versae commited on
Commit
981dcc0
1 Parent(s): 49ef006

Training in progress, step 500

Browse files
Files changed (34) hide show
  1. .gitignore +1 -0
  2. added_tokens.json +1 -0
  3. config.json +107 -0
  4. preprocessor_config.json +9 -0
  5. pytorch_model.bin +3 -0
  6. runs/Feb01_15-07-52_dante/1643724498.3105586/events.out.tfevents.1643724498.dante.3248238.1 +3 -0
  7. runs/Feb01_15-07-52_dante/events.out.tfevents.1643724498.dante.3248238.0 +3 -0
  8. runs/Feb01_15-29-26_dante/1643725823.3776064/events.out.tfevents.1643725823.dante.3265625.1 +3 -0
  9. runs/Feb01_15-29-26_dante/events.out.tfevents.1643725823.dante.3265625.0 +3 -0
  10. special_tokens_map.json +1 -0
  11. tokenizer_config.json +1 -0
  12. training_args.bin +3 -0
  13. vocab.json +1 -0
  14. wandb/debug-internal.log +1 -0
  15. wandb/debug.log +1 -0
  16. wandb/latest-run +1 -0
  17. wandb/run-20220201_150818-33gv5m8t/files/code/run_speech_recognition_ctc.py +792 -0
  18. wandb/run-20220201_150818-33gv5m8t/files/config.yaml +659 -0
  19. wandb/run-20220201_150818-33gv5m8t/files/output.log +37 -0
  20. wandb/run-20220201_150818-33gv5m8t/files/requirements.txt +109 -0
  21. wandb/run-20220201_150818-33gv5m8t/files/wandb-metadata.json +65 -0
  22. wandb/run-20220201_150818-33gv5m8t/files/wandb-summary.json +1 -0
  23. wandb/run-20220201_150818-33gv5m8t/logs/debug-internal.log +154 -0
  24. wandb/run-20220201_150818-33gv5m8t/logs/debug.log +149 -0
  25. wandb/run-20220201_150818-33gv5m8t/run-33gv5m8t.wandb +0 -0
  26. wandb/run-20220201_153024-1w85vsuu/files/code/run_speech_recognition_ctc.py +792 -0
  27. wandb/run-20220201_153024-1w85vsuu/files/config.yaml +0 -0
  28. wandb/run-20220201_153024-1w85vsuu/files/output.log +719 -0
  29. wandb/run-20220201_153024-1w85vsuu/files/requirements.txt +111 -0
  30. wandb/run-20220201_153024-1w85vsuu/files/wandb-metadata.json +65 -0
  31. wandb/run-20220201_153024-1w85vsuu/files/wandb-summary.json +0 -0
  32. wandb/run-20220201_153024-1w85vsuu/logs/debug-internal.log +0 -0
  33. wandb/run-20220201_153024-1w85vsuu/logs/debug.log +24 -0
  34. wandb/run-20220201_153024-1w85vsuu/run-1w85vsuu.wandb +0 -0
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ checkpoint-*/
added_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"<s>": 32, "</s>": 33}
config.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-xls-r-1b",
3
+ "activation_dropout": 0.055,
4
+ "adapter_kernel_size": 3,
5
+ "adapter_stride": 2,
6
+ "add_adapter": false,
7
+ "apply_spec_augment": true,
8
+ "architectures": [
9
+ "Wav2Vec2ForCTC"
10
+ ],
11
+ "attention_dropout": 0.094,
12
+ "bos_token_id": 1,
13
+ "classifier_proj_size": 256,
14
+ "codevector_dim": 1024,
15
+ "contrastive_logits_temperature": 0.1,
16
+ "conv_bias": true,
17
+ "conv_dim": [
18
+ 512,
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512
25
+ ],
26
+ "conv_kernel": [
27
+ 10,
28
+ 3,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 2,
33
+ 2
34
+ ],
35
+ "conv_stride": [
36
+ 5,
37
+ 2,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2
43
+ ],
44
+ "ctc_loss_reduction": "mean",
45
+ "ctc_zero_infinity": false,
46
+ "diversity_loss_weight": 0.1,
47
+ "do_stable_layer_norm": true,
48
+ "eos_token_id": 2,
49
+ "feat_extract_activation": "gelu",
50
+ "feat_extract_dropout": 0.0,
51
+ "feat_extract_norm": "layer",
52
+ "feat_proj_dropout": 0.04,
53
+ "feat_quantizer_dropout": 0.0,
54
+ "final_dropout": 0.0,
55
+ "hidden_act": "gelu",
56
+ "hidden_dropout": 0.047,
57
+ "hidden_size": 1280,
58
+ "initializer_range": 0.02,
59
+ "intermediate_size": 5120,
60
+ "layer_norm_eps": 1e-05,
61
+ "layerdrop": 0.041,
62
+ "mask_feature_length": 64,
63
+ "mask_feature_min_masks": 0,
64
+ "mask_feature_prob": 0.25,
65
+ "mask_time_length": 10,
66
+ "mask_time_min_masks": 2,
67
+ "mask_time_prob": 0.082,
68
+ "model_type": "wav2vec2",
69
+ "num_adapter_layers": 3,
70
+ "num_attention_heads": 16,
71
+ "num_codevector_groups": 2,
72
+ "num_codevectors_per_group": 320,
73
+ "num_conv_pos_embedding_groups": 16,
74
+ "num_conv_pos_embeddings": 128,
75
+ "num_feat_extract_layers": 7,
76
+ "num_hidden_layers": 48,
77
+ "num_negatives": 100,
78
+ "output_hidden_size": 1280,
79
+ "pad_token_id": 31,
80
+ "proj_codevector_dim": 1024,
81
+ "tdnn_dilation": [
82
+ 1,
83
+ 2,
84
+ 3,
85
+ 1,
86
+ 1
87
+ ],
88
+ "tdnn_dim": [
89
+ 512,
90
+ 512,
91
+ 512,
92
+ 512,
93
+ 1500
94
+ ],
95
+ "tdnn_kernel": [
96
+ 5,
97
+ 3,
98
+ 3,
99
+ 1,
100
+ 1
101
+ ],
102
+ "torch_dtype": "float32",
103
+ "transformers_version": "4.17.0.dev0",
104
+ "use_weighted_layer_sum": false,
105
+ "vocab_size": 34,
106
+ "xvector_output_dim": 512
107
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0,
7
+ "return_attention_mask": true,
8
+ "sampling_rate": 16000
9
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3a50cfef1996549c158e0a99768454dc69a4c7f4bdf1f625c1d1fee88064e7c
3
+ size 3850486961
runs/Feb01_15-07-52_dante/1643724498.3105586/events.out.tfevents.1643724498.dante.3248238.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86820d076458d9b054fbff45756b316d5b7eed7f41f8d4d96de226101043c1e4
3
+ size 4753
runs/Feb01_15-07-52_dante/events.out.tfevents.1643724498.dante.3248238.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1a282dd4c21da84f125f45c2113d11dabd21b9ce46c7658c6d2fadfd52890ca
3
+ size 4699
runs/Feb01_15-29-26_dante/1643725823.3776064/events.out.tfevents.1643725823.dante.3265625.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47e69b92273023789a04af1852f35ecddd9313ebeea762742a29c8bdd9a7a4aa
3
+ size 4753
runs/Feb01_15-29-26_dante/events.out.tfevents.1643725823.dante.3265625.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:250ff7f76ef38c789f74a69c451d5fe3ac0c6318834efe8345cae5c33636f357
3
+ size 5799
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "./", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7d438783868ddc79586702c9970b9881ef3452e2773d6c176fd67f57a76ec00
3
+ size 3055
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"a": 1, "b": 2, "c": 3, "d": 4, "e": 5, "f": 6, "g": 7, "h": 8, "i": 9, "j": 10, "k": 11, "l": 12, "m": 13, "n": 14, "o": 15, "p": 16, "q": 17, "r": 18, "s": 19, "t": 20, "u": 21, "v": 22, "w": 23, "x": 24, "y": 25, "z": 26, "å": 27, "æ": 28, "ø": 29, "|": 0, "[UNK]": 30, "[PAD]": 31}
wandb/debug-internal.log ADDED
@@ -0,0 +1 @@
 
 
1
+ run-20220201_153024-1w85vsuu/logs/debug-internal.log
wandb/debug.log ADDED
@@ -0,0 +1 @@
 
 
1
+ run-20220201_153024-1w85vsuu/logs/debug.log
wandb/latest-run ADDED
@@ -0,0 +1 @@
 
 
1
+ run-20220201_153024-1w85vsuu
wandb/run-20220201_150818-33gv5m8t/files/code/run_speech_recognition_ctc.py ADDED
@@ -0,0 +1,792 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+
16
+ """ Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
17
+
18
+ import functools
19
+ import json
20
+ import logging
21
+ import os
22
+ import re
23
+ import sys
24
+ import warnings
25
+ from dataclasses import dataclass, field
26
+ from typing import Dict, List, Optional, Union
27
+
28
+ import datasets
29
+ import numpy as np
30
+ import torch
31
+ from datasets import DatasetDict, load_dataset, load_metric
32
+
33
+ import transformers
34
+ from transformers import (
35
+ AutoConfig,
36
+ AutoFeatureExtractor,
37
+ AutoModelForCTC,
38
+ AutoProcessor,
39
+ AutoTokenizer,
40
+ HfArgumentParser,
41
+ Trainer,
42
+ TrainingArguments,
43
+ Wav2Vec2Processor,
44
+ set_seed,
45
+ )
46
+ from transformers.trainer_utils import get_last_checkpoint, is_main_process
47
+ from transformers.utils import check_min_version
48
+ from transformers.utils.versions import require_version
49
+
50
+
51
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
52
+ check_min_version("4.16.0.dev0")
53
+
54
+ require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
55
+
56
+
57
+ logger = logging.getLogger(__name__)
58
+
59
+
60
+ def list_field(default=None, metadata=None):
61
+ return field(default_factory=lambda: default, metadata=metadata)
62
+
63
+
64
+ @dataclass
65
+ class ModelArguments:
66
+ """
67
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
68
+ """
69
+
70
+ model_name_or_path: str = field(
71
+ metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
72
+ )
73
+ tokenizer_name_or_path: Optional[str] = field(
74
+ default=None,
75
+ metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
76
+ )
77
+ cache_dir: Optional[str] = field(
78
+ default=None,
79
+ metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
80
+ )
81
+ freeze_feature_encoder: bool = field(
82
+ default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
83
+ )
84
+ attention_dropout: float = field(
85
+ default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
86
+ )
87
+ activation_dropout: float = field(
88
+ default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
89
+ )
90
+ feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
91
+ hidden_dropout: float = field(
92
+ default=0.0,
93
+ metadata={
94
+ "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
95
+ },
96
+ )
97
+ final_dropout: float = field(
98
+ default=0.0,
99
+ metadata={"help": "The dropout probability for the final projection layer."},
100
+ )
101
+ mask_time_prob: float = field(
102
+ default=0.05,
103
+ metadata={
104
+ "help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
105
+ "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
106
+ "vectors will be masked along the time axis."
107
+ },
108
+ )
109
+ mask_time_length: int = field(
110
+ default=10,
111
+ metadata={"help": "Length of vector span to mask along the time axis."},
112
+ )
113
+ mask_feature_prob: float = field(
114
+ default=0.0,
115
+ metadata={
116
+ "help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
117
+ "span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
118
+ },
119
+ )
120
+ mask_feature_length: int = field(
121
+ default=10,
122
+ metadata={"help": "Length of vector span to mask along the feature axis."},
123
+ )
124
+ layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
125
+ ctc_loss_reduction: Optional[str] = field(
126
+ default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
127
+ )
128
+ ctc_zero_infinity: Optional[bool] = field(
129
+ default=False, metadata={"help": "If True, will try yo aboud the CTC loss goinf to infinity."}
130
+ )
131
+
132
+ @dataclass
133
+ class DataTrainingArguments:
134
+ """
135
+ Arguments pertaining to what data we are going to input our model for training and eval.
136
+
137
+ Using `HfArgumentParser` we can turn this class
138
+ into argparse arguments to be able to specify them on
139
+ the command line.
140
+ """
141
+
142
+ dataset_name: str = field(
143
+ metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
144
+ )
145
+ dataset_config_name: str = field(
146
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
147
+ )
148
+ train_split_name: str = field(
149
+ default="train+validation",
150
+ metadata={
151
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
152
+ },
153
+ )
154
+ eval_split_name: str = field(
155
+ default="test",
156
+ metadata={
157
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
158
+ },
159
+ )
160
+ audio_column_name: str = field(
161
+ default="audio",
162
+ metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
163
+ )
164
+ text_column_name: str = field(
165
+ default="text",
166
+ metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
167
+ )
168
+ overwrite_cache: bool = field(
169
+ default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
170
+ )
171
+ preprocessing_num_workers: Optional[int] = field(
172
+ default=None,
173
+ metadata={"help": "The number of processes to use for the preprocessing."},
174
+ )
175
+ max_train_samples: Optional[int] = field(
176
+ default=None,
177
+ metadata={
178
+ "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
179
+ "value if set."
180
+ },
181
+ )
182
+ max_eval_samples: Optional[int] = field(
183
+ default=None,
184
+ metadata={
185
+ "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
186
+ "value if set."
187
+ },
188
+ )
189
+ chars_to_ignore: Optional[List[str]] = list_field(
190
+ default=None,
191
+ metadata={"help": "A list of characters to remove from the transcripts."},
192
+ )
193
+ eval_metrics: List[str] = list_field(
194
+ default=["wer"],
195
+ metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
196
+ )
197
+ max_duration_in_seconds: float = field(
198
+ default=20.0,
199
+ metadata={
200
+ "help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
201
+ },
202
+ )
203
+ min_duration_in_seconds: float = field(
204
+ default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
205
+ )
206
+ preprocessing_only: bool = field(
207
+ default=False,
208
+ metadata={
209
+ "help": "Whether to only do data preprocessing and skip training. "
210
+ "This is especially useful when data preprocessing errors out in distributed training due to timeout. "
211
+ "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
212
+ "so that the cached datasets can consequently be loaded in distributed training"
213
+ },
214
+ )
215
+ use_auth_token: bool = field(
216
+ default=False,
217
+ metadata={
218
+ "help": "If :obj:`True`, will use the token generated when running"
219
+ ":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
220
+ },
221
+ )
222
+ unk_token: str = field(
223
+ default="[UNK]",
224
+ metadata={"help": "The unk token for the tokenizer"},
225
+ )
226
+ pad_token: str = field(
227
+ default="[PAD]",
228
+ metadata={"help": "The padding token for the tokenizer"},
229
+ )
230
+ word_delimiter_token: str = field(
231
+ default="|",
232
+ metadata={"help": "The word delimiter token for the tokenizer"},
233
+ )
234
+ phoneme_language: Optional[str] = field(
235
+ default=None,
236
+ metadata={
237
+ "help": "The target language that should be used be"
238
+ " passed to the tokenizer for tokenization. Note that"
239
+ " this is only relevant if the model classifies the"
240
+ " input audio to a sequence of phoneme sequences."
