Initial commit
Browse files- README.md +37 -0
- a2c-PandaPickAndPlace-v3.zip +3 -0
- a2c-PandaPickAndPlace-v3/_stable_baselines3_version +1 -0
- a2c-PandaPickAndPlace-v3/data +97 -0
- a2c-PandaPickAndPlace-v3/policy.optimizer.pth +3 -0
- a2c-PandaPickAndPlace-v3/policy.pth +3 -0
- a2c-PandaPickAndPlace-v3/pytorch_variables.pth +3 -0
- a2c-PandaPickAndPlace-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaPickAndPlace-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaPickAndPlace-v3
|
16 |
+
type: PandaPickAndPlace-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -45.00 +/- 15.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaPickAndPlace-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaPickAndPlace-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36d1b41001c5c478019e2aa2d6135e1a75f0121ca790c28b1d5ee5e582fcc95d
|
3 |
+
size 123167
|
a2c-PandaPickAndPlace-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaPickAndPlace-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x79c81a40d6c0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x79c81a21dec0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1692634837634384258,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACjIPvhTy177yC+E94JydP3CsQr/NCuE9XS7TvogCcz/yC+E9LAFxP87BMb/yC+E9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxtQbvyUekL+48Iq/6N9hPyDU2r+48Iq/XMi2PSgXsb+48Iq/oyJKPx0MuT648Iq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACwB0Y/G7H3OsekUL30ojQ/XGrBP1qLWz86hLk/CjIPvhTy177yC+E9S2xtvOXUWTvUb1a8p+4kPfpM37vxO1E9mpSYO7lMGLwHvhi8J7XwPkqE975vE3a+hTC1vpLOlz4ZlR08v88xv+CcnT9wrEK/zQrhPWQNbrydU2g7Q2ctvB3pIz1/tc27YRhSPfG3SjsMNEC8qCQRvEDSeD8OxKw+X5X2PQCdgb5Z2Ie+I+PFvv6yKb9dLtO+iAJzP/IL4T1cxGu8CJFkO8x2QbzNtSE9gUXHu+87UT3RGSU6w4dZvCbHFbyI5wM/jdsOvpLUET8OFZa/1gGpv/mW0r+E48++LAFxP87BMb/yC+E9S2xtvN3UWTsR2lu8m+4kPXxN37vwO1E9lZeYO5FNGLxrvhi8lGgOSwRLE4aUaBJ0lFKUdS4=",
|
33 |
+
"achieved_goal": "[[-0.13983932 -0.42176878 0.10988607]\n [ 1.23135 -0.7604437 0.10988388]\n [-0.4124631 0.9492574 0.10988607]\n [ 0.94142413 -0.6943635 0.10988607]]",
|
34 |
+
"desired_goal": "[[-0.6087154 -1.1259199 -1.0854712 ]\n [ 0.8823228 -1.7095985 -1.0854712 ]\n [ 0.08924934 -1.3835192 -1.0854712 ]\n [ 0.789591 0.36142054 -1.0854712 ]]",
|
35 |
+
"observation": "[[ 7.73554802e-01 1.88973860e-03 -5.09383939e-02 7.05611467e-01\n 1.51105833e+00 8.57595086e-01 1.44934773e+00 -1.39839321e-01\n -4.21768785e-01 1.09886065e-01 -1.44911511e-02 3.32384673e-03\n -1.30881853e-02 4.02666591e-02 -6.81459624e-03 5.10825552e-02\n 4.65638656e-03 -9.29563586e-03 -9.32264980e-03]\n [ 4.70132083e-01 -4.83431160e-01 -2.40308508e-01 -3.53885800e-01\n 2.96497881e-01 9.61806718e-03 -6.94576204e-01 1.23134995e+00\n -7.60443687e-01 1.09883882e-01 -1.45295598e-02 3.54502280e-03\n -1.05837015e-02 4.00172360e-02 -6.27773954e-03 5.12927808e-02\n 3.09323915e-03 -1.17311589e-02 -8.85883719e-03]\n [ 9.71958160e-01 3.37433279e-01 1.20402090e-01 -2.53150940e-01\n -2.65322477e-01 -3.86498541e-01 -6.62887454e-01 -4.12463099e-01\n 9.49257374e-01 1.09886065e-01 -1.43900774e-02 3.48764844e-03\n -1.18081085e-02 3.94800194e-02 -6.08128356e-03 5.10825478e-02\n 6.29809743e-04 -1.32769970e-02 -9.14171897e-03]\n [ 5.15251637e-01 -1.39509395e-01 5.69649816e-01 -1.17251754e+00\n -1.32036853e+00 -1.64523232e+00 -4.06032681e-01 9.41424131e-01\n -6.94363475e-01 1.09886065e-01 -1.44911511e-02 3.32384487e-03\n -1.34186903e-02 4.02666144e-02 -6.81465678e-03 5.10825515e-02\n 4.65674186e-03 -9.29583702e-03 -9.32274293e-03]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAZ2HivcA9i7wK16M8OWoRPmb3sT0K16M8x1UZPkdxvT0K16M8toUUvly4fT0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUp3vvUJ4C77RRVg+AEsKPbu6CL4K16M8baUEPSr0yb0xVTQ+DULEvX4/+71rB0U9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAZ2HivcA9i7wK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAADlqET5m97E9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADHVRk+R3G9PQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAtoUUvly4fT0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
|
44 |
+
"achieved_goal": "[[-0.11053734 -0.01699722 0.02 ]\n [ 0.14200677 0.08689766 0.02 ]\n [ 0.14974128 0.09250122 0.02 ]\n [-0.14504132 0.0619434 0.02 ]]",
|
45 |
+
"desired_goal": "[[-0.11699928 -0.13620093 0.21120383]\n [ 0.03376293 -0.13352482 0.02 ]\n [ 0.03238432 -0.09861024 0.17610623]\n [-0.09582911 -0.1226797 0.04810278]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.1053734e-01\n -1.6997218e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.4200677e-01\n 8.6897656e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.4974128e-01\n 9.2501216e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.4504132e-01\n 