQoaAZHQJ0dTaWX1J1oB03oA2gIR0CrgAUutfXxdX2UKGgGR0CWgMlp48lpaAdN6ANoCEdAq4Ku+wkgOnV9lChoBkdAmjpN/WlMy2gHTegDaAhHQKuKSzzmOlx1fZQoaAZHQJu+PGFSKm9oB03oA2gIR0CrinFOXVsldX2UKGgGR0CbemN9ph4MaAdN6ANoCEdAq43S6OHWSXV9lChoBkdAmm1a+WWyDGgHTegDaAhHQKuR/RMN+b51fZQoaAZHQJchU2dd3StoB03oA2gIR0CrmhHqmj0udX2UKGgGR0Ca3lwQlKK6aAdN6ANoCEdAq5oqeK8+R3V9lChoBkdAm6v5r+Hae2gHTegDaAhHQKuceS9ugpV1fZQoaAZHQJziZkCmuT1oB03oA2gIR0Crnxahg3LndX2UKGgGR0Ccl7S5y2hJaAdN6ANoCEdAq6ZBUtI07HV9lChoBkdAm4DwsXizcGgHTegDaAhHQKumXGVAzHl1fZQoaAZHQJk+P+717IFoB03oA2gIR0CrqK4L9deIdX2UKGgGR0Cdr6QcghbGaAdN6ANoCEdAq6xb0rbxmXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}