241
+ },
242
+ )
243
+
244
+
245
+ @dataclass
246
+ class DataCollatorCTCWithPadding:
247
+ """
248
+ Data collator that will dynamically pad the inputs received.
249
+ Args:
250
+ processor (:class:`~transformers.AutoProcessor`)
251
+ The processor used for proccessing the data.
252
+ padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
253
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
254
+ among:
255
+ * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
256
+ sequence if provided).
257
+ * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
258
+ maximum acceptable input length for the model if that argument is not provided.
259
+ * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
260
+ different lengths).
261
+ max_length (:obj:`int`, `optional`):
262
+ Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
263
+ max_length_labels (:obj:`int`, `optional`):
264
+ Maximum length of the ``labels`` returned list and optionally padding length (see above).
265
+ pad_to_multiple_of (:obj:`int`, `optional`):
266
+ If set will pad the sequence to a multiple of the provided value.
267
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
268
+ 7.5 (Volta).
269
+ """
270
+
271
+ processor: AutoProcessor
272
+ padding: Union[bool, str] = "longest"
273
+ pad_to_multiple_of: Optional[int] = None
274
+ pad_to_multiple_of_labels: Optional[int] = None
275
+
276
+ def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
277
+ # split inputs and labels since they have to be of different lenghts and need
278
+ # different padding methods
279
+ input_features = [{"input_values": feature["input_values"]} for feature in features]
280
+ label_features = [{"input_ids": feature["labels"]} for feature in features]
281
+
282
+ batch = self.processor.pad(
283
+ input_features,
284
+ padding=self.padding,
285
+ pad_to_multiple_of=self.pad_to_multiple_of,
286
+ return_tensors="pt",
287
+ )
288
+
289
+ with self.processor.as_target_processor():
290
+ labels_batch = self.processor.pad(
291
+ label_features,
292
+ padding=self.padding,
293
+ pad_to_multiple_of=self.pad_to_multiple_of_labels,
294
+ return_tensors="pt",
295
+ )
296
+
297
+ # replace padding with -100 to ignore loss correctly
298
+ labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
299
+
300
+ batch["labels"] = labels
301
+
302
+ return batch
303
+
304
+
305
+ def create_vocabulary_from_data(
306
+ datasets: DatasetDict,
307
+ word_delimiter_token: Optional[str] = None,
308
+ unk_token: Optional[str] = None,
309
+ pad_token: Optional[str] = None,
310
+ ):
311
+ # Given training and test labels create vocabulary
312
+ def extract_all_chars(batch):
313
+ all_text = " ".join(batch["target_text"])
314
+ vocab = list(set(all_text))
315
+ return {"vocab": [vocab], "all_text": [all_text]}
316
+
317
+ vocabs = datasets.map(
318
+ extract_all_chars,
319
+ batched=True,
320
+ batch_size=-1,
321
+ keep_in_memory=True,
322
+ remove_columns=datasets["train"].column_names,
323
+ )
324
+
325
+ # take union of all unique characters in each dataset
326
+ vocab_set = functools.reduce(
327
+ lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
328
+ )
329
+
330
+ vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
331
+
332
+ # replace white space with delimiter token
333
+ if word_delimiter_token is not None:
334
+ vocab_dict[word_delimiter_token] = vocab_dict[" "]
335
+ del vocab_dict[" "]
336
+
337
+ # add unk and pad token
338
+ if unk_token is not None:
339
+ vocab_dict[unk_token] = len(vocab_dict)
340
+
341
+ if pad_token is not None:
342
+ vocab_dict[pad_token] = len(vocab_dict)
343
+
344
+ return vocab_dict
345
+
346
+
347
+ def main():
348
+ # See all possible arguments in src/transformers/training_args.py
349
+ # or by passing the --help flag to this script.
350
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
351
+
352
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
353
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
354
+ # If we pass only one argument to the script and it's the path to a json file,
355
+ # let's parse it to get our arguments.
356
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
357
+ else:
358
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
359
+
360
+ # Detecting last checkpoint.
361
+ last_checkpoint = None
362
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
363
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
364
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
365
+ raise ValueError(
366
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
367
+ "Use --overwrite_output_dir to overcome."
368
+ )
369
+ elif last_checkpoint is not None:
370
+ logger.info(
371
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
372
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
373
+ )
374
+
375
+ # Setup logging
376
+ logging.basicConfig(
377
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
378
+ datefmt="%m/%d/%Y %H:%M:%S",
379
+ handlers=[logging.StreamHandler(sys.stdout)],
380
+ )
381
+ logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
382
+
383
+ # Log on each process the small summary:
384
+ logger.warning(
385
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
386
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
387
+ )
388
+ # Set the verbosity to info of the Transformers logger (on main process only):
389
+ if is_main_process(training_args.local_rank):
390
+ transformers.utils.logging.set_verbosity_info()
391
+ logger.info("Training/evaluation parameters %s", training_args)
392
+
393
+ # Set seed before initializing model.
394
+ set_seed(training_args.seed)
395
+
396
+ # Pre-processing dataset
397
+ import re
398
+ def filter_numeric(entry):
399
+ return (
400
+ "0" not in entry["text"]
401
+ and "1" not in entry["text"]
402
+ and "2" not in entry["text"]
403
+ and "3" not in entry["text"]
404
+ and "4" not in entry["text"]
405
+ and "5" not in entry["text"]
406
+ and "6" not in entry["text"]
407
+ and "7" not in entry["text"]
408
+ and "8" not in entry["text"]
409
+ and "9" not in entry["text"]
410
+ )
411
+
412
+ def filter_inaudible(entry):
413
+ return not re.search("\d|<inaudible>", entry["text"], flags=re.IGNORECASE)
414
+
415
+ def filter_nynorsk(entry):
416
+ return re.search("nb-no", entry["sentence_language_code"], flags=re.IGNORECASE)
417
+
418
+ def filter_tooshort(entry):
419
+ #print(f"The audio sample ({entry["audio"]["path"]}) is too small, and has been omitted. "
420
+ return (len(entry["text"]) <= len(entry["audio"]["array"]) // 320) and (len(entry["text"].strip()) >= 3)
421
+
422
+ def map_dataset(entry):
423
+ batch = {"text": entry["text"].lower()}
424
+ batch["text"] = re.sub('[áàâ]', 'a', batch["text"])
425
+ batch["text"] = re.sub('[ä]', 'æ', batch["text"])
426
+ batch["text"] = re.sub('[éèëê]', 'e', batch["text"])
427
+ batch["text"] = re.sub('[íìïî]', 'i', batch["text"])
428
+ batch["text"] = re.sub('[óòöô]', 'o', batch["text"])
429
+ batch["text"] = re.sub('[ö]', 'ø', batch["text"])
430
+ batch["text"] = re.sub('[ç]', 'c', batch["text"])
431
+ batch["text"] = re.sub('[úùüû]', 'u', batch["text"])
432
+ batch["text"] = re.sub('\s', ' ', batch["text"])
433
+ batch["text"] = re.sub('<ee>', 'eee', batch["text"])
434
+ batch["text"] = re.sub('<qq>', 'qqq', batch["text"])
435
+ batch["text"] = re.sub('<mm>', 'mmm', batch["text"])
436
+ # batch["text"] = re.sub('<inaudible>', '?', batch["text"])
437
+ if "<" in batch["text"]:
438
+ raise ValueError(batch["text"])
439
+ return batch
440
+
441
+ # 1. First, let's load the dataset
442
+ raw_datasets = DatasetDict()
443
+
444
+ if training_args.do_train:
445
+ raw_datasets["train"] = load_dataset(
446
+ data_args.dataset_name,
447
+ data_args.dataset_config_name,
448
+ split=data_args.train_split_name,
449
+ use_auth_token=data_args.use_auth_token,
450
+ )
451
+ raw_datasets["train"] = raw_datasets["train"].filter(filter_numeric).filter(filter_inaudible).filter(filter_nynorsk).filter(filter_tooshort)
452
+ raw_datasets["train"] = raw_datasets["train"].map(map_dataset)
453
+
454
+ if data_args.audio_column_name not in raw_datasets["train"].column_names:
455
+ raise ValueError(
456
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
457
+ "Make sure to set `--audio_column_name` to the correct audio column - one of "
458
+ f"{', '.join(raw_datasets['train'].column_names)}."
459
+ )
460
+
461
+ if data_args.text_column_name not in raw_datasets["train"].column_names:
462
+ raise ValueError(
463
+ f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
464
+ "Make sure to set `--text_column_name` to the correct text column - one of "
465
+ f"{', '.join(raw_datasets['train'].column_names)}."
466
+ )
467
+
468
+ if data_args.max_train_samples is not None:
469
+ raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
470
+
471
+ if training_args.do_eval:
472
+ raw_datasets["eval"] = load_dataset(
473
+ data_args.dataset_name,
474
+ data_args.dataset_config_name,
475
+ split=data_args.eval_split_name,
476
+ use_auth_token=data_args.use_auth_token,
477
+ )
478
+ raw_datasets["eval"] = raw_datasets["eval"].filter(filter_numeric).filter(filter_inaudible).filter(filter_nynorsk).filter(filter_tooshort)
479
+ raw_datasets["eval"] = raw_datasets["eval"].map(map_dataset)
480
+
481
+ if data_args.max_eval_samples is not None:
482
+ raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
483
+
484
+
485
+ # 2. We remove some special characters from the datasets
486
+ # that make training complicated and do not help in transcribing the speech
487
+ # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
488
+ # that could be easily picked up by the model
489
+ #chars_to_ignore_regex = (
490
+ # f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
491
+ #)
492
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\–\_\\\+\#\/]'
493
+
494
+ text_column_name = data_args.text_column_name
495
+
496
+ def remove_special_characters(batch):
497
+ if chars_to_ignore_regex is not None:
498
+ batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
499
+ else:
500
+ batch["target_text"] = batch[text_column_name].lower() + " "
501
+ return batch
502
+
503
+ with training_args.main_process_first(desc="dataset map special characters removal"):
504
+ raw_datasets = raw_datasets.map(
505
+ remove_special_characters,
506
+ remove_columns=[text_column_name],
507
+ desc="remove special characters from datasets",
508
+ )
509
+
510
+ # save special tokens for tokenizer
511
+ word_delimiter_token = data_args.word_delimiter_token
512
+ unk_token = data_args.unk_token
513
+ pad_token = data_args.pad_token
514
+
515
+ # 3. Next, let's load the config as we might need it to create
516
+ # the tokenizer
517
+ # load config
518
+ config = AutoConfig.from_pretrained(
519
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
520
+ )
521
+
522
+ # 4. Next, if no tokenizer file is defined,
523
+ # we create the vocabulary of the model by extracting all unique characters from
524
+ # the training and evaluation datasets
525
+ # We need to make sure that only first rank saves vocabulary
526
+ # make sure all processes wait until vocab is created
527
+ tokenizer_name_or_path = model_args.tokenizer_name_or_path
528
+ tokenizer_kwargs = {}
529
+ if tokenizer_name_or_path is None:
530
+ # save vocab in training output dir
531
+ tokenizer_name_or_path = training_args.output_dir
532
+
533
+ vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
534
+
535
+ with training_args.main_process_first():
536
+ if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
537
+ os.remove(vocab_file)
538
+
539
+ with training_args.main_process_first(desc="dataset map vocabulary creation"):
540
+ if not os.path.isfile(vocab_file):
541
+ os.makedirs(tokenizer_name_or_path, exist_ok=True)
542
+ vocab_dict = create_vocabulary_from_data(
543
+ raw_datasets,
544
+ word_delimiter_token=word_delimiter_token,
545
+ unk_token=unk_token,
546
+ pad_token=pad_token,
547
+ )
548
+
549
+ # save vocab dict to be loaded into tokenizer
550
+ with open(vocab_file, "w") as file:
551
+ json.dump(vocab_dict, file)
552
+
553
+ # if tokenizer has just been created
554
+ # it is defined by `tokenizer_class` if present in config else by `model_type`
555
+ tokenizer_kwargs = {
556
+ "config": config if config.tokenizer_class is not None else None,
557
+ "tokenizer_type": config.model_type if config.tokenizer_class is None else None,
558
+ "unk_token": unk_token,
559
+ "pad_token": pad_token,
560
+ "word_delimiter_token": word_delimiter_token,
561
+ }
562
+
563
+ # 5. Now we can instantiate the feature extractor, tokenizer and model
564
+ # Note for distributed training, the .from_pretrained methods guarantee that only
565
+ # one local process can concurrently download model & vocab.
566
+
567
+ # load feature_extractor and tokenizer
568
+ tokenizer = AutoTokenizer.from_pretrained(
569
+ tokenizer_name_or_path,
570
+ use_auth_token=data_args.use_auth_token,
571
+ **tokenizer_kwargs,
572
+ )
573
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
574
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
575
+ )
576
+
577
+ # adapt config
578
+ config.update(
579
+ {
580
+ "feat_proj_dropout": model_args.feat_proj_dropout,
581
+ "attention_dropout": model_args.attention_dropout,
582
+ "hidden_dropout": model_args.hidden_dropout,
583
+ "final_dropout": model_args.final_dropout,
584
+ "mask_time_prob": model_args.mask_time_prob,
585
+ "mask_time_length": model_args.mask_time_length,
586
+ "mask_feature_prob": model_args.mask_feature_prob,
587
+ "mask_feature_length": model_args.mask_feature_length,
588
+ "gradient_checkpointing": training_args.gradient_checkpointing,
589
+ "layerdrop": model_args.layerdrop,
590
+ "ctc_loss_reduction": model_args.ctc_loss_reduction,
591
+ "ctc_zero_infinity": model_args.ctc_zero_infinity,
592
+ "pad_token_id": tokenizer.pad_token_id,
593
+ "vocab_size": len(tokenizer),
594
+ "activation_dropout": model_args.activation_dropout,
595
+ }
596
+ )
597
+
598
+ # create model
599
+ model = AutoModelForCTC.from_pretrained(
600
+ model_args.model_name_or_path,
601
+ cache_dir=model_args.cache_dir,
602
+ config=config,
603
+ use_auth_token=data_args.use_auth_token,
604
+ )
605
+
606
+ # freeze encoder
607
+ if model_args.freeze_feature_encoder:
608
+ model.freeze_feature_encoder()
609
+
610
+ # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
611
+ # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
612
+ # so that we just need to set the correct target sampling rate and normalize the input
613
+ # via the `feature_extractor`
614
+
615
+ # make sure that dataset decodes audio with correct sampling rate
616
+ dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
617
+ if dataset_sampling_rate != feature_extractor.sampling_rate:
618
+ raw_datasets = raw_datasets.cast_column(
619
+ data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
620
+ )
621
+
622
+ # derive max & min input length for sample rate & max duration
623
+ max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
624
+ min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
625
+ audio_column_name = data_args.audio_column_name
626
+ num_workers = data_args.preprocessing_num_workers
627
+
628
+ # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
629
+ phoneme_language = data_args.phoneme_language
630
+
631
+ # Preprocessing the datasets.