6.1943397e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CofBGJemeldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CofYgpKBd2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CofWN9H+ZPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CofdA1FYuCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CofUj1XeWOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CofsZ+H8CQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cofp/1HvtudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CofwnhsImgdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CofxSQPqcFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cofn+ERJ2/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cof+j9XLeRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cof6lMyrPudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CogBnNPgvUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cof4OyVv/BdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CogO0PH1e0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CogMm5lOGkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CogTd74SHudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CogKFrl/6PdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CogKdf9gnddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoghNXYDkmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CogfOyu6mPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CogmFFDv3KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CogdKoybhFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cog0JTl1bJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CogysjVx0ddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cog5tAcDKYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CogwivgWJrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CohGoXCTEBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CohEOeSSvDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CohLXRw6yTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CohCtxEORUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CohZopH7P6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CohXh/I8yOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CohetCAtnPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CohWuwgTysdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coht4fwI+odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cohsr433pOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cohzy57PY4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CohrJZOi35dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoiCQbdadMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coh+Pwd8zAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoiFH1OCXhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coh8NShrWRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoiTc1n/T9dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CoiT2SMcZMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoiSSgGr0bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoiZXeFcptdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoiQWHLzPKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoimpLVWjodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coiin58BuGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoipnYQJ5WdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coigj6N2kjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coi3MvAXVLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coiz/pt78fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coi68W0qpcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoiyAuRLbpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CojInzQNTcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CojFEDp1RtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CojMGIKtxNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CojDE4ecQRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CojacGTs6adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CojbkaVD8cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CojjPzvqkedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CojcDqOcUedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coj2RcmjTKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coj32LYPGydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coj/q1PWQPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coj4m3OObRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CokT371qWUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CokVWaDwpfdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CokV1Ng0CSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cokc6rmyPddX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CokdmLtNSJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CokV2tlqagdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CokxnTiKixdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cok10/fO2RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cok90XYUWVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cok20YsNDudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ColOGdqcmTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ColKg5imVJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ColRgXl8w6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ColIUd7v5QdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Colf6ePJaJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ColclRgqmTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ColjmLcbiqdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Colj62fChwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ColacoYvWZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ColxoDgZTAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coluk3Kji5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Col106xPfsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ColsQswtaqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ComDIw/PgOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Col/QkPczqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ComGazE74jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Col8rp7kXDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ComS2HUMG5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ComPOMl1KXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ComWbWd3B6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ComMxeC04SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ComjCa7VawdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True True]",
