Update app/app.py
Browse files- app/app.py +6 -795
app/app.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from original import *
|
| 3 |
-
|
| 4 |
-
|
|
|
|
| 5 |
|
| 6 |
with gr.Blocks(title="RVC UI") as app:
|
| 7 |
gr.Label("RVC UI")
|
|
@@ -11,799 +12,9 @@ with gr.Blocks(title="RVC UI") as app:
|
|
| 11 |
)
|
| 12 |
)
|
| 13 |
with gr.Tabs():
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
with gr.Column():
|
| 18 |
-
refresh_button = gr.Button(
|
| 19 |
-
i18n("刷新音色列表和索引路径"), variant="primary"
|
| 20 |
-
)
|
| 21 |
-
clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary")
|
| 22 |
-
spk_item = gr.Slider(
|
| 23 |
-
minimum=0,
|
| 24 |
-
maximum=2333,
|
| 25 |
-
step=1,
|
| 26 |
-
label=i18n("请选择说话人id"),
|
| 27 |
-
value=0,
|
| 28 |
-
visible=False,
|
| 29 |
-
interactive=True,
|
| 30 |
-
)
|
| 31 |
-
clean_button.click(
|
| 32 |
-
fn=clean, inputs=[], outputs=[sid0], api_name="infer_clean"
|
| 33 |
-
)
|
| 34 |
-
with gr.TabItem(i18n("单次推理")):
|
| 35 |
-
with gr.Group():
|
| 36 |
-
with gr.Row():
|
| 37 |
-
with gr.Column():
|
| 38 |
-
vc_transform0 = gr.Number(
|
| 39 |
-
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"),
|
| 40 |
-
value=0,
|
| 41 |
-
)
|
| 42 |
-
input_audio0 = gr.Textbox(
|
| 43 |
-
label=i18n(
|
| 44 |
-
"输入待处理音频文件路径(默认是正确格式示例)"
|
| 45 |
-
),
|
| 46 |
-
placeholder="C:\\Users\\Desktop\\audio_example.wav",
|
| 47 |
-
)
|
| 48 |
-
file_index1 = gr.Textbox(
|
| 49 |
-
label=i18n(
|
| 50 |
-
"特征检索库文件路径,为空则使用下拉的选择结果"
|
| 51 |
-
),
|
| 52 |
-
placeholder="C:\\Users\\Desktop\\model_example.index",
|
| 53 |
-
interactive=True,
|
| 54 |
-
)
|
| 55 |
-
file_index2 = gr.Dropdown(
|
| 56 |
-
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
| 57 |
-
choices=sorted(index_paths),
|
| 58 |
-
interactive=True,
|
| 59 |
-
)
|
| 60 |
-
f0method0 = gr.Radio(
|
| 61 |
-
label=i18n(
|
| 62 |
-
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
|
| 63 |
-
),
|
| 64 |
-
choices=(
|
| 65 |
-
["pm", "harvest", "crepe", "rmvpe"]
|
| 66 |
-
if config.dml == False
|
| 67 |
-
else ["pm", "harvest", "rmvpe"]
|
| 68 |
-
),
|
| 69 |
-
value="rmvpe",
|
| 70 |
-
interactive=True,
|
| 71 |
-
)
|
| 72 |
-
|
| 73 |
-
with gr.Column():
|
| 74 |
-
resample_sr0 = gr.Slider(
|
| 75 |
-
minimum=0,
|
| 76 |
-
maximum=48000,
|
| 77 |
-
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
| 78 |
-
value=0,
|
| 79 |
-
step=1,
|
| 80 |
-
interactive=True,
|
| 81 |
-
)
|
| 82 |
-
rms_mix_rate0 = gr.Slider(
|
| 83 |
-
minimum=0,
|
| 84 |
-
maximum=1,
|
| 85 |
-
label=i18n(
|
| 86 |
-
"输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"
|
| 87 |
-
),
|
| 88 |
-
value=0.25,
|
| 89 |
-
interactive=True,
|
| 90 |
-
)
|
| 91 |
-
protect0 = gr.Slider(
|
| 92 |
-
minimum=0,
|
| 93 |
-
maximum=0.5,
|
| 94 |
-
label=i18n(
|
| 95 |
-
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
|
| 96 |
-
),
|
| 97 |
-
value=0.33,
|
| 98 |
-
step=0.01,
|
| 99 |
-
interactive=True,
|
| 100 |
-
)
|
| 101 |
-
filter_radius0 = gr.Slider(
|
| 102 |
-
minimum=0,
|
| 103 |
-
maximum=7,
|
| 104 |
-
label=i18n(
|
| 105 |
-
">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"
|
| 106 |
-
),
|
| 107 |
-
value=3,
|
| 108 |
-
step=1,
|
| 109 |
-
interactive=True,
|
| 110 |
-
)
|
| 111 |
-
index_rate1 = gr.Slider(