632
+ # We need to read the audio files as arrays and tokenize the targets.
633
+ def prepare_dataset(batch):
634
+ # load audio
635
+ sample = batch[audio_column_name]
636
+
637
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
638
+ batch["input_values"] = inputs.input_values[0]
639
+ batch["input_length"] = len(batch["input_values"])
640
+
641
+ # encode targets
642
+ additional_kwargs = {}
643
+ if phoneme_language is not None:
644
+ additional_kwargs["phonemizer_lang"] = phoneme_language
645
+
646
+ batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
647
+ return batch
648
+
649
+ with training_args.main_process_first(desc="dataset map preprocessing"):
650
+ vectorized_datasets = raw_datasets.map(
651
+ prepare_dataset,
652
+ remove_columns=next(iter(raw_datasets.values())).column_names,
653
+ num_proc=num_workers,
654
+ desc="preprocess datasets",
655
+ )
656
+
657
+ def is_audio_in_length_range(length):
658
+ return length > min_input_length and length < max_input_length
659
+
660
+ # filter data that is shorter than min_input_length
661
+ vectorized_datasets = vectorized_datasets.filter(
662
+ is_audio_in_length_range,
663
+ num_proc=num_workers,
664
+ input_columns=["input_length"],
665
+ )
666
+
667
+ # 7. Next, we can prepare the training.
668
+ # Let's use word error rate (WER) as our evaluation metric,
669
+ # instantiate a data collator and the trainer
670
+
671
+ # Define evaluation metrics during training, *i.e.* word error rate, character error rate
672
+ eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
673
+
674
+ # for large datasets it is advised to run the preprocessing on a
675
+ # single machine first with ``args.preprocessing_only`` since there will mostly likely
676
+ # be a timeout when running the script in distributed mode.
677
+ # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
678
+ # cached dataset
679
+ if data_args.preprocessing_only:
680
+ logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
681
+ return
682
+
683
+ def compute_metrics(pred):
684
+ pred_logits = pred.predictions
685
+ pred_ids = np.argmax(pred_logits, axis=-1)
686
+
687
+ pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
688
+
689
+ pred_str = tokenizer.batch_decode(pred_ids)
690
+ # we do not want to group tokens when computing the metrics
691
+ label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
692
+
693
+ metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
694
+
695
+ return metrics
696
+
697
+ # Now save everything to be able to create a single processor later
698
+ if is_main_process(training_args.local_rank):
699
+ # save feature extractor, tokenizer and config
700
+ feature_extractor.save_pretrained(training_args.output_dir)
701
+ tokenizer.save_pretrained(training_args.output_dir)
702
+ config.save_pretrained(training_args.output_dir)
703
+
704
+ try:
705
+ processor = AutoProcessor.from_pretrained(training_args.output_dir)
706
+ except (OSError, KeyError):
707
+ warnings.warn(
708
+ "Loading a processor from a feature extractor config that does not"
709
+ " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
710
+ " attribute to your `preprocessor_config.json` file to suppress this warning: "
711
+ " `'processor_class': 'Wav2Vec2Processor'`",
712
+ FutureWarning,
713
+ )
714
+ processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
715
+
716
+ # Instantiate custom data collator
717
+ data_collator = DataCollatorCTCWithPadding(processor=processor)
718
+
719
+ # Initialize Trainer
720
+ trainer = Trainer(
721
+ model=model,
722
+ data_collator=data_collator,
723
+ args=training_args,
724
+ compute_metrics=compute_metrics,
725
+ train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
726
+ eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
727
+ tokenizer=feature_extractor,
728
+ )
729
+
730
+ # 8. Finally, we can start training
731
+
732
+ # Training
733
+ if training_args.do_train:
734
+
735
+ # use last checkpoint if exist
736
+ if last_checkpoint is not None:
737
+ checkpoint = last_checkpoint
738
+ elif os.path.isdir(model_args.model_name_or_path):
739
+ checkpoint = model_args.model_name_or_path
740
+ else:
741
+ checkpoint = None
742
+
743
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
744
+ trainer.save_model()
745
+
746
+ metrics = train_result.metrics
747
+ max_train_samples = (
748
+ data_args.max_train_samples
749
+ if data_args.max_train_samples is not None
750
+ else len(vectorized_datasets["train"])
751
+ )
752
+ metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
753
+
754
+ trainer.log_metrics("train", metrics)
755
+ trainer.save_metrics("train", metrics)
756
+ trainer.save_state()
757
+
758
+ # Evaluation
759
+ results = {}
760
+ if training_args.do_eval:
761
+ logger.info("*** Evaluate ***")
762
+ metrics = trainer.evaluate()
763
+ max_eval_samples = (
764
+ data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
765
+ )
766
+ metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
767
+
768
+ trainer.log_metrics("eval", metrics)
769
+ trainer.save_metrics("eval", metrics)
770
+
771
+ # Write model card and (optionally) push to hub
772
+ config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
773
+ kwargs = {
774
+ "finetuned_from": model_args.model_name_or_path,
775
+ "tasks": "speech-recognition",
776
+ "tags": ["automatic-speech-recognition", data_args.dataset_name],
777
+ "dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
778
+ "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
779
+ }
780
+ if "common_voice" in data_args.dataset_name:
781
+ kwargs["language"] = config_name
782
+
783
+ if training_args.push_to_hub:
784
+ trainer.push_to_hub(**kwargs)
785
+ else:
786
+ trainer.create_model_card(**kwargs)
787
+
788
+ return results
789
+
790
+
791
+ if __name__ == "__main__":
792
+ main()
wandb/run-20220201_150818-33gv5m8t/files/config.yaml ADDED
@@ -0,0 +1,659 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ wandb_version: 1
2
+
3
+ _n_gpu:
4
+ desc: null
5
+ value: 1
6
+ _name_or_path:
7
+ desc: null
8
+ value: facebook/wav2vec2-xls-r-1b
9
+ _wandb:
10
+ desc: null
11
+ value:
12
+ cli_version: 0.12.9
13
+ code_path: code/run_speech_recognition_ctc.py
14
+ framework: huggingface
15
+ huggingface_version: 4.17.0.dev0
16
+ is_jupyter_run: false
17
+ is_kaggle_kernel: false
18
+ m:
19
+ - 1: train/global_step
20
+ 6:
21
+ - 3
22
+ python_version: 3.9.7
23
+ start_time: 1643724498
24
+ t:
25
+ 1:
26
+ - 1
27
+ - 2
28
+ - 3
29
+ - 5
30
+ - 11
31
+ 2:
32
+ - 1
33
+ - 2
34
+ - 3
35
+ - 5
36
+ - 11
37
+ 3:
38
+ - 1
39
+ - 7
40
+ - 13
41
+ 4: 3.9.7
42
+ 5: 0.12.9
43
+ 6: 4.17.0.dev0
44
+ 8:
45
+ - 5
46
+ activation_dropout:
47
+ desc: null
48
+ value: 0.055
49
+ adafactor:
50
+ desc: null
51
+ value: false
52
+ adam_beta1:
53
+ desc: null
54
+ value: 0.9
55
+ adam_beta2:
56
+ desc: null
57
+ value: 0.999
58
+ adam_epsilon:
59
+ desc: null
60
+ value: 1.0e-08
61
+ adapter_kernel_size:
62
+ desc: null
63
+ value: 3
64
+ adapter_stride:
65
+ desc: null
66
+ value: 2
67
+ add_adapter:
68
+ desc: null
69
+ value: false
70
+ add_cross_attention:
71
+ desc: null
72
+ value: false
73
+ apply_spec_augment:
74
+ desc: null
75
+ value: true
76
+ architectures:
77
+ desc: null
78
+ value:
79
+ - Wav2Vec2ForPreTraining
80
+ attention_dropout:
81
+ desc: null
82
+ value: 0.094
83
+ bad_words_ids:
84
+ desc: null
85
+ value: null
86
+ bf16:
87
+ desc: null
88
+ value: false
89
+ bf16_full_eval:
90
+ desc: null
91
+ value: false
92
+ bos_token_id:
93
+ desc: null
94
+ value: 1
95
+ chunk_size_feed_forward:
96
+ desc: null
97
+ value: 0
98
+ classifier_proj_size:
99
+ desc: null
100
+ value: 256
101
+ codevector_dim:
102
+ desc: null
103
+ value: 1024
104
+ contrastive_logits_temperature:
105
+ desc: null
106
+ value: 0.1
107
+ conv_bias:
108
+ desc: null
109
+ value: true
110
+ conv_dim:
111
+ desc: null
112
+ value:
113
+ - 512
114
+ - 512
115
+ - 512
116
+ - 512
117
+ - 512
118
+ - 512
119
+ - 512
120
+ conv_kernel:
121
+ desc: null
122
+ value:
123
+ - 10
124
+ - 3
125
+ - 3
126
+ - 3
127
+ - 3
128
+ - 2
129
+ - 2
130
+ conv_stride:
131
+ desc: null
132
+ value:
133
+ - 5
134
+ - 2
135
+ - 2
136
+ - 2
137
+ - 2
138
+ - 2
139
+ - 2
140
+ cross_attention_hidden_size:
141
+ desc: null
142
+ value: null
143
+ ctc_loss_reduction:
144
+ desc: null
145
+ value: mean
146
+ ctc_zero_infinity:
147
+ desc: null
148
+ value: false
149
+ dataloader_drop_last:
150
+ desc: null
151
+ value: false
152
+ dataloader_num_workers:
153
+ desc: null
154
+ value: 0
155
+ dataloader_pin_memory:
156
+ desc: null
157
+ value: true
158
+ ddp_bucket_cap_mb:
159
+ desc: null
160
+ value: None
161
+ ddp_find_unused_parameters:
162
+ desc: null
163
+ value: None
164
+ debug:
165
+ desc: null
166
+ value: '[]'
167
+ decoder_start_token_id:
168
+ desc: null
169
+ value: null
170
+ deepspeed:
171
+ desc: null
172
+ value: None
173
+ disable_tqdm:
174
+ desc: null
175
+ value: false
176
+ diversity_loss_weight:
177
+ desc: null
178
+ value: 0.1
179
+ diversity_penalty:
180
+ desc: null
181
+ value: 0.0
182
+ do_eval:
183
+ desc: null
184
+ value: true
185
+ do_predict:
186
+ desc: null
187
+ value: false
188
+ do_sample:
189
+ desc: null
190
+ value: false
191
+ do_stable_layer_norm:
192
+ desc: null
193
+ value: true
194
+ do_train:
195
+ desc: null
196
+ value: true
197
+ early_stopping:
198
+ desc: null
199
+ value: false
200
+ encoder_no_repeat_ngram_size:
201
+ desc: null
202
+ value: 0
203
+ eos_token_id:
204
+ desc: null
205
+ value: 2
206
+ eval_accumulation_steps:
207
+ desc: null
208
+ value: None
209
+ eval_batch_size:
210
+ desc: null
211
+ value: 16
212
+ eval_steps:
213
+ desc: null
214
+ value: 500
215
+ evaluation_strategy:
216
+ desc: null
217
+ value: steps
218
+ feat_extract_activation:
219
+ desc: null
220
+ value: gelu
221
+ feat_extract_dropout:
222
+ desc: null
223
+ value: 0.0
224
+ feat_extract_norm:
225
+ desc: null
226
+ value: layer
227
+ feat_proj_dropout:
228
+ desc: null
229
+ value: 0.04
230
+ feat_quantizer_dropout:
231
+ desc: null
232
+ value: 0.0
233
+ final_dropout:
234
+ desc: null
235
+ value: 0.0
236
+ finetuning_task:
237
+ desc: null
238
+ value: null
239
+ forced_bos_token_id:
240
+ desc: null
241
+ value: null
242
+ forced_eos_token_id:
243
+ desc: null
244
+ value: null
245
+ fp16:
246
+ desc: null
247
+ value: true
248
+ fp16_backend:
249
+ desc: null
250
+ value: auto
251
+ fp16_full_eval:
252
+ desc: null
253
+ value: false
254
+ fp16_opt_level:
255
+ desc: null
256
+ value: O1
257
+ gradient_accumulation_steps:
258
+ desc: null
259
+ value: 2
260
+ gradient_checkpointing:
261
+ desc: null
262
+ value: true
263
+ greater_is_better:
264
+ desc: null
265
+ value: None
266
+ group_by_length:
267
+ desc: null
268
+ value: true
269
+ half_precision_backend:
270
+ desc: null
271
+ value: amp
272
+ hidden_act:
273
+ desc: null
274
+ value: gelu
275
+ hidden_dropout:
276
+ desc: null
277
+ value: 0.047
278
+ hidden_size:
279
+ desc: null
280
+ value: 1280
281
+ hub_model_id:
282
+ desc: null
283
+ value: NbAiLab/wav2vec2-xls-r-1b-npsc
284
+ hub_strategy:
285
+ desc: null
286
+ value: every_save
287
+ hub_token:
288
+ desc: null
289
+ value: <HUB_TOKEN>
290
+ id2label:
291
+ desc: null
292
+ value:
293
+ '0': LABEL_0
294
+ '1': LABEL_1
295
+ ignore_data_skip:
296
+ desc: null
297
+ value: false
298
+ initializer_range:
299
+ desc: null
300
+ value: 0.02
301
+ intermediate_size:
302
+ desc: null
303
+ value: 5120
304
+ is_decoder:
305
+ desc: null
306
+ value: false
307
+ is_encoder_decoder:
308
+ desc: null
309
+ value: false
310
+ label2id:
311
+ desc: null
312
+ value:
313
+ LABEL_0: 0
314
+ LABEL_1: 1
315
+ label_names:
316
+ desc: null
317
+ value: None
318
+ label_smoothing_factor:
319
+ desc: null
320
+ value: 0.0
321
+ layer_norm_eps:
322
+ desc: null
323
+ value: 1.0e-05
324
+ layerdrop:
325
+ desc: null
326
+ value: 0.041
327
+ learning_rate:
328
+ desc: null
329
+ value: 0.0001
330
+ length_column_name:
331
+ desc: null
332
+ value: input_length
333
+ length_penalty:
334
+ desc: null
335
+ value: 1.0
336
+ load_best_model_at_end:
337
+ desc: null
338
+ value: false
339
+ local_rank:
340
+ desc: null
341
+ value: -1
342
+ log_level:
343
+ desc: null
344
+ value: -1
345
+ log_level_replica:
346
+ desc: null
347
+ value: -1
348
+ log_on_each_node:
349
+ desc: null
350
+ value: true
351
+ logging_dir:
352
+ desc: null
353
+ value: ./runs/Feb01_15-07-52_dante
354
+ logging_first_step:
355
+ desc: null
356
+ value: false
357
+ logging_nan_inf_filter:
358
+ desc: null
359
+ value: true
360
+ logging_steps:
361
+ desc: null
362
+ value: 100
363
+ logging_strategy:
364
+ desc: null
365
+ value: steps
366
+ lr_scheduler_type:
367
+ desc: null
368
+ value: linear
369
+ mask_feature_length:
370
+ desc: null
371
+ value: 64
372
+ mask_feature_min_masks:
373
+ desc: null
374
+ value: 0
375
+ mask_feature_prob:
376
+ desc: null
377
+ value: 0.25
