Update stats.md
Browse files
stats.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- 'no'
|
4 |
+
license: apache-2.0
|
5 |
+
base_model: NbAiLabBeta/nb-whisper-large
|
6 |
+
tags:
|
7 |
+
- audio
|
8 |
+
- asr
|
9 |
+
- automatic-speech-recognition
|
10 |
+
- hf-asr-leaderboard
|
11 |
+
model-index:
|
12 |
+
- name: nb-whisper-large-v0.8-vad3-verbatim
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information Keras had access to. You should
|
17 |
+
probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# nb-whisper-large-v0.8-vad3-verbatim
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [NbAiLabBeta/nb-whisper-large](https://huggingface.co/NbAiLabBeta/nb-whisper-large) on the NbAiLab/NPSC dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- step: 249
|
24 |
+
- validation_loss: 0.5839
|
25 |
+
- train_loss: 0.4632
|
26 |
+
- validation_wer: 7.9358
|
27 |
+
- validation_cer: 2.5127
|
28 |
+
- validation_exact_wer: 8.0494
|
29 |
+
- validation_exact_cer: 2.5279
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 7e-05
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- per_device_train_batch_size: 8
|
51 |
+
- total_train_batch_size_per_node: 32
|
52 |
+
- total_train_batch_size: 1024
|
53 |
+
- total_optimization_steps: 250
|
54 |
+
- starting_optimization_step: None
|
55 |
+
- finishing_optimization_step: 250
|
56 |
+
- num_train_dataset_workers: 32
|
57 |
+
- num_hosts: 32
|
58 |
+
- total_num_training_examples: 256,000
|
59 |
+
- steps_per_epoch: 97
|
60 |
+
- num_beams: None
|
61 |
+
- weight_decay: 0.01
|
62 |
+
- adam_beta1: 0.9
|
63 |
+
- adam_beta2: 0.98
|
64 |
+
- adam_epsilon: 1e-06
|
65 |
+
- dropout: True
|
66 |
+
- bpe_dropout_probability: 0.2
|
67 |
+
- activation_dropout_probability: 0.1
|
68 |
+
|
69 |
+
### Training results
|
70 |
+
|
71 |
+
| step | validation_loss | train_loss | validation_wer | validation_cer | validation_exact_wer | validation_exact_cer |
|
72 |
+
|:----:|:---------------:|:----------:|:--------------:|:--------------:|:--------------------:|:--------------------:|
|
73 |
+
| 0 | 1.2831 | 1.1864 | 18.9083 | 11.8409 | 33.9801 | 15.0322 |
|
74 |
+
| 40 | 0.5952 | 0.4958 | 8.9760 | 2.9212 | 9.1099 | 2.9390 |
|
75 |
+
| 80 | 0.5848 | 0.4761 | 8.3105 | 2.6432 | 8.4330 | 2.6621 |
|
76 |
+
| 120 | 0.5831 | 0.4492 | 8.1204 | 2.5679 | 8.2356 | 2.5821 |
|
77 |
+
| 160 | 0.5811 | 0.4678 | 7.9302 | 2.5051 | 8.0438 | 2.5193 |
|
78 |
+
| 200 | 0.5840 | 0.4692 | 7.9861 | 2.5346 | 8.0945 | 2.5498 |
|
79 |
+
| 240 | 0.5844 | 0.4543 | 7.9246 | 2.5051 | 8.0381 | 2.5193 |
|
80 |
+
| 249 | 0.5839 | 0.4632 | 7.9358 | 2.5127 | 8.0494 | 2.5279 |
|
81 |
+
|
82 |
+
|
83 |
+
### Framework versions
|
84 |
+
|
85 |
+
- Transformers 4.36.2
|
86 |
+
- Datasets 2.16.1
|
87 |
+
- Tokenizers 0.15.0
|