|
| 112 |
-
minimum=0,
|
| 113 |
-
maximum=1,
|
| 114 |
-
label=i18n("检索特征占比"),
|
| 115 |
-
value=0.75,
|
| 116 |
-
interactive=True,
|
| 117 |
-
)
|
| 118 |
-
f0_file = gr.File(
|
| 119 |
-
label=i18n(
|
| 120 |
-
"F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"
|
| 121 |
-
),
|
| 122 |
-
visible=False,
|
| 123 |
-
)
|
| 124 |
-
|
| 125 |
-
refresh_button.click(
|
| 126 |
-
fn=change_choices,
|
| 127 |
-
inputs=[],
|
| 128 |
-
outputs=[sid0, file_index2],
|
| 129 |
-
api_name="infer_refresh",
|
| 130 |
-
)
|
| 131 |
-
# file_big_npy1 = gr.Textbox(
|
| 132 |
-
# label=i18n("特征文件路径"),
|
| 133 |
-
# value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
| 134 |
-
# interactive=True,
|
| 135 |
-
# )
|
| 136 |
-
with gr.Group():
|
| 137 |
-
with gr.Column():
|
| 138 |
-
but0 = gr.Button(i18n("转换"), variant="primary")
|
| 139 |
-
with gr.Row():
|
| 140 |
-
vc_output1 = gr.Textbox(label=i18n("输出信息"))
|
| 141 |
-
vc_output2 = gr.Audio(
|
| 142 |
-
label=i18n("输出音频(右下角三个点,点了可以下载)")
|
| 143 |
-
)
|
| 144 |
-
|
| 145 |
-
but0.click(
|
| 146 |
-
vc.vc_single,
|
| 147 |
-
[
|
| 148 |
-
spk_item,
|
| 149 |
-
input_audio0,
|
| 150 |
-
vc_transform0,
|
| 151 |
-
f0_file,
|
| 152 |
-
f0method0,
|
| 153 |
-
file_index1,
|
| 154 |
-
file_index2,
|
| 155 |
-
# file_big_npy1,
|
| 156 |
-
index_rate1,
|
| 157 |
-
filter_radius0,
|
| 158 |
-
resample_sr0,
|
| 159 |
-
rms_mix_rate0,
|
| 160 |
-
protect0,
|
| 161 |
-
],
|
| 162 |
-
[vc_output1, vc_output2],
|
| 163 |
-
api_name="infer_convert",
|
| 164 |
-
)
|
| 165 |
-
with gr.TabItem(i18n("批量推理")):
|
| 166 |
-
gr.Markdown(
|
| 167 |
-
value=i18n(
|
| 168 |
-
"批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. "
|
| 169 |
-
)
|
| 170 |
-
)
|
| 171 |
-
with gr.Row():
|
| 172 |
-
with gr.Column():
|
| 173 |
-
vc_transform1 = gr.Number(
|
| 174 |
-
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"),
|
| 175 |
-
value=0,
|
| 176 |
-
)
|
| 177 |
-
opt_input = gr.Textbox(
|
| 178 |
-
label=i18n("指定输出文件夹"), value="opt"
|
| 179 |
-
)
|
| 180 |
-
file_index3 = gr.Textbox(
|
| 181 |
-
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
| 182 |
-
value="",
|
| 183 |
-
interactive=True,
|
| 184 |
-
)
|
| 185 |
-
file_index4 = gr.Dropdown(
|
| 186 |
-
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
| 187 |
-
choices=sorted(index_paths),
|
| 188 |
-
interactive=True,
|
| 189 |
-
)
|
| 190 |
-
f0method1 = gr.Radio(
|
| 191 |
-
label=i18n(
|
| 192 |
-
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
|
| 193 |
-
),
|
| 194 |
-
choices=(
|
| 195 |
-
["pm", "harvest", "crepe", "rmvpe"]
|
| 196 |
-
if config.dml == False
|
| 197 |
-
else ["pm", "harvest", "rmvpe"]
|
| 198 |
-
),
|
| 199 |
-
value="rmvpe",
|
| 200 |
-
interactive=True,
|
| 201 |
-
)
|
| 202 |
-
format1 = gr.Radio(
|
| 203 |
-
label=i18n("导出文件格式"),
|
| 204 |
-
choices=["wav", "flac", "mp3", "m4a"],
|
| 205 |
-
value="wav",
|
| 206 |
-
interactive=True,
|
| 207 |
-
)
|
| 208 |
-
|
| 209 |
-
refresh_button.click(
|
| 210 |
-
fn=lambda: change_choices()[1],
|
| 211 |
-
inputs=[],
|
| 212 |
-
outputs=file_index4,
|
| 213 |
-
api_name="infer_refresh_batch",
|
| 214 |
-
)
|
| 215 |
-
# file_big_npy2 = gr.Textbox(
|
| 216 |
-
# label=i18n("特征文件路径"),
|
| 217 |
-