378
+ mask_time_length:
379
+ desc: null
380
+ value: 10
381
+ mask_time_min_masks:
382
+ desc: null
383
+ value: 2
384
+ mask_time_prob:
385
+ desc: null
386
+ value: 0.082
387
+ max_grad_norm:
388
+ desc: null
389
+ value: 1.0
390
+ max_length:
391
+ desc: null
392
+ value: 20
393
+ max_steps:
394
+ desc: null
395
+ value: -1
396
+ metric_for_best_model:
397
+ desc: null
398
+ value: None
399
+ min_length:
400
+ desc: null
401
+ value: 0
402
+ model_type:
403
+ desc: null
404
+ value: wav2vec2
405
+ mp_parameters:
406
+ desc: null
407
+ value: ''
408
+ no_cuda:
409
+ desc: null
410
+ value: false
411
+ no_repeat_ngram_size:
412
+ desc: null
413
+ value: 0
414
+ num_adapter_layers:
415
+ desc: null
416
+ value: 3
417
+ num_attention_heads:
418
+ desc: null
419
+ value: 16
420
+ num_beam_groups:
421
+ desc: null
422
+ value: 1
423
+ num_beams:
424
+ desc: null
425
+ value: 1
426
+ num_codevector_groups:
427
+ desc: null
428
+ value: 2
429
+ num_codevectors_per_group:
430
+ desc: null
431
+ value: 320
432
+ num_conv_pos_embedding_groups:
433
+ desc: null
434
+ value: 16
435
+ num_conv_pos_embeddings:
436
+ desc: null
437
+ value: 128
438
+ num_feat_extract_layers:
439
+ desc: null
440
+ value: 7
441
+ num_hidden_layers:
442
+ desc: null
443
+ value: 48
444
+ num_negatives:
445
+ desc: null
446
+ value: 100
447
+ num_return_sequences:
448
+ desc: null
449
+ value: 1
450
+ num_train_epochs:
451
+ desc: null
452
+ value: 15.0
453
+ optim:
454
+ desc: null
455
+ value: adamw_hf
456
+ output_attentions:
457
+ desc: null
458
+ value: false
459
+ output_dir:
460
+ desc: null
461
+ value: ./
462
+ output_hidden_size:
463
+ desc: null
464
+ value: 1280
465
+ output_hidden_states:
466
+ desc: null
467
+ value: false
468
+ output_scores:
469
+ desc: null
470
+ value: false
471
+ overwrite_output_dir:
472
+ desc: null
473
+ value: true
474
+ pad_token_id:
475
+ desc: null
476
+ value: 31
477
+ past_index:
478
+ desc: null
479
+ value: -1
480
+ per_device_eval_batch_size:
481
+ desc: null
482
+ value: 16
483
+ per_device_train_batch_size:
484
+ desc: null
485
+ value: 16
486
+ per_gpu_eval_batch_size:
487
+ desc: null
488
+ value: None
489
+ per_gpu_train_batch_size:
490
+ desc: null
491
+ value: None
492
+ prediction_loss_only:
493
+ desc: null
494
+ value: false
495
+ prefix:
496
+ desc: null
497
+ value: null
498
+ problem_type:
499
+ desc: null
500
+ value: null
501
+ proj_codevector_dim:
502
+ desc: null
503
+ value: 1024
504
+ pruned_heads:
505
+ desc: null
506
+ value: {}
507
+ push_to_hub:
508
+ desc: null
509
+ value: true
510
+ push_to_hub_model_id:
511
+ desc: null
512
+ value: None
513
+ push_to_hub_organization:
514
+ desc: null
515
+ value: None
516
+ push_to_hub_token:
517
+ desc: null
518
+ value: <PUSH_TO_HUB_TOKEN>
519
+ remove_invalid_values:
520
+ desc: null
521
+ value: false
522
+ remove_unused_columns:
523
+ desc: null
524
+ value: true
525
+ repetition_penalty:
526
+ desc: null
527
+ value: 1.0
528
+ report_to:
529
+ desc: null
530
+ value: '[''tensorboard'', ''wandb'']'
531
+ resume_from_checkpoint:
532
+ desc: null
533
+ value: None
534
+ return_dict:
535
+ desc: null
536
+ value: true
537
+ return_dict_in_generate:
538
+ desc: null
539
+ value: false
540
+ run_name:
541
+ desc: null
542
+ value: ./
543
+ save_on_each_node:
544
+ desc: null
545
+ value: false
546
+ save_steps:
547
+ desc: null
548
+ value: 500
549
+ save_strategy:
550
+ desc: null
551
+ value: steps
552
+ save_total_limit:
553
+ desc: null
554
+ value: 3
555
+ seed:
556
+ desc: null
557
+ value: 42
558
+ sep_token_id:
559
+ desc: null
560
+ value: null
561
+ sharded_ddp:
562
+ desc: null
563
+ value: '[]'
564
+ skip_memory_metrics:
565
+ desc: null
566
+ value: true
567
+ task_specific_params:
568
+ desc: null
569
+ value: null
570
+ tdnn_dilation:
571
+ desc: null
572
+ value:
573
+ - 1
574
+ - 2
575
+ - 3
576
+ - 1
577
+ - 1
578
+ tdnn_dim:
579
+ desc: null
580
+ value:
581
+ - 512
582
+ - 512
583
+ - 512
584
+ - 512
585
+ - 1500
586
+ tdnn_kernel:
587
+ desc: null
588
+ value:
589
+ - 5
590
+ - 3
591
+ - 3
592
+ - 1
593
+ - 1
594
+ temperature:
595
+ desc: null
596
+ value: 1.0
597
+ tf32:
598
+ desc: null
599
+ value: None
600
+ tie_encoder_decoder:
601
+ desc: null
602
+ value: false
603
+ tie_word_embeddings:
604
+ desc: null
605
+ value: true
606
+ tokenizer_class:
607
+ desc: null
608
+ value: null
609
+ top_k:
610
+ desc: null
611
+ value: 50
612
+ top_p:
613
+ desc: null
614
+ value: 1.0
615
+ torch_dtype:
616
+ desc: null
617
+ value: float32
618
+ torchscript:
619
+ desc: null
620
+ value: false
621
+ tpu_metrics_debug:
622
+ desc: null
623
+ value: false
624
+ tpu_num_cores:
625
+ desc: null
626
+ value: None
627
+ train_batch_size:
628
+ desc: null
629
+ value: 16
630
+ transformers_version:
631
+ desc: null
632
+ value: 4.17.0.dev0
633
+ use_bfloat16:
634
+ desc: null
635
+ value: false
636
+ use_legacy_prediction_loop:
637
+ desc: null
638
+ value: false
639
+ use_weighted_layer_sum:
640
+ desc: null
641
+ value: false
642
+ vocab_size:
643
+ desc: null
644
+ value: 34
645
+ warmup_ratio:
646
+ desc: null
647
+ value: 0.0
648
+ warmup_steps:
649
+ desc: null
650
+ value: 2000
651
+ weight_decay:
652
+ desc: null
653
+ value: 0.0
654
+ xpu_backend:
655
+ desc: null
656
+ value: None
657
+ xvector_output_dim:
658
+ desc: null
659
+ value: 512
wandb/run-20220201_150818-33gv5m8t/files/output.log ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ 0%| | 0/23265 [00:00<?, ?it/s]Traceback (most recent call last):
3
+ File "/mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/run_speech_recognition_ctc.py", line 792, in <module>
4
+ main()
5
+ File "/mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/run_speech_recognition_ctc.py", line 743, in main
6
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
7
+ File "/mnt/lv_ai_1_dante/javierr/audio/lib/python3.9/site-packages/transformers/trainer.py", line 1384, in train
8
+ tr_loss_step = self.training_step(model, inputs)
9
+ File "/mnt/lv_ai_1_dante/javierr/audio/lib/python3.9/site-packages/transformers/trainer.py", line 1959, in training_step
10
+ loss = self.compute_loss(model, inputs)
11
+ File "/mnt/lv_ai_1_dante/javierr/audio/lib/python3.9/site-packages/transformers/trainer.py", line 1991, in compute_loss
12
+ outputs = model(**inputs)
13
+ File "/mnt/lv_ai_1_dante/javierr/audio/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
14
+ return forward_call(*input, **kwargs)
15
+ File "/mnt/lv_ai_1_dante/javierr/audio/lib/python3.9/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 1756, in forward
16
+ outputs = self.wav2vec2(
17
+ File "/mnt/lv_ai_1_dante/javierr/audio/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
18
+ return forward_call(*input, **kwargs)
19
+ File "/mnt/lv_ai_1_dante/javierr/audio/lib/python3.9/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 1346, in forward
20
+ extract_features = self.feature_extractor(input_values)
21
+ File "/mnt/lv_ai_1_dante/javierr/audio/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
22
+ return forward_call(*input, **kwargs)
23
+ File "/mnt/lv_ai_1_dante/javierr/audio/lib/python3.9/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 514, in forward
24
+ hidden_states = conv_layer(hidden_states)
25
+ File "/mnt/lv_ai_1_dante/javierr/audio/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
26
+ return forward_call(*input, **kwargs)
27
+ File "/mnt/lv_ai_1_dante/javierr/audio/lib/python3.9/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 386, in forward
28
+ hidden_states = self.conv(hidden_states)
29
+ File "/mnt/lv_ai_1_dante/javierr/audio/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
30
+ return forward_call(*input, **kwargs)
31
+ File "/mnt/lv_ai_1_dante/javierr/audio/lib/python3.9/site-packages/torch/nn/modules/conv.py", line 301, in forward
32
+ return self._conv_forward(input, self.weight, self.bias)
33
+ File "/mnt/lv_ai_1_dante/javierr/audio/lib/python3.9/site-packages/torch/nn/modules/conv.py", line 297, in _conv_forward
34
+ return F.conv1d(input, weight, bias, self.stride,
35
+ RuntimeError: CUDA error: no kernel image is available for execution on the device
36
+ CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect.
37
+ For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
wandb/run-20220201_150818-33gv5m8t/files/requirements.txt ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ absl-py==1.0.0
2
+ aiohttp==3.8.1
3
+ aiosignal==1.2.0
4
+ appdirs==1.4.4
5
+ astunparse==1.6.3
6
+ async-timeout==4.0.2
7
+ attrs==21.4.0
8
+ audioread==2.1.9
9
+ cachetools==5.0.0
10
+ certifi==2021.10.8
11
+ cffi==1.15.0
12
+ charset-normalizer==2.0.11
13
+ click==8.0.3
14
+ configparser==5.2.0
15
+ datasets==1.18.3.dev0
16
+ decorator==5.1.1
17
+ deepspeed==0.5.10
18
+ dill==0.3.4
19
+ docker-pycreds==0.4.0
20
+ fairscale==0.4.5
21
+ filelock==3.4.2
22
+ flatbuffers==2.0
23
+ frozenlist==1.3.0
24
+ fsspec==2022.1.0
25
+ gast==0.4.0
26
+ gitdb==4.0.9
27
+ gitpython==3.1.26
28
+ google-auth-oauthlib==0.4.6
29
+ google-auth==2.6.0
30
+ google-pasta==0.2.0
31
+ grpcio==1.43.0
32
+ h5py==3.6.0
33
+ hjson==3.0.2
34
+ huggingface-hub==0.4.0
35
+ idna==3.3
36
+ importlib-metadata==4.10.1
37
+ jiwer==2.3.0
38
+ joblib==1.1.0
39
+ keras-preprocessing==1.1.2
40
+ keras==2.7.0
41
+ libclang==13.0.0
42
+ librosa==0.8.1
43
+ llvmlite==0.38.0
44
+ markdown==3.3.6
45
+ multidict==6.0.2
46
+ multiprocess==0.70.12.2
47
+ ninja==1.10.2.3
48
+ numba==0.55.1
49
+ numpy==1.21.5
50
+ oauthlib==3.2.0
51
+ opt-einsum==3.3.0
52
+ packaging==21.3
53
+ pandas==1.4.0
54
+ pathtools==0.1.2
55
+ pip==20.3.4
56
+ pkg-resources==0.0.0
57
+ pooch==1.6.0
58
+ promise==2.3
59
+ protobuf==3.19.4
60
+ psutil==5.9.0
61
+ py-cpuinfo==8.0.0
62
+ pyarrow==6.0.1
63
+ pyasn1-modules==0.2.8
64
+ pyasn1==0.4.8
65
+ pycparser==2.21
66
+ pyparsing==3.0.7
67
+ python-dateutil==2.8.2
68
+ python-levenshtein==0.12.2
69
+ pytz==2021.3
70
+ pyyaml==6.0
71
+ regex==2022.1.18
72
+ requests-oauthlib==1.3.1
73
+ requests==2.27.1
74
+ resampy==0.2.2
75
+ rsa==4.8
76
+ sacremoses==0.0.47
77
+ scikit-learn==1.0.2
78
+ scipy==1.7.3
79
+ sentry-sdk==1.5.4
80
+ setuptools==44.1.1
81
+ shortuuid==1.0.8
82
+ six==1.16.0
83
+ smmap==5.0.0
84
+ soundfile==0.10.3.post1
85
+ subprocess32==3.5.4
86
+ tensorboard-data-server==0.6.1
87
+ tensorboard-plugin-wit==1.8.1
88
+ tensorboard==2.8.0
89
+ tensorflow-estimator==2.7.0
90
+ tensorflow-io-gcs-filesystem==0.23.1
91
+ tensorflow==2.7.0
92
+ termcolor==1.1.0
93
+ threadpoolctl==3.1.0
94
+ tokenizers==0.11.4
95
+ torch==1.10.2
96
+ torchaudio==0.10.2
97
+ tqdm==4.62.3
98
+ transformers==4.17.0.dev0
99
+ triton==1.0.0
100
+ typing-extensions==4.0.1
101
+ urllib3==1.26.8
102
+ wandb==0.12.9
103
+ werkzeug==2.0.2
104
+ wheel==0.37.1
105
+ wrapt==1.13.3
106
+ xxhash==2.0.2
107
+ yarl==1.7.2
108
+ yaspin==2.1.0
109
+ zipp==3.7.0
wandb/run-20220201_150818-33gv5m8t/files/wandb-metadata.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "os": "Linux-5.13.0-27-generic-x86_64-with-glibc2.34",
3
+ "python": "3.9.7",
4
+ "heartbeatAt": "2022-02-01T14:08:21.090129",
5
+ "startedAt": "2022-02-01T14:08:18.929956",
6
+ "docker": null,
7
+ "gpu": "NVIDIA RTX A6000",
8
+ "gpu_count": 2,
9
+ "cpu_count": 96,
10
+ "cuda": null,
11
+ "args": [
12
+ "--dataset_name=NbAiLab/NPSC",
13
+ "--model_name_or_path=facebook/wav2vec2-xls-r-1b",
14
+ "--hub_model_id=NbAiLab/wav2vec2-xls-r-1b-npsc",
15
+ "--dataset_config_name=16K_mp3",
16
+ "--output_dir=./",
17
+ "--overwrite_output_dir",
18
+ "--num_train_epochs=15",
19
+ "--per_device_train_batch_size=16",
20
+ "--per_device_eval_batch_size=16",
21
+ "--gradient_accumulation_steps=2",
22
+ "--learning_rate=1e-4",
23
+ "--warmup_steps=2000",
24
+ "--length_column_name=input_length",
25
+ "--evaluation_strategy=steps",
26
+ "--text_column_name=text",
27
+ "--save_steps=500",
28
+ "--eval_steps=500",
29
+ "--logging_steps=100",
30
+ "--layerdrop=0.041",
31
+ "--attention_dropout=0.094",
32
+ "--activation_dropout=0.055",
33
+ "--hidden_dropout=0.047",
34
+ "--save_total_limit=3",
35
+ "--freeze_feature_encoder",
36
+ "--feat_proj_dropout=0.04",
37
+ "--mask_time_prob=0.082",
38
+ "--mask_time_length=10",
39
+ "--mask_feature_prob=0.25",
40
+ "--mask_feature_length=64",
41
+ "--gradient_checkpointing",
42
+ "--min_duration_in_seconds=0.5",
43
+ "--max_duration_in_seconds=30.0",
44
+ "--use_auth_token",
45
+ "--seed=42",
46
+ "--fp16",
47
+ "--group_by_length",
48
+ "--do_train",
49
+ "--do_eval",
50
+ "--push_to_hub",
51
+ "--preprocessing_num_workers=32"
52
+ ],
53
+ "state": "running",
54
+ "program": "/mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/run_speech_recognition_ctc.py",
55
+ "codePath": "run_speech_recognition_ctc.py",
56
+ "git": {
57
+ "remote": "https://huggingface.co/NbAiLab/wav2vec2-xls-r-1b-npsc",
58
+ "commit": "49ef0066d0c9d470f4582bb5d9d905606961208d"
59
+ },
60
