Neerajvibez commited on
Commit
e53a57c
·
1 Parent(s): 4b8d6ae

Updated PPO LunarLander-v2

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 243.64 +/- 44.02
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 274.57 +/- 27.11
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f173ecff400>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f173ecff490>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f173ecff520>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f173ecff5b0>", "_build": "<function ActorCriticPolicy._build at 0x7f173ecff640>", "forward": "<function ActorCriticPolicy.forward at 0x7f173ecff6d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f173ecff760>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f173ecff7f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f173ecff880>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f173ecff910>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f173ecff9a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f173ecffa30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f173ed08200>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683732006167265097, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoL0rzhboW6+W8/PHqGUjXAaii7Zk1DNAAAgD8AAIA/ID0DPpPbaj+KJgk824KKvnE50j0lY+m9AAAAAAAAAABtnzO+X0g8PxyQhj3EaaS+1o6Bvepibj0AAAAAAAAAADMxoL2PWi66A08kOJOaCDNJp2m7+v1CtwAAgD8AAIA/LeoJPhAEID/LA3G+j6Z2vuqEB71ag4y9AAAAAAAAAABT2QM+YMS1P+u+oz7izci+sj4DPo61gT0AAAAAAAAAAE1ewz0pPHG6PrEKOUSSOTQxvy87j/IfuAAAgD8AAIA/TdYdPl/3Cz/+Z9y9/geOvt+LFTq/lKO9AAAAAAAAAAAATHA9iUsrPe/RBD1kg4u+X1eEur5LjLwAAAAAAAAAAOYcEr3DvVO6pplcupkWAzb2Ggc7ypGBOQAAgD8AAIA/jRy0PVyPWjfYd+k6b675NLQOBTt9Kg66AACAPwAAAAAahYQ9CldludKZi7smMQU3yfYnu2X8dLYAAAAAAACAPya4uD0pBFu6lfA1umI+O7aIdwK7QzNSOQAAgD8AAIA/+0GLvvMSOj+azok+w4d0vhgSrrzmAZg8AAAAAAAAAADTqRA+pF97u+KJkToh+Me3GkDBvBEgsrkAAIA/AACAP02IGj5pmAu8EZmXO9dg3Llwymu96hi4ugAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGICwUHpr1yMAWyUTegDjAF0lEdAk3AaQFLWZ3V9lChoBkdAYFb8w5/9YWgHTegDaAhHQJNzjlmvnr91fZQoaAZHQGMQbMPjGT9oB03oA2gIR0CTds5CF9KFdX2UKGgGR0BlA67iADq4aAdN6ANoCEdAk3uGn889wHV9lChoBkdAcaIv8ZUDMmgHTakDaAhHQJOMOJAMUh51fZQoaAZHQGYJ/Pw/gR9oB03oA2gIR0CTod9eyAx0dX2UKGgGR0Bx3EomXw9aaAdN2gJoCEdAk7HaqKgqVnV9lChoBkdAZ+n0SRKYiWgHTegDaAhHQJOyjuy/sVt1fZQoaAZHQGGyuhbnoxJoB03oA2gIR0CTss/IsAeadX2UKGgGR0Bh63uCwr1/aAdN6ANoCEdAk7bUHt4RmXV9lChoBkdAZFkenQ6ZIGgHTegDaAhHQJO3HPa+N991fZQoaAZHQGLP+tSydFxoB03oA2gIR0CTt3sjVx0ddX2UKGgGR0BdvkcXFcY7aAdN6ANoCEdAk7nPuPV/c3V9lChoBkdAQipo9LYf4mgHS9NoCEdAk8ATIBBAwHV9lChoBkdAXjodNnGsFWgHTegDaAhHQJPBipcX3xp1fZQoaAZHQGP1D6WPcSJoB03oA2gIR0CTwdYrJ8v3dX2UKGgGR0BkE98CxNZeaAdN6ANoCEdAk8Otp22Xs3V9lChoBkdAYxyWYWtU42gHTegDaAhHQJPEDs+mm+F1fZQoaAZHQGAi9pZfUnZoB03oA2gIR0CTxqGPgeijdX2UKGgGR0Bi3avgWJrMaAdN6ANoCEdAk8ku2qkuYnV9lChoBkdAb2fk+X7cf2gHTV0BaAhHQJPKUL4N7Sl1fZQoaAZHQFtdX+2mYShoB03oA2gIR0CTzIxcmjTKdX2UKGgGR0Bwnr7Kq4pdaAdNWwNoCEdAk9L2NipeeHV9lChoBkdAbtBx/d69kGgHTaoCaAhHQJPZ9aq0dBB1fZQoaAZHQG55FS88La5oB01MAmgIR0CT2nX3xnWbdX2UKGgGR0BxK1jmSyMUaAdN+AFoCEdAk92yQHRkVnV9lChoBkdAZw2eV9nbqWgHTegDaAhHQJPf0NAkcCJ1fZQoaAZHQG05WKEWZZ1oB02tA2gIR0CUAsuvUz9CdX2UKGgGR0BnjoQ4CIUKaAdN6ANoCEdAlALP2Xb/O3V9lChoBkdAbDbjwx33YmgHTUsCaAhHQJQFa5wwTM91