NeoPy's picture
EXP
30f8290 verified
import os
import sys
import torch.nn as nn
sys.path.append(os.getcwd())
from main.library.predictors.DJCM.utils import ResConvBlock
class ResEncoderBlock(nn.Module):
def __init__(
self,
in_channels,
out_channels,
n_blocks,
kernel_size
):
super(ResEncoderBlock, self).__init__()
self.conv = nn.ModuleList([
ResConvBlock(
in_channels,
out_channels
)
])
for _ in range(n_blocks - 1):
self.conv.append(
ResConvBlock(
out_channels,
out_channels
)
)
self.pool = nn.MaxPool2d(kernel_size) if kernel_size is not None else None
def forward(self, x):
for each_layer in self.conv:
x = each_layer(x)
if self.pool is not None: return x, self.pool(x)
return x
class Encoder(nn.Module):
def __init__(
self,
in_channels,
n_blocks
):
super(Encoder, self).__init__()
self.en_blocks = nn.ModuleList([
ResEncoderBlock(
in_channels,
32,
n_blocks,
(1, 2)
),
ResEncoderBlock(
32,
64,
n_blocks,
(1, 2)
),
ResEncoderBlock(
64,
128,
n_blocks,
(1, 2)
),
ResEncoderBlock(
128,
256,
n_blocks,
(1, 2)
),
ResEncoderBlock(
256,
384,
n_blocks,
(1, 2)
),
ResEncoderBlock(
384,
384,
n_blocks,
(1, 2)
)
])
def forward(self, x):
concat_tensors = []
for layer in self.en_blocks:
_, x = layer(x)
concat_tensors.append(_)
return x, concat_tensors