+ "email": "versae@gmail.com",
61
+ "root": "/mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc",
62
+ "host": "dante",
63
+ "username": "javierr",
64
+ "executable": "/mnt/lv_ai_1_dante/javierr/audio/bin/python"
65
+ }
wandb/run-20220201_150818-33gv5m8t/files/wandb-summary.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"_wandb": {"runtime": 6}}
wandb/run-20220201_150818-33gv5m8t/logs/debug-internal.log ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2022-02-01 15:08:19,400 INFO MainThread:3248864 [internal.py:wandb_internal():87] W&B internal server running at pid: 3248864, started at: 2022-02-01 15:08:19.399884
2
+ 2022-02-01 15:08:19,402 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: check_version
3
+ 2022-02-01 15:08:19,402 INFO WriterThread:3248864 [datastore.py:open_for_write():77] open: /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/run-33gv5m8t.wandb
4
+ 2022-02-01 15:08:19,405 DEBUG SenderThread:3248864 [sender.py:send():234] send: header
5
+ 2022-02-01 15:08:19,405 DEBUG SenderThread:3248864 [sender.py:send_request():248] send_request: check_version
6
+ 2022-02-01 15:08:19,562 DEBUG SenderThread:3248864 [sender.py:send():234] send: run
7
+ 2022-02-01 15:08:19,847 INFO SenderThread:3248864 [dir_watcher.py:__init__():169] watching files in: /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/files
8
+ 2022-02-01 15:08:19,848 INFO SenderThread:3248864 [sender.py:_start_run_threads():804] run started: 33gv5m8t with start time 1643724498
9
+ 2022-02-01 15:08:19,848 DEBUG SenderThread:3248864 [sender.py:send():234] send: summary
10
+ 2022-02-01 15:08:19,848 INFO SenderThread:3248864 [sender.py:_save_file():939] saving file wandb-summary.json with policy end
11
+ 2022-02-01 15:08:19,850 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: run_start
12
+ 2022-02-01 15:08:20,854 INFO Thread-8 :3248864 [dir_watcher.py:_on_file_created():217] file/dir created: /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/files/wandb-summary.json
13
+ 2022-02-01 15:08:21,089 DEBUG HandlerThread:3248864 [meta.py:__init__():40] meta init
14
+ 2022-02-01 15:08:21,090 DEBUG HandlerThread:3248864 [meta.py:__init__():54] meta init done
15
+ 2022-02-01 15:08:21,090 DEBUG HandlerThread:3248864 [meta.py:probe():214] probe
16
+ 2022-02-01 15:08:21,096 DEBUG HandlerThread:3248864 [meta.py:_setup_git():204] setup git
17
+ 2022-02-01 15:08:21,129 DEBUG HandlerThread:3248864 [meta.py:_setup_git():211] setup git done
18
+ 2022-02-01 15:08:21,130 DEBUG HandlerThread:3248864 [meta.py:_save_code():92] save code
19
+ 2022-02-01 15:08:21,144 DEBUG HandlerThread:3248864 [meta.py:_save_code():113] save code done
20
+ 2022-02-01 15:08:21,144 DEBUG HandlerThread:3248864 [meta.py:_save_patches():130] save patches
21
+ 2022-02-01 15:08:21,223 DEBUG HandlerThread:3248864 [meta.py:_save_patches():172] save patches done
22
+ 2022-02-01 15:08:21,223 DEBUG HandlerThread:3248864 [meta.py:_save_pip():58] save pip
23
+ 2022-02-01 15:08:21,224 DEBUG HandlerThread:3248864 [meta.py:_save_pip():72] save pip done
24
+ 2022-02-01 15:08:21,224 DEBUG HandlerThread:3248864 [meta.py:probe():252] probe done
25
+ 2022-02-01 15:08:21,230 DEBUG SenderThread:3248864 [sender.py:send():234] send: files
26
+ 2022-02-01 15:08:21,231 INFO SenderThread:3248864 [sender.py:_save_file():939] saving file wandb-metadata.json with policy now
27
+ 2022-02-01 15:08:21,232 INFO SenderThread:3248864 [sender.py:_save_file():939] saving file code/run_speech_recognition_ctc.py with policy now
28
+ 2022-02-01 15:08:21,240 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: stop_status
29
+ 2022-02-01 15:08:21,245 DEBUG SenderThread:3248864 [sender.py:send_request():248] send_request: stop_status
30
+ 2022-02-01 15:08:21,493 DEBUG SenderThread:3248864 [sender.py:send():234] send: config
31
+ 2022-02-01 15:08:21,495 DEBUG SenderThread:3248864 [sender.py:send():234] send: metric
32
+ 2022-02-01 15:08:21,496 DEBUG SenderThread:3248864 [sender.py:send():234] send: metric
33
+ 2022-02-01 15:08:21,496 WARNING SenderThread:3248864 [sender.py:send_metric():897] Seen metric with glob (shouldnt happen)
34
+ 2022-02-01 15:08:21,852 INFO Thread-8 :3248864 [dir_watcher.py:_on_file_created():217] file/dir created: /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/files/wandb-metadata.json
35
+ 2022-02-01 15:08:21,852 INFO Thread-8 :3248864 [dir_watcher.py:_on_file_created():217] file/dir created: /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/files/code/run_speech_recognition_ctc.py
36
+ 2022-02-01 15:08:21,853 INFO Thread-8 :3248864 [dir_watcher.py:_on_file_created():217] file/dir created: /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/files/requirements.txt
37
+ 2022-02-01 15:08:21,853 INFO Thread-8 :3248864 [dir_watcher.py:_on_file_created():217] file/dir created: /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/files/output.log
38
+ 2022-02-01 15:08:21,853 INFO Thread-8 :3248864 [dir_watcher.py:_on_file_created():217] file/dir created: /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/files/code
39
+ 2022-02-01 15:08:21,960 INFO Thread-11 :3248864 [upload_job.py:push():137] Uploaded file /tmp/tmpxu9hw9m_wandb/bkne7cxj-wandb-metadata.json
40
+ 2022-02-01 15:08:21,969 INFO Thread-12 :3248864 [upload_job.py:push():137] Uploaded file /tmp/tmpxu9hw9m_wandb/1l3kkiz5-code/run_speech_recognition_ctc.py
41
+ 2022-02-01 15:08:23,853 INFO Thread-8 :3248864 [dir_watcher.py:_on_file_modified():230] file/dir modified: /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/files/output.log
42
+ 2022-02-01 15:08:25,854 INFO Thread-8 :3248864 [dir_watcher.py:_on_file_modified():230] file/dir modified: /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/files/output.log
43
+ 2022-02-01 15:08:25,932 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: poll_exit
44
+ 2022-02-01 15:08:25,933 DEBUG SenderThread:3248864 [sender.py:send():234] send: telemetry
45
+ 2022-02-01 15:08:25,933 DEBUG SenderThread:3248864 [sender.py:send():234] send: exit
46
+ 2022-02-01 15:08:25,933 INFO SenderThread:3248864 [sender.py:send_exit():366] handling exit code: 1
47
+ 2022-02-01 15:08:25,934 INFO SenderThread:3248864 [sender.py:send_exit():368] handling runtime: 6
48
+ 2022-02-01 15:08:25,934 INFO SenderThread:3248864 [sender.py:_save_file():939] saving file wandb-summary.json with policy end
49
+ 2022-02-01 15:08:25,934 INFO SenderThread:3248864 [sender.py:send_exit():374] send defer
50
+ 2022-02-01 15:08:25,935 DEBUG SenderThread:3248864 [sender.py:send_request():248] send_request: poll_exit
51
+ 2022-02-01 15:08:25,936 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: defer
52
+ 2022-02-01 15:08:25,936 INFO HandlerThread:3248864 [handler.py:handle_request_defer():147] handle defer: 0
53
+ 2022-02-01 15:08:25,936 DEBUG SenderThread:3248864 [sender.py:send_request():248] send_request: defer
54
+ 2022-02-01 15:08:25,936 INFO SenderThread:3248864 [sender.py:send_request_defer():383] handle sender defer: 0
55
+ 2022-02-01 15:08:25,936 INFO SenderThread:3248864 [sender.py:transition_state():387] send defer: 1
56
+ 2022-02-01 15:08:25,937 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: defer
57
+ 2022-02-01 15:08:25,937 INFO HandlerThread:3248864 [handler.py:handle_request_defer():147] handle defer: 1
58
+ 2022-02-01 15:08:26,020 DEBUG SenderThread:3248864 [sender.py:send_request():248] send_request: defer
59
+ 2022-02-01 15:08:26,020 INFO SenderThread:3248864 [sender.py:send_request_defer():383] handle sender defer: 1
60
+ 2022-02-01 15:08:26,020 INFO SenderThread:3248864 [sender.py:transition_state():387] send defer: 2
61
+ 2022-02-01 15:08:26,021 DEBUG SenderThread:3248864 [sender.py:send():234] send: stats
62
+ 2022-02-01 15:08:26,022 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: defer
63
+ 2022-02-01 15:08:26,022 INFO HandlerThread:3248864 [handler.py:handle_request_defer():147] handle defer: 2
64
+ 2022-02-01 15:08:26,022 DEBUG SenderThread:3248864 [sender.py:send_request():248] send_request: defer
65
+ 2022-02-01 15:08:26,022 INFO SenderThread:3248864 [sender.py:send_request_defer():383] handle sender defer: 2
66
+ 2022-02-01 15:08:26,022 INFO SenderThread:3248864 [sender.py:transition_state():387] send defer: 3
67
+ 2022-02-01 15:08:26,023 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: defer
68
+ 2022-02-01 15:08:26,023 INFO HandlerThread:3248864 [handler.py:handle_request_defer():147] handle defer: 3
69
+ 2022-02-01 15:08:26,023 DEBUG SenderThread:3248864 [sender.py:send():234] send: summary
70
+ 2022-02-01 15:08:26,024 INFO SenderThread:3248864 [sender.py:_save_file():939] saving file wandb-summary.json with policy end
71
+ 2022-02-01 15:08:26,024 DEBUG SenderThread:3248864 [sender.py:send_request():248] send_request: defer
72
+ 2022-02-01 15:08:26,024 INFO SenderThread:3248864 [sender.py:send_request_defer():383] handle sender defer: 3
73
+ 2022-02-01 15:08:26,024 INFO SenderThread:3248864 [sender.py:transition_state():387] send defer: 4
74
+ 2022-02-01 15:08:26,025 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: defer
75
+ 2022-02-01 15:08:26,025 INFO HandlerThread:3248864 [handler.py:handle_request_defer():147] handle defer: 4
76
+ 2022-02-01 15:08:26,025 DEBUG SenderThread:3248864 [sender.py:send_request():248] send_request: defer
77
+ 2022-02-01 15:08:26,026 INFO SenderThread:3248864 [sender.py:send_request_defer():383] handle sender defer: 4
78
+ 2022-02-01 15:08:26,038 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: poll_exit
79
+ 2022-02-01 15:08:26,367 INFO SenderThread:3248864 [sender.py:transition_state():387] send defer: 5
80
+ 2022-02-01 15:08:26,367 DEBUG SenderThread:3248864 [sender.py:send_request():248] send_request: poll_exit
81
+ 2022-02-01 15:08:26,368 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: defer
82
+ 2022-02-01 15:08:26,368 INFO HandlerThread:3248864 [handler.py:handle_request_defer():147] handle defer: 5
83
+ 2022-02-01 15:08:26,368 DEBUG SenderThread:3248864 [sender.py:send_request():248] send_request: defer
84
+ 2022-02-01 15:08:26,368 INFO SenderThread:3248864 [sender.py:send_request_defer():383] handle sender defer: 5
85
+ 2022-02-01 15:08:26,368 INFO SenderThread:3248864 [dir_watcher.py:finish():283] shutting down directory watcher
86
+ 2022-02-01 15:08:26,469 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: poll_exit
87
+ 2022-02-01 15:08:26,854 INFO Thread-8 :3248864 [dir_watcher.py:_on_file_modified():230] file/dir modified: /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/files/wandb-summary.json
88
+ 2022-02-01 15:08:26,855 INFO SenderThread:3248864 [dir_watcher.py:_on_file_modified():230] file/dir modified: /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/files/config.yaml
89
+ 2022-02-01 15:08:26,856 INFO SenderThread:3248864 [dir_watcher.py:_on_file_modified():230] file/dir modified: /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/files/output.log
90
+ 2022-02-01 15:08:26,856 INFO SenderThread:3248864 [dir_watcher.py:finish():313] scan: /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/files
91
+ 2022-02-01 15:08:26,856 INFO SenderThread:3248864 [dir_watcher.py:finish():327] scan save: /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/files/config.yaml config.yaml
92
+ 2022-02-01 15:08:26,856 INFO SenderThread:3248864 [dir_watcher.py:finish():327] scan save: /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/files/requirements.txt requirements.txt
93
+ 2022-02-01 15:08:26,857 INFO SenderThread:3248864 [dir_watcher.py:finish():327] scan save: /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/files/wandb-summary.json wandb-summary.json
94
+ 2022-02-01 15:08:26,857 INFO SenderThread:3248864 [dir_watcher.py:finish():327] scan save: /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/files/output.log output.log
95
+ 2022-02-01 15:08:26,857 INFO SenderThread:3248864 [dir_watcher.py:finish():327] scan save: /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/files/wandb-metadata.json wandb-metadata.json
96
+ 2022-02-01 15:08:26,869 INFO SenderThread:3248864 [dir_watcher.py:finish():327] scan save: /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/files/code/run_speech_recognition_ctc.py code/run_speech_recognition_ctc.py
97
+ 2022-02-01 15:08:26,869 INFO SenderThread:3248864 [sender.py:transition_state():387] send defer: 6
98
+ 2022-02-01 15:08:26,869 DEBUG SenderThread:3248864 [sender.py:send_request():248] send_request: poll_exit
99
+ 2022-02-01 15:08:26,881 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: defer
100
+ 2022-02-01 15:08:26,881 INFO HandlerThread:3248864 [handler.py:handle_request_defer():147] handle defer: 6
101
+ 2022-02-01 15:08:26,882 DEBUG SenderThread:3248864 [sender.py:send_request():248] send_request: defer
102
+ 2022-02-01 15:08:26,882 INFO SenderThread:3248864 [sender.py:send_request_defer():383] handle sender defer: 6
103