# value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
| 218 |
-
# interactive=True,
|
| 219 |
-
# )
|
| 220 |
-
|
| 221 |
-
with gr.Column():
|
| 222 |
-
resample_sr1 = gr.Slider(
|
| 223 |
-
minimum=0,
|
| 224 |
-
maximum=48000,
|
| 225 |
-
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
| 226 |
-
value=0,
|
| 227 |
-
step=1,
|
| 228 |
-
interactive=True,
|
| 229 |
-
)
|
| 230 |
-
rms_mix_rate1 = gr.Slider(
|
| 231 |
-
minimum=0,
|
| 232 |
-
maximum=1,
|
| 233 |
-
label=i18n(
|
| 234 |
-
"输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"
|
| 235 |
-
),
|
| 236 |
-
value=1,
|
| 237 |
-
interactive=True,
|
| 238 |
-
)
|
| 239 |
-
protect1 = gr.Slider(
|
| 240 |
-
minimum=0,
|
| 241 |
-
maximum=0.5,
|
| 242 |
-
label=i18n(
|
| 243 |
-
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
|
| 244 |
-
),
|
| 245 |
-
value=0.33,
|
| 246 |
-
step=0.01,
|
| 247 |
-
interactive=True,
|
| 248 |
-
)
|
| 249 |
-
filter_radius1 = gr.Slider(
|
| 250 |
-
minimum=0,
|
| 251 |
-
maximum=7,
|
| 252 |
-
label=i18n(
|
| 253 |
-
">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"
|
| 254 |
-
),
|
| 255 |
-
value=3,
|
| 256 |
-
step=1,
|
| 257 |
-
interactive=True,
|
| 258 |
-
)
|
| 259 |
-
index_rate2 = gr.Slider(
|
| 260 |
-
minimum=0,
|
| 261 |
-
maximum=1,
|
| 262 |
-
label=i18n("检索特征占比"),
|
| 263 |
-
value=1,
|
| 264 |
-
interactive=True,
|
| 265 |
-
)
|
| 266 |
-
with gr.Row():
|
| 267 |
-
dir_input = gr.Textbox(
|
| 268 |
-
label=i18n(
|
| 269 |
-
"输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"
|
| 270 |
-
),
|
| 271 |
-
placeholder="C:\\Users\\Desktop\\input_vocal_dir",
|
| 272 |
-
)
|
| 273 |
-
inputs = gr.File(
|
| 274 |
-
file_count="multiple",
|
| 275 |
-
label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹"),
|
| 276 |
-
)
|
| 277 |
-
|
| 278 |
-
with gr.Row():
|
| 279 |
-
but1 = gr.Button(i18n("转换"), variant="primary")
|
| 280 |
-
vc_output3 = gr.Textbox(label=i18n("输出信息"))
|
| 281 |
-
|
| 282 |
-
but1.click(
|
| 283 |
-
vc.vc_multi,
|
| 284 |
-
[
|
| 285 |
-
spk_item,
|
| 286 |
-
dir_input,
|
| 287 |
-
opt_input,
|
| 288 |
-
inputs,
|
| 289 |
-
vc_transform1,
|
| 290 |
-
f0method1,
|
| 291 |
-
file_index3,
|
| 292 |
-
file_index4,
|
| 293 |
-
# file_big_npy2,
|
| 294 |
-
index_rate2,
|
| 295 |
-
filter_radius1,
|
| 296 |
-
resample_sr1,
|
| 297 |
-
rms_mix_rate1,
|
| 298 |
-
protect1,
|
| 299 |
-
format1,
|
| 300 |
-
],
|
| 301 |
-
[vc_output3],
|
| 302 |
-
api_name="infer_convert_batch",
|
| 303 |
-
)
|
| 304 |
-
sid0.change(
|
| 305 |
-
fn=vc.get_vc,
|
| 306 |
-
inputs=[sid0, protect0, protect1],
|
| 307 |
-
outputs=[spk_item, protect0, protect1, file_index2, file_index4],
|
| 308 |
-
api_name="infer_change_voice",
|
| 309 |
-
)
|
| 310 |
-
with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")):
|
| 311 |
-
with gr.Group():
|
| 312 |
-
gr.Markdown(
|
| 313 |
-
value=i18n(
|
| 314 |
-
"人声伴奏分离批量处理, 使用UVR5模型。 <br>合格的文件夹路��格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>模型分为三类: <br>1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点; <br>2、仅保留主人声:带和声的音频选这个,对主人声可能有削弱。内置HP5一个模型; <br> 3、去混响、去延迟模型(by FoxJoy):<br> (1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br> (234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底,DeReverb额外去除混响,可去除单声道混响,但是对高频重的板式混响去不干净。<br>去混响/去延迟,附:<br>1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;<br>2、MDX-Net-Dereverb模型挺慢的;<br>3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。"