|
82 |
+
"bounded_above": "[ True True True True]",
|
83 |
+
"_shape": [
|
84 |
+
4
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaPickAndPlace-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f9f0c7c18357307118d141d1655e6bac768cb0f2742caff019f22dce39723ad
|
3 |
+
size 51646
|
a2c-PandaPickAndPlace-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:994e42283c60c4fd99f71cf59a771c3372cdcd2d5f79f6f84daadf45fcda93b7
|
3 |
+
size 52926
|
a2c-PandaPickAndPlace-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaPickAndPlace-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x79c81a40d6c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79c81a21dec0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692634837634384258, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACjIPvhTy177yC+E94JydP3CsQr/NCuE9XS7TvogCcz/yC+E9LAFxP87BMb/yC+E9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxtQbvyUekL+48Iq/6N9hPyDU2r+48Iq/XMi2PSgXsb+48Iq/oyJKPx0MuT648Iq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACwB0Y/G7H3OsekUL30ojQ/XGrBP1qLWz86hLk/CjIPvhTy177yC+E9S2xtvOXUWTvUb1a8p+4kPfpM37vxO1E9mpSYO7lMGLwHvhi8J7XwPkqE975vE3a+hTC1vpLOlz4ZlR08v88xv+CcnT9wrEK/zQrhPWQNbrydU2g7Q2ctvB3pIz1/tc27YRhSPfG3SjsMNEC8qCQRvEDSeD8OxKw+X5X2PQCdgb5Z2Ie+I+PFvv6yKb9dLtO+iAJzP/IL4T1cxGu8CJFkO8x2QbzNtSE9gUXHu+87UT3RGSU6w4dZvCbHFbyI5wM/jdsOvpLUET8OFZa/1gGpv/mW0r+E48++LAFxP87BMb/yC+E9S2xtvN3UWTsR2lu8m+4kPXxN37vwO1E9lZeYO5FNGLxrvhi8lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.13983932 -0.42176878 0.10988607]\n [ 1.23135 -0.7604437 0.10988388]\n [-0.4124631 0.9492574 0.10988607]\n [ 0.94142413 -0.6943635 0.10988607]]", "desired_goal": "[[-0.6087154 -1.1259199 -1.0854712 ]\n [ 0.8823228 -1.7095985 -1.0854712 ]\n [ 0.08924934 -1.3835192 -1.0854712 ]\n [ 0.789591 0.36142054 -1.0854712 ]]", "observation": "[[ 7.73554802e-01 1.88973860e-03 -5.09383939e-02 7.05611467e-01\n 1.51105833e+00 8.57595086e-01 1.44934773e+00 -1.39839321e-01\n -4.21768785e-01 1.09886065e-01 -1.44911511e-02 3.32384673e-03\n -1.30881853e-02 4.02666591e-02 -6.81459624e-03 5.10825552e-02\n 4.65638656e-03 -9.29563586e-03 -9.32264980e-03]\n [ 4.70132083e-01 -4.83431160e-01 -2.40308508e-01 -3.53885800e-01\n 2.96497881e-01 9.61806718e-03 -6.94576204e-01 1.23134995e+00\n -7.60443687e-01 1.09883882e-01 -1.45295598e-02 3.54502280e-03\n -1.05837015e-02 4.00172360e-02 -6.27773954e-03 5.12927808e-02\n 3.09323915e-03 -1.17311589e-02 -8.85883719e-03]\n [ 9.71958160e-01 3.37433279e-01 1.20402090e-01 -2.53150940e-01\n -2.65322477e-01 -3.86498541e-01 -6.62887454e-01 -4.12463099e-01\n 9.49257374e-01 1.09886065e-01 -1.43900774e-02 3.48764844e-03\n -1.18081085e-02 3.94800194e-02 -6.08128356e-03 5.10825478e-02\n 6.29809743e-04 -1.32769970e-02 -9.14171897e-03]\n [ 5.15251637e-01 -1.39509395e-01 5.69649816e-01 -1.17251754e+00\n -1.32036853e+00 -1.64523232e+00 -4.06032681e-01 9.41424131e-01\n -6.94363475e-01 1.09886065e-01 -1.44911511e-02 3.32384487e-03\n -1.34186903e-02 4.02666144e-02 -6.81465678e-03 5.10825515e-02\n 4.65674186e-03 -9.29583702e-03 -9.32274293e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAZ2HivcA9i7wK16M8OWoRPmb3sT0K16M8x1UZPkdxvT0K16M8toUUvly4fT0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUp3vvUJ4C77RRVg+AEsKPbu6CL4K16M8baUEPSr0yb0xVTQ+DULEvX4/+71rB0U9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAZ2HivcA9i7wK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAADlqET5m97E9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADHVRk+R3G9PQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAtoUUvly4fT0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.11053734 -0.01699722 0.02 ]\n [ 0.14200677 0.08689766 0.02 ]\n [ 0.14974128 0.09250122 0.02 ]\n [-0.14504132 0.0619434 0.02 ]]", "desired_goal": "[[-0.11699928 -0.13620093 0.21120383]\n [ 0.03376293 -0.13352482 0.02 ]\n [ 0.03238432 -0.09861024 0.17610623]\n [-0.09582911 -0.1226797 0.04810278]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.1053734e-01\n -1.6997218e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.4200677e-01\n 8.6897656e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.4974128e-01\n 9.2501216e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.4504132e-01\n 6.1943397e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CofBGJemeldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CofYgpKBd2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CofWN9H+ZPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CofdA1FYuCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CofUj1XeWOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CofsZ+H8CQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cofp/1HvtudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CofwnhsImgdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CofxSQPqcFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cofn+ERJ2/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cof+j9XLeRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cof6lMyrPudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CogBnNPgvUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cof4OyVv/BdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CogO0PH1e0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CogMm5lOGkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CogTd74SHudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CogKFrl/6PdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