+ 2022-02-01 15:08:26,882 INFO SenderThread:3248864 [file_pusher.py:finish():177] shutting down file pusher
104
+ 2022-02-01 15:08:26,984 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: poll_exit
105
+ 2022-02-01 15:08:26,984 DEBUG SenderThread:3248864 [sender.py:send_request():248] send_request: poll_exit
106
+ 2022-02-01 15:08:27,086 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: poll_exit
107
+ 2022-02-01 15:08:27,087 DEBUG SenderThread:3248864 [sender.py:send_request():248] send_request: poll_exit
108
+ 2022-02-01 15:08:27,189 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: poll_exit
109
+ 2022-02-01 15:08:27,189 DEBUG SenderThread:3248864 [sender.py:send_request():248] send_request: poll_exit
110
+ 2022-02-01 15:08:27,291 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: poll_exit
111
+ 2022-02-01 15:08:27,292 DEBUG SenderThread:3248864 [sender.py:send_request():248] send_request: poll_exit
112
+ 2022-02-01 15:08:27,394 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: poll_exit
113
+ 2022-02-01 15:08:27,394 DEBUG SenderThread:3248864 [sender.py:send_request():248] send_request: poll_exit
114
+ 2022-02-01 15:08:27,497 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: poll_exit
115
+ 2022-02-01 15:08:27,497 DEBUG SenderThread:3248864 [sender.py:send_request():248] send_request: poll_exit
116
+ 2022-02-01 15:08:27,545 INFO Thread-13 :3248864 [upload_job.py:push():137] Uploaded file /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/files/config.yaml
117
+ 2022-02-01 15:08:27,551 INFO Thread-14 :3248864 [upload_job.py:push():137] Uploaded file /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/files/requirements.txt
118
+ 2022-02-01 15:08:27,553 INFO Thread-16 :3248864 [upload_job.py:push():137] Uploaded file /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/files/output.log
119
+ 2022-02-01 15:08:27,565 INFO Thread-15 :3248864 [upload_job.py:push():137] Uploaded file /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/files/wandb-summary.json
120
+ 2022-02-01 15:08:27,599 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: poll_exit
121
+ 2022-02-01 15:08:27,600 DEBUG SenderThread:3248864 [sender.py:send_request():248] send_request: poll_exit
122
+ 2022-02-01 15:08:27,702 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: poll_exit
123
+ 2022-02-01 15:08:27,702 DEBUG SenderThread:3248864 [sender.py:send_request():248] send_request: poll_exit
124
+ 2022-02-01 15:08:27,766 INFO Thread-7 :3248864 [sender.py:transition_state():387] send defer: 7
125
+ 2022-02-01 15:08:27,767 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: defer
126
+ 2022-02-01 15:08:27,767 INFO HandlerThread:3248864 [handler.py:handle_request_defer():147] handle defer: 7
127
+ 2022-02-01 15:08:27,767 DEBUG SenderThread:3248864 [sender.py:send_request():248] send_request: defer
128
+ 2022-02-01 15:08:27,767 INFO SenderThread:3248864 [sender.py:send_request_defer():383] handle sender defer: 7
129
+ 2022-02-01 15:08:27,805 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: poll_exit
130
+ 2022-02-01 15:08:28,272 INFO SenderThread:3248864 [sender.py:transition_state():387] send defer: 8
131
+ 2022-02-01 15:08:28,272 DEBUG SenderThread:3248864 [sender.py:send_request():248] send_request: poll_exit
132
+ 2022-02-01 15:08:28,273 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: defer
133
+ 2022-02-01 15:08:28,273 INFO HandlerThread:3248864 [handler.py:handle_request_defer():147] handle defer: 8
134
+ 2022-02-01 15:08:28,274 DEBUG SenderThread:3248864 [sender.py:send_request():248] send_request: defer
135
+ 2022-02-01 15:08:28,274 INFO SenderThread:3248864 [sender.py:send_request_defer():383] handle sender defer: 8
136
+ 2022-02-01 15:08:28,274 INFO SenderThread:3248864 [sender.py:transition_state():387] send defer: 9
137
+ 2022-02-01 15:08:28,275 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: defer
138
+ 2022-02-01 15:08:28,275 DEBUG SenderThread:3248864 [sender.py:send():234] send: final
139
+ 2022-02-01 15:08:28,275 INFO HandlerThread:3248864 [handler.py:handle_request_defer():147] handle defer: 9
140
+ 2022-02-01 15:08:28,276 DEBUG SenderThread:3248864 [sender.py:send():234] send: footer
141
+ 2022-02-01 15:08:28,276 DEBUG SenderThread:3248864 [sender.py:send_request():248] send_request: defer
142
+ 2022-02-01 15:08:28,276 INFO SenderThread:3248864 [sender.py:send_request_defer():383] handle sender defer: 9
143
+ 2022-02-01 15:08:28,375 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: poll_exit
144
+ 2022-02-01 15:08:28,375 DEBUG SenderThread:3248864 [sender.py:send_request():248] send_request: poll_exit
145
+ 2022-02-01 15:08:28,375 INFO SenderThread:3248864 [file_pusher.py:join():182] waiting for file pusher
146
+ 2022-02-01 15:08:28,858 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: get_summary
147
+ 2022-02-01 15:08:28,859 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: sampled_history
148
+ 2022-02-01 15:08:28,861 DEBUG HandlerThread:3248864 [handler.py:handle_request():130] handle_request: shutdown
149
+ 2022-02-01 15:08:28,861 INFO HandlerThread:3248864 [handler.py:finish():731] shutting down handler
150
+ 2022-02-01 15:08:29,275 INFO WriterThread:3248864 [datastore.py:close():281] close: /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/run-33gv5m8t.wandb
151
+ 2022-02-01 15:08:29,856 INFO SenderThread:3248864 [sender.py:finish():1070] shutting down sender
152
+ 2022-02-01 15:08:29,856 INFO SenderThread:3248864 [file_pusher.py:finish():177] shutting down file pusher
153
+ 2022-02-01 15:08:29,856 INFO SenderThread:3248864 [file_pusher.py:join():182] waiting for file pusher
154
+ 2022-02-01 15:08:29,859 INFO MainThread:3248864 [internal.py:handle_exit():77] Internal process exited
wandb/run-20220201_150818-33gv5m8t/logs/debug.log ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2022-02-01 15:08:18,932 INFO MainThread:3248238 [wandb_setup.py:_flush():71] setting env: {'project': 'wav2vec2', 'entity': 'NbAiLab'}
2
+ 2022-02-01 15:08:18,933 INFO MainThread:3248238 [wandb_setup.py:_flush():71] setting login settings: {}
3
+ 2022-02-01 15:08:18,933 INFO MainThread:3248238 [wandb_init.py:_log_setup():371] Logging user logs to /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/logs/debug.log
4
+ 2022-02-01 15:08:18,933 INFO MainThread:3248238 [wandb_init.py:_log_setup():372] Logging internal logs to /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_150818-33gv5m8t/logs/debug-internal.log
5
+ 2022-02-01 15:08:18,934 INFO MainThread:3248238 [wandb_init.py:init():404] calling init triggers
6
+ 2022-02-01 15:08:18,934 INFO MainThread:3248238 [wandb_init.py:init():409] wandb.init called with sweep_config: {}
7
+ config: {}
8
+ 2022-02-01 15:08:18,934 INFO MainThread:3248238 [wandb_init.py:init():460] starting backend
9
+ 2022-02-01 15:08:18,934 INFO MainThread:3248238 [backend.py:_multiprocessing_setup():99] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
10
+ 2022-02-01 15:08:18,971 INFO MainThread:3248238 [backend.py:ensure_launched():216] starting backend process...
11
+ 2022-02-01 15:08:18,993 INFO MainThread:3248238 [backend.py:ensure_launched():221] started backend process with pid: 3248864
12
+ 2022-02-01 15:08:18,994 INFO MainThread:3248238 [wandb_init.py:init():469] backend started and connected
13
+ 2022-02-01 15:08:19,003 INFO MainThread:3248238 [wandb_init.py:init():533] updated telemetry
14
+ 2022-02-01 15:08:19,058 INFO MainThread:3248238 [wandb_init.py:init():563] communicating current version
15
+ 2022-02-01 15:08:19,560 INFO MainThread:3248238 [wandb_init.py:init():568] got version response
16
+ 2022-02-01 15:08:19,560 INFO MainThread:3248238 [wandb_init.py:init():578] communicating run to backend with 30 second timeout
17
+ 2022-02-01 15:08:19,849 INFO MainThread:3248238 [wandb_init.py:init():606] starting run threads in backend
18
+ 2022-02-01 15:08:21,239 INFO MainThread:3248238 [wandb_run.py:_console_start():1810] atexit reg
19
+ 2022-02-01 15:08:21,239 INFO MainThread:3248238 [wandb_run.py:_redirect():1684] redirect: SettingsConsole.REDIRECT
20
+ 2022-02-01 15:08:21,241 INFO MainThread:3248238 [wandb_run.py:_redirect():1689] Redirecting console.
21
+ 2022-02-01 15:08:21,243 INFO MainThread:3248238 [wandb_run.py:_redirect():1745] Redirects installed.
22
+ 2022-02-01 15:08:21,243 INFO MainThread:3248238 [wandb_init.py:init():633] run started, returning control to user process
23
+ 2022-02-01 15:08:21,265 INFO MainThread:3248238 [wandb_run.py:_config_callback():956] config_cb None None {'return_dict': True, 'output_hidden_states': False, 'output_attentions': False, 'torchscript': False, 'torch_dtype': 'float32', 'use_bfloat16': False, 'pruned_heads': {}, 'tie_word_embeddings': True, 'is_encoder_decoder': False, 'is_decoder': False, 'cross_attention_hidden_size': None, 'add_cross_attention': False, 'tie_encoder_decoder': False, 'max_length': 20, 'min_length': 0, 'do_sample': False, 'early_stopping': False, 'num_beams': 1, 'num_beam_groups': 1, 'diversity_penalty': 0.0, 'temperature': 1.0, 'top_k': 50, 'top_p': 1.0, 'repetition_penalty': 1.0, 'length_penalty': 1.0, 'no_repeat_ngram_size': 0, 'encoder_no_repeat_ngram_size': 0, 'bad_words_ids': None, 'num_return_sequences': 1, 'chunk_size_feed_forward': 0, 'output_scores': False, 'return_dict_in_generate': False, 'forced_bos_token_id': None, 'forced_eos_token_id': None, 'remove_invalid_values': False, 'architectures': ['Wav2Vec2ForPreTraining'], 'finetuning_task': None, 'id2label': {0: 'LABEL_0', 1: 'LABEL_1'}, 'label2id': {'LABEL_0': 0, 'LABEL_1': 1}, 'tokenizer_class': None, 'prefix': None, 'bos_token_id': 1, 'pad_token_id': 31, 'eos_token_id': 2, 'sep_token_id': None, 'decoder_start_token_id': None, 'task_specific_params': None, 'problem_type': None, '_name_or_path': 'facebook/wav2vec2-xls-r-1b', 'transformers_version': '4.17.0.dev0', 'feat_extract_dropout': 0.0, 'model_type': 'wav2vec2', 'num_feat_extract_layers': 7, 'hidden_size': 1280, 'feat_extract_norm': 'layer', 'feat_extract_activation': 'gelu', 'conv_dim': [512, 512, 512, 512, 512, 512, 512], 'conv_stride': [5, 2, 2, 2, 2, 2, 2], 'conv_kernel': [10, 3, 3, 3, 3, 2, 2], 'conv_bias': True, 'num_conv_pos_embeddings': 128, 'num_conv_pos_embedding_groups': 16, 'num_hidden_layers': 48, 'intermediate_size': 5120, 'hidden_act': 'gelu', 'num_attention_heads': 16, 'hidden_dropout': 0.047, 'attention_dropout': 0.094, 'activation_dropout': 0.055, 'feat_proj_dropout': 0.04, 'final_dropout': 0.0, 'layerdrop': 0.041, 'layer_norm_eps': 1e-05, 'initializer_range': 0.02, 'vocab_size': 34, 'do_stable_layer_norm': True, 'use_weighted_layer_sum': False, 'apply_spec_augment': True, 'mask_time_prob': 0.082, 'mask_time_length': 10, 'mask_time_min_masks': 2, 'mask_feature_prob': 0.25, 'mask_feature_length': 64, 'mask_feature_min_masks': 0, 'num_codevectors_per_group': 320, 'num_codevector_groups': 2, 'contrastive_logits_temperature': 0.1, 'feat_quantizer_dropout': 0.0, 'num_negatives': 100, 'codevector_dim': 1024, 'proj_codevector_dim': 1024, 'diversity_loss_weight': 0.1, 'ctc_loss_reduction': 'mean', 'ctc_zero_infinity': False, 'add_adapter': False, 'adapter_kernel_size': 3, 'adapter_stride': 2, 'num_adapter_layers': 3, 'output_hidden_size': 1280, 'classifier_proj_size': 256, 'tdnn_dim': [512, 512, 512, 512, 1500], 'tdnn_kernel': [5, 3, 3, 1, 1], 'tdnn_dilation': [1, 2, 3, 1, 1], 'xvector_output_dim': 512, 'output_dir': './', 'overwrite_output_dir': True, 'do_train': True, 'do_eval': True, 'do_predict': False, 'evaluation_strategy': 'steps', 'prediction_loss_only': False, 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'per_gpu_train_batch_size': 'None', 'per_gpu_eval_batch_size': 'None', 'gradient_accumulation_steps': 2, 'eval_accumulation_steps': 'None', 'learning_rate': 0.0001, 'weight_decay': 0.0, 'adam_beta1': 0.9, 'adam_beta2': 0.999, 'adam_epsilon': 1e-08, 'max_grad_norm': 1.0, 'num_train_epochs': 15.0, 'max_steps': -1, 'lr_scheduler_type': 'linear', 'warmup_ratio': 0.0, 'warmup_steps': 2000, 'log_level': -1, 'log_level_replica': -1, 'log_on_each_node': True, 'logging_dir': './runs/Feb01_15-07-52_dante', 'logging_strategy': 'steps', 'logging_first_step': False, 'logging_steps': 100, 'logging_nan_inf_filter': True, 'save_strategy': 'steps', 'save_steps': 500, 'save_total_limit': 3, 'save_on_each_node': False, 'no_cuda': False, 'seed': 42, 'bf16': False, 'fp16': True, 'fp16_opt_level': 'O1', 'half_precision_backend': 'amp', 'bf16_full_eval': False, 'fp16_full_eval': False, 'tf32': 'None', 'local_rank': -1, 'xpu_backend': 'None', 'tpu_num_cores': 'None', 'tpu_metrics_debug': False, 'debug': '[]', 'dataloader_drop_last': False, 'eval_steps': 500, 'dataloader_num_workers': 0, 'past_index': -1, 'run_name': './', 'disable_tqdm': False, 'remove_unused_columns': True, 'label_names': 'None', 'load_best_model_at_end': False, 'metric_for_best_model': 'None', 'greater_is_better': 'None', 'ignore_data_skip': False, 'sharded_ddp': '[]', 'deepspeed': 'None', 'label_smoothing_factor': 0.0, 'optim': 'adamw_hf', 'adafactor': False, 'group_by_length': True, 'length_column_name': 'input_length', 'report_to': "['tensorboard', 'wandb']", 'ddp_find_unused_parameters': 'None', 'ddp_bucket_cap_mb': 'None', 'dataloader_pin_memory': True, 'skip_memory_metrics': True, 'use_legacy_prediction_loop': False, 'push_to_hub': True, 'resume_from_checkpoint': 'None', 'hub_model_id': 'NbAiLab/wav2vec2-xls-r-1b-npsc', 'hub_strategy': 'every_save', 'hub_token': '<HUB_TOKEN>', 'gradient_checkpointing': True, 'fp16_backend': 'auto', 'push_to_hub_model_id': 'None', 'push_to_hub_organization': 'None', 'push_to_hub_token': '<PUSH_TO_HUB_TOKEN>', '_n_gpu': 1, 'mp_parameters': '', 'train_batch_size': 16, 'eval_batch_size': 16}