|
| 315 |
-
)
|
| 316 |
-
)
|
| 317 |
-
with gr.Row():
|
| 318 |
-
with gr.Column():
|
| 319 |
-
dir_wav_input = gr.Textbox(
|
| 320 |
-
label=i18n("输入待处理音频文件夹路径"),
|
| 321 |
-
placeholder="C:\\Users\\Desktop\\todo-songs",
|
| 322 |
-
)
|
| 323 |
-
wav_inputs = gr.File(
|
| 324 |
-
file_count="multiple",
|
| 325 |
-
label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹"),
|
| 326 |
-
)
|
| 327 |
-
with gr.Column():
|
| 328 |
-
model_choose = gr.Dropdown(
|
| 329 |
-
label=i18n("模型"), choices=uvr5_names
|
| 330 |
-
)
|
| 331 |
-
agg = gr.Slider(
|
| 332 |
-
minimum=0,
|
| 333 |
-
maximum=20,
|
| 334 |
-
step=1,
|
| 335 |
-
label="人声提取激进程度",
|
| 336 |
-
value=10,
|
| 337 |
-
interactive=True,
|
| 338 |
-
visible=False, # 先不开放调整
|
| 339 |
-
)
|
| 340 |
-
opt_vocal_root = gr.Textbox(
|
| 341 |
-
label=i18n("指定输出主人声文件夹"), value="opt"
|
| 342 |
-
)
|
| 343 |
-
opt_ins_root = gr.Textbox(
|
| 344 |
-
label=i18n("指定输出非主人声文件夹"), value="opt"
|
| 345 |
-
)
|
| 346 |
-
format0 = gr.Radio(
|
| 347 |
-
label=i18n("导出文件格式"),
|
| 348 |
-
choices=["wav", "flac", "mp3", "m4a"],
|
| 349 |
-
value="flac",
|
| 350 |
-
interactive=True,
|
| 351 |
-
)
|
| 352 |
-
but2 = gr.Button(i18n("转换"), variant="primary")
|
| 353 |
-
vc_output4 = gr.Textbox(label=i18n("输出信息"))
|
| 354 |
-
but2.click(
|
| 355 |
-
uvr,
|
| 356 |
-
[
|
| 357 |
-
model_choose,
|
| 358 |
-
dir_wav_input,
|
| 359 |
-
opt_vocal_root,
|
| 360 |
-
wav_inputs,
|
| 361 |
-
opt_ins_root,
|
| 362 |
-
agg,
|
| 363 |
-
format0,
|
| 364 |
-
],
|
| 365 |
-
[vc_output4],
|
| 366 |
-
api_name="uvr_convert",
|
| 367 |
-
)
|
| 368 |
-
with gr.TabItem(i18n("训练")):
|
| 369 |
-
gr.Markdown(
|
| 370 |
-
value=i18n(
|
| 371 |
-
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. "
|
| 372 |
-
)
|
| 373 |
-
)
|
| 374 |
-
with gr.Row():
|
| 375 |
-
exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="mi-test")
|
| 376 |
-
sr2 = gr.Radio(
|
| 377 |
-
label=i18n("目标采样率"),
|
| 378 |
-
choices=["40k", "48k"],
|
| 379 |
-
value="40k",
|
| 380 |
-
interactive=True,
|
| 381 |
-
)
|
| 382 |
-
if_f0_3 = gr.Radio(
|
| 383 |
-
label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
|
| 384 |
-
choices=[i18n("是"), i18n("否")],
|
| 385 |
-
value=i18n("是"),
|
| 386 |
-
interactive=True,
|
| 387 |
-
)
|
| 388 |
-
version19 = gr.Radio(
|
| 389 |
-
label=i18n("版本"),
|
| 390 |
-
choices=["v1", "v2"],
|
| 391 |
-
value="v2",
|
| 392 |
-
interactive=True,
|
| 393 |
-
visible=True,
|
| 394 |
-
)
|
| 395 |
-
np7 = gr.Slider(
|
| 396 |
-
minimum=0,
|
| 397 |
-
maximum=config.n_cpu,
|
| 398 |
-
step=1,
|
| 399 |
-
label=i18n("提取音高和处理数据使用的CPU进程数"),
|
| 400 |
-
value=int(np.ceil(config.n_cpu / 1.5)),
|
| 401 |
-
interactive=True,
|
| 402 |
-
)
|
| 403 |
-
with gr.Group(): # 暂时单人的, 后面支持最多4人的#数据处理
|
| 404 |
-
gr.Markdown(
|
| 405 |
-
value=i18n(
|
| 406 |
-
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. "
|
| 407 |
-
)
|
| 408 |
-
)
|
| 409 |
-
with gr.Row():
|
| 410 |
-
trainset_dir4 = gr.Textbox(
|
| 411 |
-
label=i18n("输入训练文件夹路径"),
|
| 412 |
-
value=i18n("E:\\语音音频+标注\\米津玄师\\src"),
|
| 413 |
-
)
|
| 414 |