CogKdf9gnddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoghNXYDkmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CogfOyu6mPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CogmFFDv3KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CogdKoybhFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cog0JTl1bJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CogysjVx0ddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cog5tAcDKYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CogwivgWJrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CohGoXCTEBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CohEOeSSvDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CohLXRw6yTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CohCtxEORUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CohZopH7P6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CohXh/I8yOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CohetCAtnPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CohWuwgTysdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coht4fwI+odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cohsr433pOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cohzy57PY4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CohrJZOi35dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoiCQbdadMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coh+Pwd8zAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoiFH1OCXhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coh8NShrWRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoiTc1n/T9dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CoiT2SMcZMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoiSSgGr0bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoiZXeFcptdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoiQWHLzPKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoimpLVWjodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coiin58BuGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoipnYQJ5WdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coigj6N2kjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coi3MvAXVLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coiz/pt78fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coi68W0qpcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoiyAuRLbpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CojInzQNTcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CojFEDp1RtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CojMGIKtxNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CojDE4ecQRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CojacGTs6adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CojbkaVD8cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CojjPzvqkedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CojcDqOcUedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coj2RcmjTKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coj32LYPGydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coj/q1PWQPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coj4m3OObRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CokT371qWUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CokVWaDwpfdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CokV1Ng0CSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cokc6rmyPddX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CokdmLtNSJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CokV2tlqagdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CokxnTiKixdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cok10/fO2RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cok90XYUWVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cok20YsNDudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ColOGdqcmTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ColKg5imVJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ColRgXl8w6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ColIUd7v5QdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Colf6ePJaJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ColclRgqmTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ColjmLcbiqdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Colj62fChwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ColacoYvWZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ColxoDgZTAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coluk3Kji5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Col106xPfsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ColsQswtaqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ComDIw/PgOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Col/QkPczqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ComGazE74jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Col8rp7kXDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ComS2HUMG5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ComPOMl1KXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ComWbWd3B6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ComMxeC04SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0ComjCa7VawdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (819 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -45.0, "std_reward": 15.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-21T17:13:10.130633"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29c35662e1c3fd600328a89edb3ba69949ba28e015b0a58ea839dda2a25e0b14
|
3 |
+
size 3013
|