24
+ 2022-02-01 15:08:21,269 INFO MainThread:3248238 [wandb_watch.py:watch():43] Watching
25
+ 2022-02-01 15:08:23,566 INFO MainThread:3248238 [wandb_run.py:_atexit_cleanup():1780] got exitcode: 1
26
+ 2022-02-01 15:08:23,569 INFO MainThread:3248238 [wandb_run.py:_restore():1752] restore
27
+ 2022-02-01 15:08:25,936 INFO MainThread:3248238 [wandb_run.py:_wait_for_finish():1912] got exit ret: file_counts {
28
+ wandb_count: 1
29
+ other_count: 1
30
+ }
31
+ pusher_stats {
32
+ uploaded_bytes: 35314
33
+ total_bytes: 35314
34
+ }
35
+
36
+ 2022-02-01 15:08:26,368 INFO MainThread:3248238 [wandb_run.py:_wait_for_finish():1912] got exit ret: file_counts {
37
+ wandb_count: 1
38
+ other_count: 1
39
+ }
40
+ pusher_stats {
41
+ uploaded_bytes: 35314
42
+ total_bytes: 35314
43
+ }
44
+
45
+ 2022-02-01 15:08:26,882 INFO MainThread:3248238 [wandb_run.py:_wait_for_finish():1912] got exit ret: file_counts {
46
+ wandb_count: 5
47
+ other_count: 1
48
+ }
49
+ pusher_stats {
50
+ uploaded_bytes: 35314
51
+ total_bytes: 50031
52
+ }
53
+
54
+ 2022-02-01 15:08:26,985 INFO MainThread:3248238 [wandb_run.py:_wait_for_finish():1912] got exit ret: file_counts {
55
+ wandb_count: 5
56
+ other_count: 1
57
+ }
58
+ pusher_stats {
59
+ uploaded_bytes: 35314
60
+ total_bytes: 50031
61
+ }
62
+
63
+ 2022-02-01 15:08:27,087 INFO MainThread:3248238 [wandb_run.py:_wait_for_finish():1912] got exit ret: file_counts {
64
+ wandb_count: 5
65
+ other_count: 1
66
+ }
67
+ pusher_stats {
68
+ uploaded_bytes: 35314
69
+ total_bytes: 50031
70
+ }
71
+
72
+ 2022-02-01 15:08:27,190 INFO MainThread:3248238 [wandb_run.py:_wait_for_finish():1912] got exit ret: file_counts {
73
+ wandb_count: 5
74
+ other_count: 1
75
+ }
76
+ pusher_stats {
77
+ uploaded_bytes: 35314
78
+ total_bytes: 50031
79
+ }
80
+
81
+ 2022-02-01 15:08:27,293 INFO MainThread:3248238 [wandb_run.py:_wait_for_finish():1912] got exit ret: file_counts {
82
+ wandb_count: 5
83
+ other_count: 1
84
+ }
85
+ pusher_stats {
86
+ uploaded_bytes: 50031
87
+ total_bytes: 50031
88
+ }
89
+
90
+ 2022-02-01 15:08:27,395 INFO MainThread:3248238 [wandb_run.py:_wait_for_finish():1912] got exit ret: file_counts {
91
+ wandb_count: 5
92
+ other_count: 1
93
+ }
94
+ pusher_stats {
95
+ uploaded_bytes: 50031
96
+ total_bytes: 50031
97
+ }
98
+
99
+ 2022-02-01 15:08:27,498 INFO MainThread:3248238 [wandb_run.py:_wait_for_finish():1912] got exit ret: file_counts {
100
+ wandb_count: 5
101
+ other_count: 1
102
+ }
103
+ pusher_stats {
104
+ uploaded_bytes: 50031
105
+ total_bytes: 50031
106
+ }
107
+
108
+ 2022-02-01 15:08:27,601 INFO MainThread:3248238 [wandb_run.py:_wait_for_finish():1912] got exit ret: file_counts {
109
+ wandb_count: 5
110
+ other_count: 1
111
+ }
112
+ pusher_stats {
113
+ uploaded_bytes: 50031
114
+ total_bytes: 50031
115
+ }
116
+
117
+ 2022-02-01 15:08:27,703 INFO MainThread:3248238 [wandb_run.py:_wait_for_finish():1912] got exit ret: file_counts {
118
+ wandb_count: 5
119
+ other_count: 1
120
+ }
121
+ pusher_stats {
122
+ uploaded_bytes: 50031
123
+ total_bytes: 50031
124
+ }
125
+
126
+ 2022-02-01 15:08:28,273 INFO MainThread:3248238 [wandb_run.py:_wait_for_finish():1912] got exit ret: file_counts {
127
+ wandb_count: 5
128
+ other_count: 1
129
+ }
130
+ pusher_stats {
131
+ uploaded_bytes: 50031
132
+ total_bytes: 50031
133
+ }
134
+
135
+ 2022-02-01 15:08:28,856 INFO MainThread:3248238 [wandb_run.py:_wait_for_finish():1912] got exit ret: done: true
136
+ exit_result {
137
+ }
138
+ file_counts {
139
+ wandb_count: 5
140
+ other_count: 1
141
+ }
142
+ pusher_stats {
143
+ uploaded_bytes: 50031
144
+ total_bytes: 50031
145
+ }
146
+ local_info {
147
+ }
148
+
149
+ 2022-02-01 15:08:30,178 INFO MainThread:3248238 [wandb_run.py:_append_files():2180] logging synced files
wandb/run-20220201_150818-33gv5m8t/run-33gv5m8t.wandb ADDED
Binary file (10.4 kB). View file
 
wandb/run-20220201_153024-1w85vsuu/files/code/run_speech_recognition_ctc.py ADDED
@@ -0,0 +1,792 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+
16
+ """ Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
17
+
18
+ import functools
19
+ import json
20
+ import logging
21
+ import os
22
+ import re
23
+ import sys
24
+ import warnings
25
+ from dataclasses import dataclass, field
26
+ from typing import Dict, List, Optional, Union
27
+
28
+ import datasets
29
+ import numpy as np
30
+ import torch
31
+ from datasets import DatasetDict, load_dataset, load_metric
32
+
33
+ import transformers
34
+ from transformers import (
35
+ AutoConfig,
36
+ AutoFeatureExtractor,
37
+ AutoModelForCTC,
38
+ AutoProcessor,
39
+ AutoTokenizer,
40
+ HfArgumentParser,
41
+ Trainer,
42
+ TrainingArguments,
43
+ Wav2Vec2Processor,
44
+ set_seed,
45
+ )
46
+ from transformers.trainer_utils import get_last_checkpoint, is_main_process
47
+ from transformers.utils import check_min_version
48
+ from transformers.utils.versions import require_version
49
+
50
+
51
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
52
+ check_min_version("4.16.0.dev0")
53
+
54
+ require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
55
+
56
+
57
+ logger = logging.getLogger(__name__)
58
+
59
+
60
+ def list_field(default=None, metadata=None):
61
+ return field(default_factory=lambda: default, metadata=metadata)
62
+
63
+
64
+ @dataclass
65
+ class ModelArguments:
66
+ """
67
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
68
+ """
69
+
70
+ model_name_or_path: str = field(
71
+ metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
72
+ )
73
+ tokenizer_name_or_path: Optional[str] = field(
74
+ default=None,
75
+ metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
76
+ )
77
+ cache_dir: Optional[str] = field(
78
+ default=None,
79
+ metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
80
+ )
81
+ freeze_feature_encoder: bool = field(
82
+ default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
83
+ )
84
+ attention_dropout: float = field(
85
+ default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
86
+ )
87
+ activation_dropout: float = field(
88
+ default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
89
+ )
90
+ feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
91
+ hidden_dropout: float = field(
92
+ default=0.0,
93
+ metadata={
94
+ "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
95
+ },
96
+ )
97
+ final_dropout: float = field(
98
+ default=0.0,
99
+ metadata={"help": "The dropout probability for the final projection layer."},
100
+ )
101
+ mask_time_prob: float = field(
102
+ default=0.05,
103
+ metadata={
104
+ "help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
105
+ "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
106
+ "vectors will be masked along the time axis."
107
+ },
108
+ )
109
+ mask_time_length: int = field(
110
+ default=10,
111
+ metadata={"help": "Length of vector span to mask along the time axis."},
112
+ )
113
+ mask_feature_prob: float = field(
114
+ default=0.0,
115
+ metadata={
116
+ "help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
117
+ "span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
118
+ },
119
+ )
120
+ mask_feature_length: int = field(
121
+ default=10,
122
+ metadata={"help": "Length of vector span to mask along the feature axis."},
123
+ )
124
+ layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
125
+ ctc_loss_reduction: Optional[str] = field(
126
+ default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
127
+ )
128
+ ctc_zero_infinity: Optional[bool] = field(
129
+ default=False, metadata={"help": "If True, will try yo aboud the CTC loss goinf to infinity."}
130
+ )
131
+
132
+ @dataclass
133
+ class DataTrainingArguments:
134
+ """
135
+ Arguments pertaining to what data we are going to input our model for training and eval.
136
+
137
+ Using `HfArgumentParser` we can turn this class
138
+ into argparse arguments to be able to specify them on
139
+ the command line.
140
+ """
141
+
142
+ dataset_name: str = field(
143
+ metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
144
+ )
145
+ dataset_config_name: str = field(
146
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
147
+ )
148
+ train_split_name: str = field(
149
+ default="train+validation",
150
+ metadata={
151
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
152
+ },
153
+ )
154
+ eval_split_name: str = field(
155
+ default="test",
156
+ metadata={
157
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
158
+ },
159
+ )
160
+ audio_column_name: str = field(
161
+ default="audio",
162
+ metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
163
+ )
164
+ text_column_name: str = field(
165
+ default="text",
166
+ metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
167
+ )
168
+ overwrite_cache: bool = field(
169
+ default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
170
+ )
171
+ preprocessing_num_workers: Optional[int] = field(
172
+ default=None,
173
+ metadata={"help": "The number of processes to use for the preprocessing."},
174
+ )
175
+ max_train_samples: Optional[int] = field(
176
+ default=None,
177
+ metadata={
178
+ "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
179
+ "value if set."
180
+ },
181
+ )
182
+ max_eval_samples: Optional[int] = field(
183
+ default=None,
184
+ metadata={
185
+ "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
186
+ "value if set."
187
+ },
188
+ )
189
+ chars_to_ignore: Optional[List[str]] = list_field(
190
+ default=None,
191
+ metadata={"help": "A list of characters to remove from the transcripts."},
192
+ )
193
+ eval_metrics: List[str] = list_field(
194
+ default=["wer"],
195
+ metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
196
+ )
197
+ max_duration_in_seconds: float = field(
198
+ default=20.0,
199
+ metadata={
200
+ "help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
201
+ },
202
+ )
203
+ min_duration_in_seconds: float = field(
204
+ default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
205
+ )
206
+ preprocessing_only: bool = field(
207
+ default=False,
208
+ metadata={
209
+ "help": "Whether to only do data preprocessing and skip training. "
210
+ "This is especially useful when data preprocessing errors out in distributed training due to timeout. "
211
+ "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
212
+ "so that the cached datasets can consequently be loaded in distributed training"
213
+ },
214
+ )
215
+ use_auth_token: bool = field(
216
+ default=False,
217
+ metadata={
218
+ "help": "If :obj:`True`, will use the token generated when running"
219
+ ":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
220
+ },
221
+ )
222
+ unk_token: str = field(
223
+ default="[UNK]",
224
+ metadata={"help": "The unk token for the tokenizer"},
225
+ )
226
+ pad_token: str = field(
227
+ default="[PAD]",
228
+ metadata={"help": "The padding token for the tokenizer"},
229
+ )
230
+ word_delimiter_token: str = field(
231
+ default="|",
232
+ metadata={"help": "The word delimiter token for the tokenizer"},
233
+ )
234
+ phoneme_language: Optional[str] = field(
235
+ default=None,
236
+ metadata={
237
+ "help": "The target language that should be used be"
238
+ " passed to the tokenizer for tokenization. Note that"
239
+ " this is only relevant if the model classifies the"
240
+ " input audio to a sequence of phoneme sequences."
241
+ },
242
+ )
243
+
244
+
245
+ @dataclass
246
+ class DataCollatorCTCWithPadding:
247
+ """
248
+ Data collator that will dynamically pad the inputs received.
249
+ Args:
250
+ processor (:class:`~transformers.AutoProcessor`)
251
+ The processor used for proccessing the data.
252
+ padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
253
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
254
+ among:
255
+ * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
256
+ sequence if provided).
257
+ * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
258
+ maximum acceptable input length for the model if that argument is not provided.
259
+ * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
260
+ different lengths).