-
spk_id5 = gr.Slider(
|
| 415 |
-
minimum=0,
|
| 416 |
-
maximum=4,
|
| 417 |
-
step=1,
|
| 418 |
-
label=i18n("请指定说话人id"),
|
| 419 |
-
value=0,
|
| 420 |
-
interactive=True,
|
| 421 |
-
)
|
| 422 |
-
but1 = gr.Button(i18n("处理数据"), variant="primary")
|
| 423 |
-
info1 = gr.Textbox(label=i18n("输出信息"), value="")
|
| 424 |
-
but1.click(
|
| 425 |
-
preprocess_dataset,
|
| 426 |
-
[trainset_dir4, exp_dir1, sr2, np7],
|
| 427 |
-
[info1],
|
| 428 |
-
api_name="train_preprocess",
|
| 429 |
-
)
|
| 430 |
-
with gr.Group():
|
| 431 |
-
gr.Markdown(
|
| 432 |
-
value=i18n(
|
| 433 |
-
"step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)"
|
| 434 |
-
)
|
| 435 |
-
)
|
| 436 |
-
with gr.Row():
|
| 437 |
-
with gr.Column():
|
| 438 |
-
gpus6 = gr.Textbox(
|
| 439 |
-
label=i18n(
|
| 440 |
-
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"
|
| 441 |
-
),
|
| 442 |
-
value=gpus,
|
| 443 |
-
interactive=True,
|
| 444 |
-
visible=F0GPUVisible,
|
| 445 |
-
)
|
| 446 |
-
gpu_info9 = gr.Textbox(
|
| 447 |
-
label=i18n("显卡信息"), value=gpu_info, visible=F0GPUVisible
|
| 448 |
-
)
|
| 449 |
-
with gr.Column():
|
| 450 |
-
f0method8 = gr.Radio(
|
| 451 |
-
label=i18n(
|
| 452 |
-
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU"
|
| 453 |
-
),
|
| 454 |
-
choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"],
|
| 455 |
-
value="rmvpe_gpu",
|
| 456 |
-
interactive=True,
|
| 457 |
-
)
|
| 458 |
-
gpus_rmvpe = gr.Textbox(
|
| 459 |
-
label=i18n(
|
| 460 |
-
"rmvpe卡号配置:以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程"
|
| 461 |
-
),
|
| 462 |
-
value="%s-%s" % (gpus, gpus),
|
| 463 |
-
interactive=True,
|
| 464 |
-
visible=F0GPUVisible,
|
| 465 |
-
)
|
| 466 |
-
but2 = gr.Button(i18n("特征提取"), variant="primary")
|
| 467 |
-
info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
| 468 |
-
f0method8.change(
|
| 469 |
-
fn=change_f0_method,
|
| 470 |
-
inputs=[f0method8],
|
| 471 |
-
outputs=[gpus_rmvpe],
|
| 472 |
-
)
|
| 473 |
-
but2.click(
|
| 474 |
-
extract_f0_feature,
|
| 475 |
-
[
|
| 476 |
-
gpus6,
|
| 477 |
-
np7,
|
| 478 |
-
f0method8,
|
| 479 |
-
if_f0_3,
|
| 480 |
-
exp_dir1,
|
| 481 |
-
version19,
|
| 482 |
-
gpus_rmvpe,
|
| 483 |
-
],
|
| 484 |
-
[info2],
|
| 485 |
-
api_name="train_extract_f0_feature",
|
| 486 |
-
)
|
| 487 |
-
with gr.Group():
|
| 488 |
-
gr.Markdown(value=i18n("step3: 填写训练设置, 开始训练模型和索引"))
|
| 489 |
-
with gr.Row():
|
| 490 |
-
save_epoch10 = gr.Slider(
|
| 491 |
-
minimum=1,
|
| 492 |
-
maximum=50,
|
| 493 |
-
step=1,
|
| 494 |
-
label=i18n("保存频率save_every_epoch"),
|
| 495 |
-
value=5,
|
| 496 |
-
interactive=True,
|
| 497 |
-
)
|
| 498 |
-
total_epoch11 = gr.Slider(
|
| 499 |
-
minimum=2,
|
| 500 |
-
maximum=1000,
|
| 501 |
-
step=1,
|
| 502 |
-
label=i18n("总训练轮数total_epoch"),
|
| 503 |
-
value=20,
|
| 504 |
-
interactive=True,
|
| 505 |
-
)
|
| 506 |
-
batch_size12 = gr.Slider(
|
| 507 |
-
minimum=1,
|
| 508 |
-
maximum=40,
|
| 509 |
-
step=1,
|
| 510 |
-
label=i18n("每张显卡的batch_size"),
|
| 511 |
-
value=default_batch_size,
|
| 512 |
-
interactive=True,
|
| 513 |
-
)
|
| 514 |
-
if_save_latest13 = gr.Radio(
|
| 515 |
-
label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"),
|
| 516 |
-
choices=[i18n("是"), i18n("否")],
|
| 517 |
-
value=i18n("否"),