fZQoaAZHQHHr7pV0cOtoB00EA2gIR0CUBfc8TzundX2UKGgGR0Bj5PhGYrrgaAdN6ANoCEdAlAX2Hck+o3V9lChoBkdAb0kIrOJLumgHTeUDaAhHQJQNMYKpkwx1fZQoaAZHQGKgTLGJemhoB03oA2gIR0CUDwLxqfvndX2UKGgGR0BmiD39JjDsaAdN6ANoCEdAlBFGVVxS53V9lChoBkdAZKMKWszVMGgHTegDaAhHQJQUhrJr+Hd1fZQoaAZHQG3QxX4j8k5oB01eAWgIR0CUFTLyc0+DdX2UKGgGR0BkBGuq3mV8aAdN6ANoCEdAlBcZ7b+LnHV9lChoBkdAZqKdtEXtSmgHTegDaAhHQJQYKwwCbMJ1fZQoaAZHQHJFpswco6VoB03zAmgIR0CUGX72criEdX2UKGgGR0Bf++hkAggYaAdN6ANoCEdAlB9uKKpDNXV9lChoBkdAcdP/5ckdFWgHTQQCaAhHQJQffG6wt8N1fZQoaAZHQGNTPrfLs8hoB03oA2gIR0CUJfryUcGUdX2UKGgGR0BgWQYUFjd6aAdN6ANoCEdAlCrvb9If83V9lChoBkdAZjlZK3/gi2gHTegDaAhHQJQt4o3Jgb91fZQoaAZHQG0AuvllsgxoB02/AWgIR0CULm7BfrrxdX2UKGgGR0BqeDtoi9qUaAdNHwNoCEdAlETeg+Qlr3V9lChoBkdAa6w4VARkE2gHTU0DaAhHQJRE7WXkYGd1fZQoaAZHQHG4rPIGQjloB02zAmgIR0CUSPlKK509dX2UKGgGR0BwzOiKziS8aAdNrQJoCEdAlEr5jMFEA3V9lChoBkdAcTZR77bcoGgHTSQCaAhHQJRLBrDZUUB1fZQoaAZHQHB2M90Rvm5oB00pA2gIR0CUTS114gRsdX2UKGgGR0Bgx2FtbcGkaAdN6ANoCEdAlE+BEa2nbnV9lChoBkdAbV0bKifxt2gHTYwBaAhHQJRTrXI2fkF1fZQoaAZHQF+WUvwmVqxoB03oA2gIR0CUYC4WUKRddX2UKGgGR0BiDXTAnDziaAdN6ANoCEdAlGO/PgNwznV9lChoBkdAWsfhFVktmWgHTegDaAhHQJRoXGkvboN1fZQoaAZHQG6QOqm0mdBoB01QA2gIR0CUcC3Jgb6ydX2UKGgGR0BLUmb9ZRsNaAdL0mgIR0CUcxuanaWYdX2UKGgGR0BgvEdDIBBBaAdN6ANoCEdAlHP/cJtzjnV9lChoBkdAaA6FIuoP1GgHTegDaAhHQJR0EYCQtBh1fZQoaAZHQG5CXeFcpspoB00IAmgIR0CUdGqOLiuMdX2UKGgGR0BwwbmEGqxUaAdNAAJoCEdAlHheCsfaH3V9lChoBkdAcLRu2qkuYmgHTZ0DaAhHQJR+8Jlar3l1fZQoaAZHQGP2/VI7NjdoB03oA2gIR0CUf25ksjFAdX2UKGgGR0A2q85CF9KFaAdL/mgIR0CUf58XvYvndX2UKGgGR0BdIyu6mO2iaAdN6ANoCEdAlH/SLVFx43V9lChoBkdAcGvYqXnhbWgHTYUBaAhHQJSCGwLVnVZ1fZQoaAZHQGPenezlcQloB03oA2gIR0CUk1BYmsvJdX2UKGgGR0BjG5tJnQIEaAdN6ANoCEdAlJdVwo9cKXV9lChoBkdAa7fpcophF2gHTRUCaAhHQJSXYxqO9391fZQoaAZHQG24o/7iyY5oB015AWgIR0CUmNUX531SdX2UKGgGR0Bre/1HvttzaAdNNgFoCEdAlJkl3IMjNnV9lChoBkdAZgTQ9ic5KmgHTegDaAhHQJSZMjjaPCF1fZQoaAZHQGDFTjm0VrRoB03oA2gIR0CUmT8s+V1PdX2UKGgGR0BvtyDTSb6QaAdNigFoCEdAlJlc0xdpqXV9lChoBkdAccb9WZJCjWgHTZcBaAhHQJSZd5jYqXp1fZQoaAZHQGXSMbedkJ9oB03oA2gIR0CUmsL8rI5pdX2UKGgGR0BwDumMwUQDaAdNIQFoCEdAlJ1cLjPv8nV9lChoBkdAcIC8h9srNGgHTTEBaAhHQJSdzck+otN1fZQoaAZHQHDD3YDklu5oB01cAWgIR0CUn17HhjvvdX2UKGgGR0BI4idz4k/saAdL4GgIR0CUpbxI8QqadX2UKGgGR0BwdbjJdSl4aAdN3wFoCEdAlKe7ksBhhHV9lChoBkdAcAtDujRD1GgHTVgBaAhHQJSoHPVurIZ1fZQoaAZHQG+yXfQ8fV9oB01jAWgIR0CUqOjoIOYqdX2UKGgGR0ByDHVx0dR0aAdN6gJoCEdAlKtoSpR4yHV9lChoBkdAcAJLZSNwSGgHTXABaAhHQJSsYumJm/Z1fZQoaAZHQG/QWhh6SkloB02AAWgIR0CUrKRu0kWzdX2UKGgGR0BymB8w5/9YaAdNzAFoCEdAlLGyTY/Vy3V9lChoBkdAcZlmGM4tH2gHTUQBaAhHQJSyhbY9Pk91fZQoaAZHQHBz8tCiRGNoB02iAWgIR0CUtPVclgMMdX2UKGgGR0BvaK37UG3XaAdNUwJoCEdAlLcusT37DXV9lChoBkdARbM4HX2/SGgHTQYBaAhHQJS5KQ3gk1N1fZQoaAZHQHEKXbVSXMRoB02eAWgIR0CUu0dJrcj8dX2UKGgGR0BHVR/EwWWQaAdL32gIR0CUvzVlf7aadX2UKGgGR0BwWqD28IzFaAdN0wFoCEdAlMBFPnB+F3V9lChoBkdAcXpiKiwjdGgHTfIBaAhHQJTA4EkjX4F1fZQoaAZHQG+AjRtxdY5oB01KAWgIR0CUwXb7j1f3dX2UKGgGR0BvSrOiWVu8aAdNuANoCEdAlMKbtVrAQHV9lChoBkdAYqb5eqrBCWgHTegDaAhHQJTEBGc4HX51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7e8735cc10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7e8735cca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7e8735cd30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7e8735cdc0>", "_build": "<function