|
| 518 |
-
interactive=True,
|
| 519 |
-
)
|
| 520 |
-
if_cache_gpu17 = gr.Radio(
|
| 521 |
-
label=i18n(
|
| 522 |
-
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速"
|
| 523 |
-
),
|
| 524 |
-
choices=[i18n("是"), i18n("否")],
|
| 525 |
-
value=i18n("否"),
|
| 526 |
-
interactive=True,
|
| 527 |
-
)
|
| 528 |
-
if_save_every_weights18 = gr.Radio(
|
| 529 |
-
label=i18n(
|
| 530 |
-
"是否在每次保存时间点将最终小模型保存至weights文件夹"
|
| 531 |
-
),
|
| 532 |
-
choices=[i18n("是"), i18n("否")],
|
| 533 |
-
value=i18n("否"),
|
| 534 |
-
interactive=True,
|
| 535 |
-
)
|
| 536 |
-
with gr.Row():
|
| 537 |
-
pretrained_G14 = gr.Textbox(
|
| 538 |
-
label=i18n("加载预训练底模G路径"),
|
| 539 |
-
value="assets/pretrained_v2/f0G40k.pth",
|
| 540 |
-
interactive=True,
|
| 541 |
-
)
|
| 542 |
-
pretrained_D15 = gr.Textbox(
|
| 543 |
-
label=i18n("加载预训练底模D路径"),
|
| 544 |
-
value="assets/pretrained_v2/f0D40k.pth",
|
| 545 |
-
interactive=True,
|
| 546 |
-
)
|
| 547 |
-
sr2.change(
|
| 548 |
-
change_sr2,
|
| 549 |
-
[sr2, if_f0_3, version19],
|
| 550 |
-
[pretrained_G14, pretrained_D15],
|
| 551 |
-
)
|
| 552 |
-
version19.change(
|
| 553 |
-
change_version19,
|
| 554 |
-
[sr2, if_f0_3, version19],
|
| 555 |
-
[pretrained_G14, pretrained_D15, sr2],
|
| 556 |
-
)
|
| 557 |
-
if_f0_3.change(
|
| 558 |
-
change_f0,
|
| 559 |
-
[if_f0_3, sr2, version19],
|
| 560 |
-
[f0method8, gpus_rmvpe, pretrained_G14, pretrained_D15],
|
| 561 |
-
)
|
| 562 |
-
gpus16 = gr.Textbox(
|
| 563 |
-
label=i18n(
|
| 564 |
-
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"
|
| 565 |
-
),
|
| 566 |
-
value=gpus,
|
| 567 |
-
interactive=True,
|
| 568 |
-
)
|
| 569 |
-
but3 = gr.Button(i18n("训练模型"), variant="primary")
|
| 570 |
-
but4 = gr.Button(i18n("训练特征索引"), variant="primary")
|
| 571 |
-
but5 = gr.Button(i18n("一键训练"), variant="primary")
|
| 572 |
-
info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10)
|
| 573 |
-
but3.click(
|
| 574 |
-
click_train,
|
| 575 |
-
[
|
| 576 |
-
exp_dir1,
|
| 577 |
-
sr2,
|
| 578 |
-
if_f0_3,
|
| 579 |
-
spk_id5,
|
| 580 |
-
save_epoch10,
|
| 581 |
-
total_epoch11,
|
| 582 |
-
batch_size12,
|
| 583 |
-
if_save_latest13,
|
| 584 |
-
pretrained_G14,
|
| 585 |
-
pretrained_D15,
|
| 586 |
-
gpus16,
|
| 587 |
-
if_cache_gpu17,
|
| 588 |
-
if_save_every_weights18,
|
| 589 |
-
version19,
|
| 590 |
-
],
|
| 591 |
-
info3,
|
| 592 |
-
api_name="train_start",
|
| 593 |
-
)
|
| 594 |
-
but4.click(train_index, [exp_dir1, version19], info3)
|
| 595 |
-
but5.click(
|
| 596 |
-
train1key,
|
| 597 |
-
[
|
| 598 |
-
exp_dir1,
|
| 599 |
-
sr2,
|
| 600 |
-
if_f0_3,
|
| 601 |
-
trainset_dir4,
|
| 602 |
-
spk_id5,
|
| 603 |
-
np7,
|
| 604 |
-
f0method8,
|
| 605 |
-
save_epoch10,
|
| 606 |
-
total_epoch11,
|
| 607 |
-
batch_size12,
|
| 608 |
-
if_save_latest13,
|
| 609 |
-
pretrained_G14,
|
| 610 |
-
pretrained_D15,
|
| 611 |
-
gpus16,
|
| 612 |
-
if_cache_gpu17,
|
| 613 |
-
if_save_every_weights18,
|
| 614 |
-
version19,
|
| 615 |
-
gpus_rmvpe,
|
| 616 |
-
],
|
| 617 |
-
info3,
|
| 618 |
-
api_name="train_start_all",
|
| 619 |
-
)
|
| 620 |
-
|
| 621 |
-
with gr.TabItem(i18n("ckpt处理")):
|
| 622 |
-
with gr.Group():
|
| 623 |
-
gr.Markdown(value=i18n("模型���合, 可用于测试音色融合"))
|
| 624 |
-
with gr.Row():
|
| 625 |
-
ckpt_a = gr.Textbox(
|
| 626 |
-
label=i18n("A模型路径"), value="", interactive=True
|
| 627 |
-
)
|
| 628 |
-
ckpt_b = gr.Textbox(
|
| 629 |
-
label=i18n("B模型路径"), value="", interactive=True
|
| 630 |
-
)
|
| 631 |
-
alpha_a = gr.Slider(
|
| 632 |
-
minimum=0,
|
| 633 |
-
maximum=1,
|
| 634 |
-
label=i18n("A模型权重"),
|
| 635 |
-
value=0.5,
|
| 636 |
-
interactive=True,
|
| 637 |
-
)
|
| 638 |
-
with gr.Row():
|
| 639 |
-
sr_ = gr.Radio(
|
| 640 |
-
label=i18n("目标采样率"),
|
| 641 |
-
choices=["40k", "48k"],
|
| 642 |
-
value="40k",
|
| 643 |
-
interactive=True,
|
| 644 |
-
)
|
| 645 |
-
if_f0_ = gr.Radio(
|
| 646 |
-
label=i18n("模型是否带音高指导"),
|
| 647 |
-
choices=[i18n("是"), i18n("否")],
|
| 648 |
-
value=i18n("是"),
|
| 649 |
-
interactive=True,
|
| 650 |
-
)
|
| 651 |
-
info__ = gr.Textbox(
|
| 652 |
-
label=i18n("要置入的模型信息"),
|
| 653 |
-
value="",
|
| 654 |
-
max_lines=8,
|
| 655 |
-
interactive=True,
|
| 656 |
-
)
|
| 657 |
-
name_to_save0 = gr.Textbox(
|
| 658 |
-
label=i18n("保存的模型名不带后缀"),
|
| 659 |
-
value="",
|
| 660 |
-
max_lines=1,
|
| 661 |
-
interactive=True,
|
| 662 |
-
)
|
| 663 |
-
version_2 = gr.Radio(
|
| 664 |
-
label=i18n("模型版本型号"),
|
| 665 |
-
choices=["v1", "v2"],
|
| 666 |
-
value="v1",
|
| 667 |
-
interactive=True,
|
| 668 |
-
)
|
| 669 |
-
with gr.Row():
|
| 670 |
-
but6 = gr.Button(i18n("融合"), variant="primary")
|
| 671 |
-
info4 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
| 672 |
-
but6.click(
|
| 673 |
-
merge,
|
| 674 |
-
[
|
| 675 |
-
ckpt_a,
|
| 676 |
-
ckpt_b,
|
| 677 |
-
alpha_a,
|
| 678 |
-
sr_,
|
| 679 |
-
if_f0_,
|
| 680 |
-
info__,
|
| 681 |
-
name_to_save0,
|
| 682 |
-
version_2,
|
| 683 |
-
],
|
| 684 |
-
info4,
|
| 685 |
-
api_name="ckpt_merge",
|
| 686 |
-
) # def merge(path1,path2,alpha1,sr,f0,info):
|
| 687 |
-
with gr.Group():
|
| 688 |
-
gr.Markdown(
|
| 689 |
-
value=i18n("修改模型信息(仅支持weights文件夹下提取的小模型文件)")
|
| 690 |
-
)
|
| 691 |
-
with gr.Row():
|
| 692 |
-
ckpt_path0 = gr.Textbox(
|
| 693 |
-
label=i18n("模型路径"), value="", interactive=True
|
| 694 |
-
)
|
| 695 |
-
info_ = gr.Textbox(
|
| 696 |
-
label=i18n("要改的模型信息"),
|
| 697 |
-
value="",
|
| 698 |
-
max_lines=8,
|
| 699 |
-
interactive=True,
|
| 700 |
-
)
|
| 701 |
-
name_to_save1 = gr.Textbox(
|
| 702 |
-
label=i18n("保存的文件名, 默认空为和源文件同名"),
|
| 703 |
-
value="",
|
| 704 |
-
max_lines=8,
|
| 705 |
-
interactive=True,
|
| 706 |
-
)
|
| 707 |
-
with gr.Row():
|
| 708 |
-
but7 = gr.Button(i18n("修改"), variant="primary")
|
| 709 |
-
info5 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
| 710 |
-
but7.click(
|
| 711 |
-
change_info,
|
| 712 |
-
[ckpt_path0, info_, name_to_save1],
|
| 713 |
-
info5,
|
| 714 |
-
api_name="ckpt_modify",
|
| 715 |
-
)
|
| 716 |
-
with gr.Group():
|
| 717 |
-
gr.Markdown(
|
| 718 |
-
value=i18n("查看模型信息(仅支持weights文件夹下提取的小模型文件)")
|
| 719 |
-
)
|
| 720 |
-
with gr.Row():
|
| 721 |
-
ckpt_path1 = gr.Textbox(
|
| 722 |
-
label=i18n("模型路径"), value="", interactive=True
|
| 723 |
-
)
|
| 724 |
-
but8 = gr.Button(i18n("查看"), variant="primary")
|
| 725 |
-
info6 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
| 726 |
-
but8.click(show_info, [ckpt_path1], info6, api_name="ckpt_show")
|
| 727 |
-
with gr.Group():
|
| 728 |
-
gr.Markdown(
|
| 729 |
-
value=i18n(
|
| 730 |
-
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况"
|
| 731 |
-
)
|
| 732 |
-
)
|
| 733 |
-
with gr.Row():
|
| 734 |
-
ckpt_path2 = gr.Textbox(
|
| 735 |
-
label=i18n("模型路径"),
|
| 736 |
-
value="E:\\codes\\py39\\logs\\mi-test_f0_48k\\G_23333.pth",
|
| 737 |
-
interactive=True,
|
| 738 |
-
)
|
| 739 |
-
save_name = gr.Textbox(
|
| 740 |
-
label=i18n("保存名"), value="", interactive=True
|
| 741 |
-
)
|
| 742 |
-
sr__ = gr.Radio(
|
| 743 |
-
label=i18n("目标采样率"),
|
| 744 |
-
choices=["32k", "40k", "48k"],
|
| 745 |
-
value="40k",
|
| 746 |
-
interactive=True,
|
| 747 |
-
)
|
| 748 |
-
if_f0__ = gr.Radio(
|
| 749 |
-
label=i18n("模型是否带音高指导,1是0否"),
|
| 750 |
-
choices=["1", "0"],
|
| 751 |
-
value="1",
|
| 752 |
-
interactive=True,
|
| 753 |
-
)
|
| 754 |
-
version_1 = gr.Radio(
|
| 755 |
-
label=i18n("模型版本型号"),
|
| 756 |
-
choices=["v1", "v2"],
|
| 757 |
-
value="v2",
|
| 758 |
-
interactive=True,
|
| 759 |
-
)
|
| 760 |
-
info___ = gr.Textbox(
|
| 761 |
-
label=i18n("要置入的模型信息"),
|
| 762 |
-
value="",
|
| 763 |
-
max_lines=8,
|
| 764 |
-
interactive=True,
|
| 765 |
-
)
|
| 766 |
-
but9 = gr.Button(i18n("提取"), variant="primary")
|
| 767 |
-
info7 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
| 768 |
-
ckpt_path2.change(
|
| 769 |
-
change_info_, [ckpt_path2], [sr__, if_f0__, version_1]
|
| 770 |
-
)
|
| 771 |
-
but9.click(
|
| 772 |
-
extract_small_model,
|
| 773 |
-
[ckpt_path2, save_name, sr__, if_f0__, info___, version_1],
|
| 774 |
-
info7,
|
| 775 |
-
api_name="ckpt_extract",
|
| 776 |
-
)
|
| 777 |
-
|
| 778 |
-
with gr.TabItem(i18n("Onnx导出")):
|
| 779 |
-
with gr.Row():
|
| 780 |
-
ckpt_dir = gr.Textbox(
|
| 781 |
-
label=i18n("RVC模型路径"), value="", interactive=True
|
| 782 |
-
)
|
| 783 |
-
with gr.Row():
|
| 784 |
-
onnx_dir = gr.Textbox(
|
| 785 |
-
label=i18n("Onnx输出路径"), value="", interactive=True
|
| 786 |
-
)
|
| 787 |
-
with gr.Row():
|
| 788 |
-
infoOnnx = gr.Label(label="info")
|
| 789 |
-
with gr.Row():
|
| 790 |
-
butOnnx = gr.Button(i18n("导出Onnx模型"), variant="primary")
|
| 791 |
-
butOnnx.click(
|
| 792 |
-
export_onnx, [ckpt_dir, onnx_dir], infoOnnx, api_name="export_onnx"
|
| 793 |
-
)
|
| 794 |
-
|
| 795 |
-
tab_faq = i18n("常见问题解答")
|
| 796 |
-
with gr.TabItem(tab_faq):
|
| 797 |
-
try:
|
| 798 |
-
if tab_faq == "常见问题解答":
|
| 799 |
-
with open("docs/cn/faq.md", "r", encoding="utf8") as f:
|
| 800 |
-
info = f.read()
|
| 801 |
-
else:
|
| 802 |
-
with open("docs/en/faq_en.md", "r", encoding="utf8") as f:
|
| 803 |
-
info = f.read()
|
| 804 |
-
gr.Markdown(value=info)
|
| 805 |
-
except:
|
| 806 |
-
gr.Markdown(traceback.format_exc())
|
| 807 |
|
| 808 |
if config.iscolab:
|
| 809 |
app.queue().launch(share=True, max_threads=511)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from original import *
|
| 3 |
+
from app.tabs.models.onnx import monnx_conv
|
| 4 |
+
from app.tabs.infer.infer import infer_tabs
|
| 5 |
+
from app.tabs.infer.uvr import uvr_tabs
|
| 6 |
|
| 7 |
with gr.Blocks(title="RVC UI") as app:
|
| 8 |
gr.Label("RVC UI")
|
|
|
|
| 12 |
)
|
| 13 |
)
|
| 14 |
with gr.Tabs():
|
| 15 |
+
infer_tabs()
|
| 16 |
+
uvr_tabs()
|
| 17 |
+
onnx_conv()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
if config.iscolab:
|
| 20 |
app.queue().launch(share=True, max_threads=511)
|