ActorCriticPolicy._build at 0x7f7e8735ce50>", "forward": "<function ActorCriticPolicy.forward at 0x7f7e8735cee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7e8735cf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7e8735d000>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7e8735d090>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7e8735d120>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7e8735d1b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7e8735d240>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7e873595c0>"}, "verbose": 2, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683836441947243607, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABbCL0X7rg/Fp+CvjmqqbwqWf28p2oFvgAAAAAAAAAAZg5jPUNDwz/4tpM+UYxlPdeK0jzms809AAAAAAAAAAAWvVm+rJRWP7IXyr2PIvq+Q3TqvhObsTwAAAAAAAAAAEBMkr1ORwI//nGiPakGt748IUm9EiJdPQAAAAAAAAAAzfTCPXduWz/mk7s9ljQFv5ViAD5lSwy9AAAAAAAAAACzKwQ9FFjHuk/Mkbsah4A8pQ5UO9BfYL0AAIA/AACAP2YWyTxxjT25g09cuGlKkbP+U487vbqCNwAAgD8AAIA/zQbePOHAh7rWI7O4bTKmsyePmrqmodA3AACAPwAAgD8mlsw9WWMbPir2Sb5pRBq+C28Pvp4zMz0AAAAAAAAAAE1hFr2gdu0+sw+kPXH/zb6WNgI89adOPQAAAAAAAAAAZs76O6QELrvujIA7ri+LPJHSJLx2cXA9AACAPwAAgD8AeFq9jijpPtfbGz5XMN6+SLzFPHr5qT0AAAAAAAAAAE1HZD17bqq6Fk2Du6Dckzw7NpC5eV6AvQAAgD8AAIA/ml+3vAQ9qz3cxJs9IkGCvjDtBT5uR929AAAAAAAAAAAzAUA9jwZAuok/F7U66IGvjFiROqKUZDQAAIA/AACAPwCJsLwUCtc73s79vf9JCL5BAUW90oM0PwAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLclHz6JqKMAWyUS/eMAXSUR0Cn8I1RUFSsdX2UKGgGR0BxY2FoL5RCaAdL/WgIR0Cn8MrbpNbkdX2UKGgGR0BzU6XQdCE6aAdNDQFoCEdAp/DeweNkv3V9lChoBkdAcMI0ygwoLGgHS/doCEdAp/D6Jj2Ba3V9lChoBkdAcD7R8c+7lWgHS+FoCEdAp/GdXvH933V9lChoBkdAc2IKyfL9uWgHS81oCEdAp/GqMzdk8XV9lChoBkdAb1Oe2/i5u2gHS9RoCEdAp/GwAn2IwnV9lChoBkdAcvQv7FbV0GgHS+1oCEdAp/HDjxTbWXV9lChoBkdAcJ/8stkFwGgHS+poCEdAp/HqHEdeY3V9lChoBkdAcOrSg5BC2WgHTQUBaAhHQKfyKeA/cFh1fZQoaAZHQHDxSTEBKcxoB0vgaAhHQKfybh3qzJJ1fZQoaAZHQHHI56QeV9poB0v3aAhHQKfycM4tHx11fZQoaAZHQHN9/llsguBoB0vhaAhHQKfyoElme191fZQoaAZHQHLtkvCdjG1oB0u+aAhHQKfyskpI+W51fZQoaAZHQG/87pNbkfdoB0vfaAhHQKfzB7Lt/nZ1fZQoaAZHQG+w6BiCrcVoB0vgaAhHQKf0AKOT7l91fZQoaAZHQG/KDsUqQRxoB0vNaAhHQKf0SkN4JNV1fZQoaAZHQHNZmwRoRI1oB0vfaAhHQKf0jPX05EN1fZQoaAZHQHEzhzBAOaxoB0vLaAhHQKf1KHARChN1fZQoaAZHQHI8p8KG+K1oB0vLaAhHQKf1QQVbiZR1fZQoaAZHQHCvWo73fyhoB00ZAWgIR0Cn9U3cQAdXdX2UKGgGR0BxM2t8uzyCaAdL1mgIR0Cn9UyG8EmqdX2UKGgGR0ByHFHTZxrBaAdNDAFoCEdAp/VTmr8zh3V9lChoBkdAbnjj3Ehq02gHS91oCEdAp/W4w482aXV9lChoBkdAcfPnKW9lE2gHS/BoCEdAp/XF2zOX3XV9lChoBkdAcZUJOWSlnGgHS9loCEdAp/Y6n5zo2XV9lChoBkdAbVyMLncL0GgHS/FoCEdAp/ZZ6t1ZDHV9lChoBkdAcvhYao/A02gHS+doCEdAp/ZzhtLteHV9lChoBkdAcfPyz5XU6WgHS+VoCEdAp/aemce8w3V9lChoBkdAcnnqrR0EHWgHTQEBaAhHQKgHCd1+y7h1fZQoaAZHQHApYO6NEPVoB0vvaAhHQKgHGcpb2UV1fZQoaAZHQHD1JGjKxLVoB0vsaAhHQKgHsr9VFQV1fZQoaAZHQHD7l8Ti84BoB0vzaAhHQKgH9iS7oSt1fZQoaAZHQG8b1D8cdYJoB0vVaAhHQKgIIvmozep1fZQoaAZHQHCZfSQYDT1oB0vTaAhHQKgINH09QoF1fZQoaAZHQHFjP8AJb+toB0v+aAhHQKgIQcBEKE51fZQoaAZHQHH36oddVvNoB0vYaAhHQKgIRNKRMex1fZQoaAZHQG5494NZvDRoB0vSaAhHQKgIgqIacZt1fZQoaAZHQG4sMIE8q4JoB0vvaAhHQKgIiSwnpjd1fZQoaAZHQHC550Syt3hoB0vkaAhHQKgIqVD8cdZ1fZQoaAZHQHNFdcry1/loB00EAWgIR0CoCLReb/fgdX2UKGgGR0BwfK96C17ZaAdL2WgIR0CoCQHFxXGPdX2UKGgGR0BxJz0RODaoaAdL1GgIR0CoCRTbFjusdX2UKGgGR0BwlMK5TZQIaAdL/mgIR0CoCVmKZUkwdX2UKGgGR0ByP2jWTX8PaAdNBgFoCEdAqAlb30wrUnV9lChoBkdAb9+n/DLr5mgHS9JoCEdAqAlrE9+w1XV9lChoBkdAbpwlzltCRmgHS+ZoCEdAqAmvlp48l3V9lChoBkdAcH2n0Cih4GgHS9VoCEdAqAoZs/IKdHV9lChoBkdAcNRL4etCA2gHS85oCEdAqAp4dCE6DHV9lChoBkdAcnXm78Nx2mgHS8loCEdAqAqGKQ7tA3V9lChoBkdAcU9hoM8YAWgHS+NoCEdAqAqP+S8rZ3V9lChoBkdAcfTM8YAKfGgHS8JoCEdAqArzS9du53V9lChoBkdAbjYnkT6BRWgHS9hoCEdAqAr98JD3NHV9lChoBkdAco5NSZSeiGgHTQABaAhHQKgLJjghr311fZQoaAZHQFHg7KJVKf5oB0uUaAhHQKgLMB06o2p1fZQoaAZHQHEvB5kbxVhoB00EAWgIR0CoCz+fywwCdX2UKGgGR0By3pJsfq5caAdLxWgIR0CoC1Q/gR9PdX2UKGgGR0Bya0ojOcDsaAdL72gIR0CoC21nuiN9dX2UKGgGR0ByDMAxSHdoaAdNDAFoCEdAqAujh3qzJXV9lChoBkdAdGjRtxdY4mgHS8doCEdAqAvDEm6XjXV9lChoBkdAcbKAS39aU2gHS+JoCEdAqAvJmK64D3V9lChoBkdAc7kO7xusLmgHS9VoCEdAqAvyU1Q663V9lChoBkdAcdD5nDiwS2gHS/VoCEdAqAz5eJHiFXV9lChoBkdAcUGZG8VYZGgHS9ZoCEdAqA0OXsw+MnV9lChoBkdAcTb+WWyC4GgHS8poCEdAqA1dl5GBnXV9lChoBkdAc8F176YVqWgHS9ZoCEdAqA185IYm9nV9lChoBkdAcR5t1p0wJ2gHS/RoCEdAqA4dZA6dUnV9lChoBkdAcj+Pxx1gY2gHS9ZoCEdAqA5+WWyC4HV9lChoBkdAcSa2C/XXiGgHS91oCEdAqA6O3H7xeHV9lChoBkdAbklyqdYnv2gHS9JoCEdAqA6k3n6l+HV9lChoBkdAcLXB9Tgl4WgHS/loCEdAqA7Jjx0+1XV9lChoBkdAcSQcEvCdjGgHS/xoCEdAqA7lHpbD/HV9lChoBkdAcKOedTYNAmgHS+1oCEdAqA7/PgNwznV9lChoBkdAcWCUdaMaTGgHS9xoCEdAqA89+9allHV9lChoBkdAcauFcIJJG2gHS9ZoCEdAqA9G5H3DenV9lChoBkdAcysj0L+glGgHS/hoCEdAqA9uFN+LFXV9lChoBkdAcNT/Ot4iYGgHTQQBaAhHQKgQO8pTdcl1fZQoaAZHQHKl6Y/mknFoB0vNaAhHQKgQfaFEiMZ1fZQoaAZHQHOc64QSSNhoB0vZaAhHQKgQm4Qz1sd1fZQoaAZHQHMVY1cdHUdoB0vGaAhHQKgQsijcmBx1fZQoaAZHQHEJPoV2zOZoB0vYaAhHQKgRHa6BiCt1fZQoaAZHQHKl5c1O0sxoB01PAWgIR0CoEU145cTrdX2UKGgGR0BwwZPoFFDwaAdL72gIR0CoEjMFlkH2dX2UKGgGR0BxTBfVqesgaAdL4mgIR0CoElu58Sf2dX2UKGgGR0BweP974SHuaAdL42gIR0CoEnH6VMVUdX2UKGgGR0BzZQWHk92YaAdL4GgIR0CoEnmp++dtdX2UKGgGR0BwHgEmplz2aAdL12gIR0CoEpKKYRdydX2UKGgGR0BvyPRPXTVlaAdLx2gIR0CoEqyFPBSDdX2UKGgGR0BxSyh37k4naAdL4mgIR0CoEqm8mKIjdX2UKGgGR0BwFS8J2MbWaAdL22gIR0CoEr2zfJmvdX2UKGgGR0BytMoNNJvpaAdL2WgIR0CoEvTB68g7dX2UKGgGR0BvCxeHBUJfaAdL32gIR0CoEx5ZSvTxdX2UKGgGR0BtjXDDTBqLaAdLzmgIR0CoE5mahHskdX2UKGgGR0BuyfXoTwlTaAdL0mgIR0CoE7fjS5RTdX2UKGgGR0BwKIvzvqkeaAdL7GgIR0CoE8U+s5n2dX2UKGgGR0BuDChYeT3ZaAdL5mgIR0CoE/xmseXBdX2UKGgGR0BxdX7TDwYtaAdL6WgIR0CoFE2qcVgydX2UKGgGR0Bzdw5XEIgOaAdL32gIR0CoFFFU6xPgdX2UKGgGR0ByUKii7CizaAdLwmgIR0CoFMMtsenydX2UKGgGR0ByBuZAprk9aAdLvGgIR0CoFNX+VC5VdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b2c78a049dd3e12a014ac7eb64c81e0be93214986e825b81cd7c222057f49808
3
- size 146751
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a933eab2afe8397c3973800de35e009237c47932f752955baa88257c5273f01
3
+ size 146639
ppo-LunarLander-v2/data CHANGED
@@ -4,34 +4,34 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f173ecff400>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f173ecff490>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f173ecff520>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f173ecff5b0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f173ecff640>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f173ecff6d0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f173ecff760>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f173ecff7f0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f173ecff880>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f173ecff910>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f173ecff9a0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f173ecffa30>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f173ed08200>"
21
  },
22
- "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 1015808,
25
- "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1683732006167265097,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoL0rzhboW6+W8/PHqGUjXAaii7Zk1DNAAAgD8AAIA/ID0DPpPbaj+KJgk824KKvnE50j0lY+m9AAAAAAAAAABtnzO+X0g8PxyQhj3EaaS+1o6Bvepibj0AAAAAAAAAADMxoL2PWi66A08kOJOaCDNJp2m7+v1CtwAAgD8AAIA/LeoJPhAEID/LA3G+j6Z2vuqEB71ag4y9AAAAAAAAAABT2QM+YMS1P+u+oz7izci+sj4DPo61gT0AAAAAAAAAAE1ewz0pPHG6PrEKOUSSOTQxvy87j/IfuAAAgD8AAIA/TdYdPl/3Cz/+Z9y9/geOvt+LFTq/lKO9AAAAAAAAAAAATHA9iUsrPe/RBD1kg4u+X1eEur5LjLwAAAAAAAAAAOYcEr3DvVO6pplcupkWAzb2Ggc7ypGBOQAAgD8AAIA/jRy0PVyPWjfYd+k6b675NLQOBTt9Kg66AACAPwAAAAAahYQ9CldludKZi7smMQU3yfYnu2X8dLYAAAAAAACAPya4uD0pBFu6lfA1umI+O7aIdwK7QzNSOQAAgD8AAIA/+0GLvvMSOj+azok+w4d0vhgSrrzmAZg8AAAAAAAAAADTqRA+pF97u+KJkToh+Me3GkDBvBEgsrkAAIA/AACAP02IGj5pmAu8EZmXO9dg3Llwymu96hi4ugAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -41,17 +41,17 @@
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -0.015808000000000044,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGICwUHpr1yMAWyUTegDjAF0lEdAk3AaQFLWZ3V9lChoBkdAYFb8w5/9YWgHTegDaAhHQJNzjlmvnr91fZQoaAZHQGMQbMPjGT9oB03oA2gIR0CTds5CF9KFdX2UKGgGR0BlA67iADq4aAdN6ANoCEdAk3uGn889wHV9lChoBkdAcaIv8ZUDMmgHTakDaAhHQJOMOJAMUh51fZQoaAZHQGYJ/Pw/gR9oB03oA2gIR0CTod9eyAx0dX2UKGgGR0Bx3EomXw9aaAdN2gJoCEdAk7HaqKgqVnV9lChoBkdAZ+n0SRKYiWgHTegDaAhHQJOyjuy/sVt1fZQoaAZHQGGyuhbnoxJoB03oA2gIR0CTss/IsAeadX2UKGgGR0Bh63uCwr1/aAdN6ANoCEdAk7bUHt4RmXV9lChoBkdAZFkenQ6ZIGgHTegDaAhHQJO3HPa+N991fZQoaAZHQGLP+tSydFxoB03oA2gIR0CTt3sjVx0ddX2UKGgGR0BdvkcXFcY7aAdN6ANoCEdAk7nPuPV/c3V9lChoBkdAQipo9LYf4mgHS9NoCEdAk8ATIBBAwHV9lChoBkdAXjodNnGsFWgHTegDaAhHQJPBipcX3xp1fZQoaAZHQGP1D6WPcSJoB03oA2gIR0CTwdYrJ8v3dX2UKGgGR0BkE98CxNZeaAdN6ANoCEdAk8Otp22Xs3V9lChoBkdAYxyWYWtU42gHTegDaAhHQJPEDs+mm+F1fZQoaAZHQGAi9pZfUnZoB03oA2gIR0CTxqGPgeijdX2UKGgGR0Bi3avgWJrMaAdN6ANoCEdAk8ku2qkuYnV9lChoBkdAb2fk+X7cf2gHTV0BaAhHQJPKUL4N7Sl1fZQoaAZHQFtdX+2mYShoB03oA2gIR0CTzIxcmjTKdX2UKGgGR0Bwnr7Kq4pdaAdNWwNoCEdAk9L2NipeeHV9lChoBkdAbtBx/d69kGgHTaoCaAhHQJPZ9aq0dBB1fZQoaAZHQG55FS88La5oB01MAmgIR0CT2nX3xnWbdX2UKGgGR0BxK1jmSyMUaAdN+AFoCEdAk92yQHRkVnV9lChoBkdAZw2eV9nbqWgHTegDaAhHQJPf0NAkcCJ1fZQoaAZHQG05WKEWZZ1oB02tA2gIR0CUAsuvUz9CdX2UKGgGR0BnjoQ4CIUKaAdN6ANoCEdAlALP2Xb/O3V9lChoBkdAbDbjwx33YmgHTUsCaAhHQJQFa5wwTM91fZQoaAZHQHHr7pV0cOtoB00EA2gIR0CUBfc8TzundX2UKGgGR0Bj5PhGYrrgaAdN6ANoCEdAlAX2Hck+o3V9lChoBkdAb0kIrOJLumgHTeUDaAhHQJQNMYKpkwx1fZQoaAZHQGKgTLGJemhoB03oA2gIR0CUDwLxqfvndX2UKGgGR0BmiD39JjDsaAdN6ANoCEdAlBFGVVxS53V9lChoBkdAZKMKWszVMGgHTegDaAhHQJQUhrJr+Hd1fZQoaAZHQG3QxX4j8k5oB01eAWgIR0CUFTLyc0+DdX2UKGgGR0BkBGuq3mV8aAdN6ANoCEdAlBcZ7b+LnHV9lChoBkdAZqKdtEXtSmgHTegDaAhHQJQYKwwCbMJ1fZQoaAZHQHJFpswco6VoB03zAmgIR0CUGX72criEdX2UKGgGR0Bf++hkAggYaAdN6ANoCEdAlB9uKKpDNXV9lChoBkdAcdP/5ckdFWgHTQQCaAhHQJQffG6wt8N1fZQoaAZHQGNTPrfLs8hoB03oA2gIR0CUJfryUcGUdX2UKGgGR0BgWQYUFjd6aAdN6ANoCEdAlCrvb9If83V9lChoBkdAZjlZK3/gi2gHTegDaAhHQJQt4o3Jgb91fZQoaAZHQG0AuvllsgxoB02/AWgIR0CULm7BfrrxdX2UKGgGR0BqeDtoi9qUaAdNHwNoCEdAlETeg+Qlr3V9lChoBkdAa6w4VARkE2gHTU0DaAhHQJRE7WXkYGd1fZQoaAZHQHG4rPIGQjloB02zAmgIR0CUSPlKK509dX2UKGgGR0BwzOiKziS8aAdNrQJoCEdAlEr5jMFEA3V9lChoBkdAcTZR77bcoGgHTSQCaAhHQJRLBrDZUUB1fZQoaAZHQHB2M90Rvm5oB00pA2gIR0CUTS114gRsdX2UKGgGR0Bgx2FtbcGkaAdN6ANoCEdAlE+BEa2nbnV9lChoBkdAbV0bKifxt2gHTYwBaAhHQJRTrXI2fkF1fZQoaAZHQF+WUvwmVqxoB03oA2gIR0CUYC4WUKRddX2UKGgGR0BiDXTAnDziaAdN6ANoCEdAlGO/PgNwznV9lChoBkdAWsfhFVktmWgHTegDaAhHQJRoXGkvboN1fZQoaAZHQG6QOqm0mdBoB01QA2gIR0CUcC3Jgb6ydX2UKGgGR0BLUmb9ZRsNaAdL0mgIR0CUcxuanaWYdX2UKGgGR0BgvEdDIBBBaAdN6ANoCEdAlHP/cJtzjnV9lChoBkdAaA6FIuoP1GgHTegDaAhHQJR0EYCQtBh1fZQoaAZHQG5CXeFcpspoB00IAmgIR0CUdGqOLiuMdX2UKGgGR0BwwbmEGqxUaAdNAAJoCEdAlHheCsfaH3V9lChoBkdAcLRu2qkuYmgHTZ0DaAhHQJR+8Jlar3l1fZQoaAZHQGP2/VI7NjdoB03oA2gIR0CUf25ksjFAdX2UKGgGR0A2q85CF9KFaAdL/mgIR0CUf58XvYvndX2UKGgGR0BdIyu6mO2iaAdN6ANoCEdAlH/SLVFx43V9lChoBkdAcGvYqXnhbWgHTYUBaAhHQJSCGwLVnVZ1fZQoaAZHQGPenezlcQloB03oA2gIR0CUk1BYmsvJdX2UKGgGR0BjG5tJnQIEaAdN6ANoCEdAlJdVwo9cKXV9lChoBkdAa7fpcophF2gHTRUCaAhHQJSXYxqO9391fZQoaAZHQG24o/7iyY5oB015AWgIR0CUmNUX531SdX2UKGgGR0Bre/1HvttzaAdNNgFoCEdAlJkl3IMjNnV9lChoBkdAZgTQ9ic5KmgHTegDaAhHQJSZMjjaPCF1fZQoaAZHQGDFTjm0VrRoB03oA2gIR0CUmT8s+V1PdX2UKGgGR0BvtyDTSb6QaAdNigFoCEdAlJlc0xdpqXV9lChoBkdAccb9WZJCjWgHTZcBaAhHQJSZd5jYqXp1fZQoaAZHQGXSMbedkJ9oB03oA2gIR0CUmsL8rI5pdX2UKGgGR0BwDumMwUQDaAdNIQFoCEdAlJ1cLjPv8nV9lChoBkdAcIC8h9srNGgHTTEBaAhHQJSdzck+otN1fZQoaAZHQHDD3YDklu5oB01cAWgIR0CUn17HhjvvdX2UKGgGR0BI4idz4k/saAdL4GgIR0CUpbxI8QqadX2UKGgGR0BwdbjJdSl4aAdN3wFoCEdAlKe7ksBhhHV9lChoBkdAcAtDujRD1GgHTVgBaAhHQJSoHPVurIZ1fZQoaAZHQG+yXfQ8fV9oB01jAWgIR0CUqOjoIOYqdX2UKGgGR0ByDHVx0dR0aAdN6gJoCEdAlKtoSpR4yHV9lChoBkdAcAJLZSNwSGgHTXABaAhHQJSsYumJm/Z1fZQoaAZHQG/QWhh6SkloB02AAWgIR0CUrKRu0kWzdX2UKGgGR0BymB8w5/9YaAdNzAFoCEdAlLGyTY/Vy3V9lChoBkdAcZlmGM4tH2gHTUQBaAhHQJSyhbY9Pk91fZQoaAZHQHBz8tCiRGNoB02iAWgIR0CUtPVclgMMdX2UKGgGR0BvaK37UG3XaAdNUwJoCEdAlLcusT37DXV9lChoBkdARbM4HX2/SGgHTQYBaAhHQJS5KQ3gk1N1fZQoaAZHQHEKXbVSXMRoB02eAWgIR0CUu0dJrcj8dX2UKGgGR0BHVR/EwWWQaAdL32gIR0CUvzVlf7aadX2UKGgGR0BwWqD28IzFaAdN0wFoCEdAlMBFPnB+F3V9lChoBkdAcXpiKiwjdGgHTfIBaAhHQJTA4EkjX4F1fZQoaAZHQG+AjRtxdY5oB01KAWgIR0CUwXb7j1f3dX2UKGgGR0BvSrOiWVu8aAdNuANoCEdAlMKbtVrAQHV9lChoBkdAYqb5eqrBCWgHTegDaAhHQJTEBGc4HX51ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 248,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
@@ -83,7 +83,7 @@
83
  "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
- "batch_size": 64,
87
  "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7e8735cc10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7e8735cca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7e8735cd30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7e8735cdc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7e8735ce50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7e8735cee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7e8735cf70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7e8735d000>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7e8735d090>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7e8735d120>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7e8735d1b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7e8735d240>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f7e873595c0>"
21
  },
22
+ "verbose": 2,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 2015232,
25
+ "_total_timesteps": 2000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1683836441947243607,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABbCL0X7rg/Fp+CvjmqqbwqWf28p2oFvgAAAAAAAAAAZg5jPUNDwz/4tpM+UYxlPdeK0jzms809AAAAAAAAAAAWvVm+rJRWP7IXyr2PIvq+Q3TqvhObsTwAAAAAAAAAAEBMkr1ORwI//nGiPakGt748IUm9EiJdPQAAAAAAAAAAzfTCPXduWz/mk7s9ljQFv5ViAD5lSwy9AAAAAAAAAACzKwQ9FFjHuk/Mkbsah4A8pQ5UO9BfYL0AAIA/AACAP2YWyTxxjT25g09cuGlKkbP+U487vbqCNwAAgD8AAIA/zQbePOHAh7rWI7O4bTKmsyePmrqmodA3AACAPwAAgD8mlsw9WWMbPir2Sb5pRBq+C28Pvp4zMz0AAAAAAAAAAE1hFr2gdu0+sw+kPXH/zb6WNgI89adOPQAAAAAAAAAAZs76O6QELrvujIA7ri+LPJHSJLx2cXA9AACAPwAAgD8AeFq9jijpPtfbGz5XMN6+SLzFPHr5qT0AAAAAAAAAAE1HZD17bqq6Fk2Du6Dckzw7NpC5eV6AvQAAgD8AAIA/ml+3vAQ9qz3cxJs9IkGCvjDtBT5uR929AAAAAAAAAAAzAUA9jwZAuok/F7U66IGvjFiROqKUZDQAAIA/AACAPwCJsLwUCtc73s79vf9JCL5BAUW90oM0PwAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.007616000000000067,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV7AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLclHz6JqKMAWyUS/eMAXSUR0Cn8I1RUFSsdX2UKGgGR0BxY2FoL5RCaAdL/WgIR0Cn8MrbpNbkdX2UKGgGR0BzU6XQdCE6aAdNDQFoCEdAp/DeweNkv3V9lChoBkdAcMI0ygwoLGgHS/doCEdAp/D6Jj2Ba3V9lChoBkdAcD7R8c+7lWgHS+FoCEdAp/GdXvH933V9lChoBkdAc2IKyfL9uWgHS81oCEdAp/GqMzdk8XV9lChoBkdAb1Oe2/i5u2gHS9RoCEdAp/GwAn2IwnV9lChoBkdAcvQv7FbV0GgHS+1oCEdAp/HDjxTbWXV9lChoBkdAcJ/8stkFwGgHS+poCEdAp/HqHEdeY3V9lChoBkdAcOrSg5BC2WgHTQUBaAhHQKfyKeA/cFh1fZQoaAZHQHDxSTEBKcxoB0vgaAhHQKfybh3qzJJ1fZQoaAZHQHHI56QeV9poB0v3aAhHQKfycM4tHx11fZQoaAZHQHN9/llsguBoB0vhaAhHQKfyoElme191fZQoaAZHQHLtkvCdjG1oB0u+aAhHQKfyskpI+W51fZQoaAZHQG/87pNbkfdoB0vfaAhHQKfzB7Lt/nZ1fZQoaAZHQG+w6BiCrcVoB0vgaAhHQKf0AKOT7l91fZQoaAZHQG/KDsUqQRxoB0vNaAhHQKf0SkN4JNV1fZQoaAZHQHNZmwRoRI1oB0vfaAhHQKf0jPX05EN1fZQoaAZHQHEzhzBAOaxoB0vLaAhHQKf1KHARChN1fZQoaAZHQHI8p8KG+K1oB0vLaAhHQKf1QQVbiZR1fZQoaAZHQHCvWo73fyhoB00ZAWgIR0Cn9U3cQAdXdX2UKGgGR0BxM2t8uzyCaAdL1mgIR0Cn9UyG8EmqdX2UKGgGR0ByHFHTZxrBaAdNDAFoCEdAp/VTmr8zh3V9lChoBkdAbnjj3Ehq02gHS91oCEdAp/W4w482aXV9lChoBkdAcfPnKW9lE2gHS/BoCEdAp/XF2zOX3XV9lChoBkdAcZUJOWSlnGgHS9loCEdAp/Y6n5zo2XV9lChoBkdAbVyMLncL0GgHS/FoCEdAp/ZZ6t1ZDHV9lChoBkdAcvhYao/A02gHS+doCEdAp/ZzhtLteHV9lChoBkdAcfPyz5XU6WgHS+VoCEdAp/aemce8w3V9lChoBkdAcnnqrR0EHWgHTQEBaAhHQKgHCd1+y7h1fZQoaAZHQHApYO6NEPVoB0vvaAhHQKgHGcpb2UV1fZQoaAZHQHD1JGjKxLVoB0vsaAhHQKgHsr9VFQV1fZQoaAZHQHD7l8Ti84BoB0vzaAhHQKgH9iS7oSt1fZQoaAZHQG8b1D8cdYJoB0vVaAhHQKgIIvmozep1fZQoaAZHQHCZfSQYDT1oB0vTaAhHQKgINH09QoF1fZQoaAZHQHFjP8AJb+toB0v+aAhHQKgIQcBEKE51fZQoaAZHQHH36oddVvNoB0vYaAhHQKgIRNKRMex1fZQoaAZHQG5494NZvDRoB0vSaAhHQKgIgqIacZt1fZQoaAZHQG4sMIE8q4JoB0vvaAhHQKgIiSwnpjd1fZQoaAZHQHC550Syt3hoB0vkaAhHQKgIqVD8cdZ1fZQoaAZHQHNFdcry1/loB00EAWgIR0CoCLReb/fgdX2UKGgGR0BwfK96C17ZaAdL2WgIR0CoCQHFxXGPdX2UKGgGR0BxJz0RODaoaAdL1GgIR0CoCRTbFjusdX2UKGgGR0BwlMK5TZQIaAdL/mgIR0CoCVmKZUkwdX2UKGgGR0ByP2jWTX8PaAdNBgFoCEdAqAlb30wrUnV9lChoBkdAb9+n/DLr5mgHS9JoCEdAqAlrE9+w1XV9lChoBkdAbpwlzltCRmgHS+ZoCEdAqAmvlp48l3V9lChoBkdAcH2n0Cih4GgHS9VoCEdAqAoZs/IKdHV9lChoBkdAcNRL4etCA2gHS85oCEdAqAp4dCE6DHV9lChoBkdAcnXm78Nx2mgHS8loCEdAqAqGKQ7tA3V9lChoBkdAcU9hoM8YAWgHS+NoCEdAqAqP+S8rZ3V9lChoBkdAcfTM8YAKfGgHS8JoCEdAqArzS9du53V9lChoBkdAbjYnkT6BRWgHS9hoCEdAqAr98JD3NHV9lChoBkdAco5NSZSeiGgHTQABaAhHQKgLJjghr311fZQoaAZHQFHg7KJVKf5oB0uUaAhHQKgLMB06o2p1fZQoaAZHQHEvB5kbxVhoB00EAWgIR0CoCz+fywwCdX2UKGgGR0By3pJsfq5caAdLxWgIR0CoC1Q/gR9PdX2UKGgGR0Bya0ojOcDsaAdL72gIR0CoC21nuiN9dX2UKGgGR0ByDMAxSHdoaAdNDAFoCEdAqAujh3qzJXV9lChoBkdAdGjRtxdY4mgHS8doCEdAqAvDEm6XjXV9lChoBkdAcbKAS39aU2gHS+JoCEdAqAvJmK64D3V9lChoBkdAc7kO7xusLmgHS9VoCEdAqAvyU1Q663V9lChoBkdAcdD5nDiwS2gHS/VoCEdAqAz5eJHiFXV9lChoBkdAcUGZG8VYZGgHS9ZoCEdAqA0OXsw+MnV9lChoBkdAcTb+WWyC4GgHS8poCEdAqA1dl5GBnXV9lChoBkdAc8F176YVqWgHS9ZoCEdAqA185IYm9nV9lChoBkdAcR5t1p0wJ2gHS/RoCEdAqA4dZA6dUnV9lChoBkdAcj+Pxx1gY2gHS9ZoCEdAqA5+WWyC4HV9lChoBkdAcSa2C/XXiGgHS91oCEdAqA6O3H7xeHV9lChoBkdAbklyqdYnv2gHS9JoCEdAqA6k3n6l+HV9lChoBkdAcLXB9Tgl4WgHS/loCEdAqA7Jjx0+1XV9lChoBkdAcSQcEvCdjGgHS/xoCEdAqA7lHpbD/HV9lChoBkdAcKOedTYNAmgHS+1oCEdAqA7/PgNwznV9lChoBkdAcWCUdaMaTGgHS9xoCEdAqA89+9allHV9lChoBkdAcauFcIJJG2gHS9ZoCEdAqA9G5H3DenV9lChoBkdAcysj0L+glGgHS/hoCEdAqA9uFN+LFXV9lChoBkdAcNT/Ot4iYGgHTQQBaAhHQKgQO8pTdcl1fZQoaAZHQHKl6Y/mknFoB0vNaAhHQKgQfaFEiMZ1fZQoaAZHQHOc64QSSNhoB0vZaAhHQKgQm4Qz1sd1fZQoaAZHQHMVY1cdHUdoB0vGaAhHQKgQsijcmBx1fZQoaAZHQHEJPoV2zOZoB0vYaAhHQKgRHa6BiCt1fZQoaAZHQHKl5c1O0sxoB01PAWgIR0CoEU145cTrdX2UKGgGR0BwwZPoFFDwaAdL72gIR0CoEjMFlkH2dX2UKGgGR0BxTBfVqesgaAdL4mgIR0CoElu58Sf2dX2UKGgGR0BweP974SHuaAdL42gIR0CoEnH6VMVUdX2UKGgGR0BzZQWHk92YaAdL4GgIR0CoEnmp++dtdX2UKGgGR0BwHgEmplz2aAdL12gIR0CoEpKKYRdydX2UKGgGR0BvyPRPXTVlaAdLx2gIR0CoEqyFPBSDdX2UKGgGR0BxSyh37k4naAdL4mgIR0CoEqm8mKIjdX2UKGgGR0BwFS8J2MbWaAdL22gIR0CoEr2zfJmvdX2UKGgGR0BytMoNNJvpaAdL2WgIR0CoEvTB68g7dX2UKGgGR0BvCxeHBUJfaAdL32gIR0CoEx5ZSvTxdX2UKGgGR0BtjXDDTBqLaAdLzmgIR0CoE5mahHskdX2UKGgGR0BuyfXoTwlTaAdL0mgIR0CoE7fjS5RTdX2UKGgGR0BwKIvzvqkeaAdL7GgIR0CoE8U+s5n2dX2UKGgGR0BuDChYeT3ZaAdL5mgIR0CoE/xmseXBdX2UKGgGR0BxdX7TDwYtaAdL6WgIR0CoFE2qcVgydX2UKGgGR0Bzdw5XEIgOaAdL32gIR0CoFFFU6xPgdX2UKGgGR0ByUKii7CizaAdLwmgIR0CoFMMtsenydX2UKGgGR0ByBuZAprk9aAdLvGgIR0CoFNX+VC5VdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 492,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
83
  "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
+ "batch_size": 32,
87
  "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fc87a7bfaa22c44ce65e17c64d2f0d638c78cdfd44ac348739c72482cef25311
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:297f51a6e83790fc5d6225e285894fa21fd4451a7ea5da7ebd5b664bb6029ad0
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:da7336aa983630c28f4e71daa67d222f73fc3952050cc33cf1f75ce6aad70e48
3
  size 43329
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50d353276a28130819da554b1bf90a787098c9b0f34cf0eaa1812f086579f33a
3
  size 43329
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 243.64264929937457, "std_reward": 44.02452340141674, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-10T15:55:07.262795"}
 
1
+ {"mean_reward": 274.57157427055347, "std_reward": 27.10560243712381, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-11T21:02:48.330756"}