261
+ max_length (:obj:`int`, `optional`):
262
+ Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
263
+ max_length_labels (:obj:`int`, `optional`):
264
+ Maximum length of the ``labels`` returned list and optionally padding length (see above).
265
+ pad_to_multiple_of (:obj:`int`, `optional`):
266
+ If set will pad the sequence to a multiple of the provided value.
267
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
268
+ 7.5 (Volta).
269
+ """
270
+
271
+ processor: AutoProcessor
272
+ padding: Union[bool, str] = "longest"
273
+ pad_to_multiple_of: Optional[int] = None
274
+ pad_to_multiple_of_labels: Optional[int] = None
275
+
276
+ def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
277
+ # split inputs and labels since they have to be of different lenghts and need
278
+ # different padding methods
279
+ input_features = [{"input_values": feature["input_values"]} for feature in features]
280
+ label_features = [{"input_ids": feature["labels"]} for feature in features]
281
+
282
+ batch = self.processor.pad(
283
+ input_features,
284
+ padding=self.padding,
285
+ pad_to_multiple_of=self.pad_to_multiple_of,
286
+ return_tensors="pt",
287
+ )
288
+
289
+ with self.processor.as_target_processor():
290
+ labels_batch = self.processor.pad(
291
+ label_features,
292
+ padding=self.padding,
293
+ pad_to_multiple_of=self.pad_to_multiple_of_labels,
294
+ return_tensors="pt",
295
+ )
296
+
297
+ # replace padding with -100 to ignore loss correctly
298
+ labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
299
+
300
+ batch["labels"] = labels
301
+
302
+ return batch
303
+
304
+
305
+ def create_vocabulary_from_data(
306
+ datasets: DatasetDict,
307
+ word_delimiter_token: Optional[str] = None,
308
+ unk_token: Optional[str] = None,
309
+ pad_token: Optional[str] = None,
310
+ ):
311
+ # Given training and test labels create vocabulary
312
+ def extract_all_chars(batch):
313
+ all_text = " ".join(batch["target_text"])
314
+ vocab = list(set(all_text))
315
+ return {"vocab": [vocab], "all_text": [all_text]}
316
+
317
+ vocabs = datasets.map(
318
+ extract_all_chars,
319
+ batched=True,
320
+ batch_size=-1,
321
+ keep_in_memory=True,
322
+ remove_columns=datasets["train"].column_names,
323
+ )
324
+
325
+ # take union of all unique characters in each dataset
326
+ vocab_set = functools.reduce(
327
+ lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
328
+ )
329
+
330
+ vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
331
+
332
+ # replace white space with delimiter token
333
+ if word_delimiter_token is not None:
334
+ vocab_dict[word_delimiter_token] = vocab_dict[" "]
335
+ del vocab_dict[" "]
336
+
337
+ # add unk and pad token
338
+ if unk_token is not None:
339
+ vocab_dict[unk_token] = len(vocab_dict)
340
+
341
+ if pad_token is not None:
342
+ vocab_dict[pad_token] = len(vocab_dict)
343
+
344
+ return vocab_dict
345
+
346
+
347
+ def main():
348
+ # See all possible arguments in src/transformers/training_args.py
349
+ # or by passing the --help flag to this script.
350
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
351
+
352
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
353
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
354
+ # If we pass only one argument to the script and it's the path to a json file,
355
+ # let's parse it to get our arguments.
356
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
357
+ else:
358
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
359
+
360
+ # Detecting last checkpoint.
361
+ last_checkpoint = None
362
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
363
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
364
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
365
+ raise ValueError(
366
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
367
+ "Use --overwrite_output_dir to overcome."
368
+ )
369
+ elif last_checkpoint is not None:
370
+ logger.info(
371
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
372
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
373
+ )
374
+
375
+ # Setup logging
376
+ logging.basicConfig(
377
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
378
+ datefmt="%m/%d/%Y %H:%M:%S",
379
+ handlers=[logging.StreamHandler(sys.stdout)],
380
+ )
381
+ logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
382
+
383
+ # Log on each process the small summary:
384
+ logger.warning(
385
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
386
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
387
+ )
388
+ # Set the verbosity to info of the Transformers logger (on main process only):
389
+ if is_main_process(training_args.local_rank):
390
+ transformers.utils.logging.set_verbosity_info()
391
+ logger.info("Training/evaluation parameters %s", training_args)
392
+
393
+ # Set seed before initializing model.
394
+ set_seed(training_args.seed)
395
+
396
+ # Pre-processing dataset
397
+ import re
398
+ def filter_numeric(entry):
399
+ return (
400
+ "0" not in entry["text"]
401
+ and "1" not in entry["text"]
402
+ and "2" not in entry["text"]
403
+ and "3" not in entry["text"]
404
+ and "4" not in entry["text"]
405
+ and "5" not in entry["text"]
406
+ and "6" not in entry["text"]
407
+ and "7" not in entry["text"]
408
+ and "8" not in entry["text"]
409
+ and "9" not in entry["text"]
410
+ )
411
+
412
+ def filter_inaudible(entry):
413
+ return not re.search("\d|<inaudible>", entry["text"], flags=re.IGNORECASE)
414
+
415
+ def filter_nynorsk(entry):
416
+ return re.search("nb-no", entry["sentence_language_code"], flags=re.IGNORECASE)
417
+
418
+ def filter_tooshort(entry):
419
+ #print(f"The audio sample ({entry["audio"]["path"]}) is too small, and has been omitted. "
420
+ return (len(entry["text"]) <= len(entry["audio"]["array"]) // 320) and (len(entry["text"].strip()) >= 3)
421
+
422
+ def map_dataset(entry):
423
+ batch = {"text": entry["text"].lower()}
424
+ batch["text"] = re.sub('[áàâ]', 'a', batch["text"])
425
+ batch["text"] = re.sub('[ä]', 'æ', batch["text"])
426
+ batch["text"] = re.sub('[éèëê]', 'e', batch["text"])
427
+ batch["text"] = re.sub('[íìïî]', 'i', batch["text"])
428
+ batch["text"] = re.sub('[óòöô]', 'o', batch["text"])
429
+ batch["text"] = re.sub('[ö]', 'ø', batch["text"])
430
+ batch["text"] = re.sub('[ç]', 'c', batch["text"])
431
+ batch["text"] = re.sub('[úùüû]', 'u', batch["text"])
432
+ batch["text"] = re.sub('\s', ' ', batch["text"])
433
+ batch["text"] = re.sub('<ee>', 'eee', batch["text"])
434
+ batch["text"] = re.sub('<qq>', 'qqq', batch["text"])
435
+ batch["text"] = re.sub('<mm>', 'mmm', batch["text"])
436
+ # batch["text"] = re.sub('<inaudible>', '?', batch["text"])
437
+ if "<" in batch["text"]:
438
+ raise ValueError(batch["text"])
439
+ return batch
440
+
441
+ # 1. First, let's load the dataset
442
+ raw_datasets = DatasetDict()
443
+
444
+ if training_args.do_train:
445
+ raw_datasets["train"] = load_dataset(
446
+ data_args.dataset_name,
447
+ data_args.dataset_config_name,
448
+ split=data_args.train_split_name,
449
+ use_auth_token=data_args.use_auth_token,
450
+ )
451
+ raw_datasets["train"] = raw_datasets["train"].filter(filter_numeric).filter(filter_inaudible).filter(filter_nynorsk).filter(filter_tooshort)
452
+ raw_datasets["train"] = raw_datasets["train"].map(map_dataset)
453
+
454
+ if data_args.audio_column_name not in raw_datasets["train"].column_names:
455
+ raise ValueError(
456
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
457
+ "Make sure to set `--audio_column_name` to the correct audio column - one of "
458
+ f"{', '.join(raw_datasets['train'].column_names)}."
459
+ )
460
+
461
+ if data_args.text_column_name not in raw_datasets["train"].column_names:
462
+ raise ValueError(
463
+ f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
464
+ "Make sure to set `--text_column_name` to the correct text column - one of "
465
+ f"{', '.join(raw_datasets['train'].column_names)}."
466
+ )
467
+
468
+ if data_args.max_train_samples is not None:
469
+ raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
470
+
471
+ if training_args.do_eval:
472
+ raw_datasets["eval"] = load_dataset(
473
+ data_args.dataset_name,
474
+ data_args.dataset_config_name,
475
+ split=data_args.eval_split_name,
476
+ use_auth_token=data_args.use_auth_token,
477
+ )
478
+ raw_datasets["eval"] = raw_datasets["eval"].filter(filter_numeric).filter(filter_inaudible).filter(filter_nynorsk).filter(filter_tooshort)
479
+ raw_datasets["eval"] = raw_datasets["eval"].map(map_dataset)
480
+
481
+ if data_args.max_eval_samples is not None:
482
+ raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
483
+
484
+
485
+ # 2. We remove some special characters from the datasets
486
+ # that make training complicated and do not help in transcribing the speech
487
+ # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
488
+ # that could be easily picked up by the model
489
+ #chars_to_ignore_regex = (
490
+ # f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
491
+ #)
492
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\–\_\\\+\#\/]'
493
+
494
+ text_column_name = data_args.text_column_name
495
+
496
+ def remove_special_characters(batch):
497
+ if chars_to_ignore_regex is not None:
498
+ batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
499
+ else:
500
+ batch["target_text"] = batch[text_column_name].lower() + " "
501
+ return batch
502
+
503
+ with training_args.main_process_first(desc="dataset map special characters removal"):
504
+ raw_datasets = raw_datasets.map(
505
+ remove_special_characters,
506
+ remove_columns=[text_column_name],
507
+ desc="remove special characters from datasets",
508
+ )
509
+
510
+ # save special tokens for tokenizer
511
+ word_delimiter_token = data_args.word_delimiter_token
512
+ unk_token = data_args.unk_token
513
+ pad_token = data_args.pad_token
514
+
515
+ # 3. Next, let's load the config as we might need it to create
516
+ # the tokenizer
517
+ # load config
518
+ config = AutoConfig.from_pretrained(
519
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
520
+ )
521
+
522
+ # 4. Next, if no tokenizer file is defined,
523
+ # we create the vocabulary of the model by extracting all unique characters from
524
+ # the training and evaluation datasets
525
+ # We need to make sure that only first rank saves vocabulary
526
+ # make sure all processes wait until vocab is created
527
+ tokenizer_name_or_path = model_args.tokenizer_name_or_path
528
+ tokenizer_kwargs = {}
529
+ if tokenizer_name_or_path is None:
530
+ # save vocab in training output dir
531
+ tokenizer_name_or_path = training_args.output_dir
532
+
533
+ vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
534
+
535
+ with training_args.main_process_first():
536
+ if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
537
+ os.remove(vocab_file)
538
+
539
+ with training_args.main_process_first(desc="dataset map vocabulary creation"):
540
+ if not os.path.isfile(vocab_file):
541
+ os.makedirs(tokenizer_name_or_path, exist_ok=True)
542
+ vocab_dict = create_vocabulary_from_data(
543
+ raw_datasets,
544
+ word_delimiter_token=word_delimiter_token,
545
+ unk_token=unk_token,
546
+ pad_token=pad_token,
547
+ )
548
+
549
+ # save vocab dict to be loaded into tokenizer
550
+ with open(vocab_file, "w") as file:
551
+ json.dump(vocab_dict, file)
552
+
553
+ # if tokenizer has just been created
554
+ # it is defined by `tokenizer_class` if present in config else by `model_type`
555
+ tokenizer_kwargs = {
556
+ "config": config if config.tokenizer_class is not None else None,
557
+ "tokenizer_type": config.model_type if config.tokenizer_class is None else None,
558
+ "unk_token": unk_token,
559
+ "pad_token": pad_token,
560
+ "word_delimiter_token": word_delimiter_token,
561
+ }
562
+
563
+ # 5. Now we can instantiate the feature extractor, tokenizer and model
564
+ # Note for distributed training, the .from_pretrained methods guarantee that only
565
+ # one local process can concurrently download model & vocab.
566
+
567
+ # load feature_extractor and tokenizer
568
+ tokenizer = AutoTokenizer.from_pretrained(
569
+ tokenizer_name_or_path,
570
+ use_auth_token=data_args.use_auth_token,
571
+ **tokenizer_kwargs,
572
+ )
573
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
574
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
575
+ )
576
+
577
+ # adapt config
578
+ config.update(
579
+ {
580
+ "feat_proj_dropout": model_args.feat_proj_dropout,
581
+ "attention_dropout": model_args.attention_dropout,
582
+ "hidden_dropout": model_args.hidden_dropout,
583
+ "final_dropout": model_args.final_dropout,
584
+ "mask_time_prob": model_args.mask_time_prob,
585
+ "mask_time_length": model_args.mask_time_length,
586
+ "mask_feature_prob": model_args.mask_feature_prob,
587
+ "mask_feature_length": model_args.mask_feature_length,
588
+ "gradient_checkpointing": training_args.gradient_checkpointing,
589
+ "layerdrop": model_args.layerdrop,
590
+ "ctc_loss_reduction": model_args.ctc_loss_reduction,
591
+ "ctc_zero_infinity": model_args.ctc_zero_infinity,
592
+ "pad_token_id": tokenizer.pad_token_id,
593
+ "vocab_size": len(tokenizer),
594
+ "activation_dropout": model_args.activation_dropout,
595
+ }
596
+ )
597
+
598
+ # create model
599
+ model = AutoModelForCTC.from_pretrained(
600
+ model_args.model_name_or_path,
601
+ cache_dir=model_args.cache_dir,
602
+ config=config,
603
+ use_auth_token=data_args.use_auth_token,
604
+ )
605
+
606
+ # freeze encoder
607
+ if model_args.freeze_feature_encoder:
608
+ model.freeze_feature_encoder()
609
+
610
+ # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
611
+ # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
612
+ # so that we just need to set the correct target sampling rate and normalize the input
613
+ # via the `feature_extractor`
614
+
615
+ # make sure that dataset decodes audio with correct sampling rate
616
+ dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
617
+ if dataset_sampling_rate != feature_extractor.sampling_rate:
618
+ raw_datasets = raw_datasets.cast_column(
619
+ data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
620
+ )
621
+
622
+ # derive max & min input length for sample rate & max duration
623
+ max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
624
+ min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
625
+ audio_column_name = data_args.audio_column_name
626
+ num_workers = data_args.preprocessing_num_workers
627
+
628
+ # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
629
+ phoneme_language = data_args.phoneme_language
630
+
631
+ # Preprocessing the datasets.
632
+ # We need to read the audio files as arrays and tokenize the targets.
633
+ def prepare_dataset(batch):
634
+ # load audio
635
+ sample = batch[audio_column_name]
636
+
637
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
638
+ batch["input_values"] = inputs.input_values[0]
639
+ batch["input_length"] = len(batch["input_values"])
640
+
641
+ # encode targets
642
+ additional_kwargs = {}
643
+ if phoneme_language is not None:
644
+ additional_kwargs["phonemizer_lang"] = phoneme_language
645
+
646
+ batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
647
+ return batch
648
+
649
+ with training_args.main_process_first(desc="dataset map preprocessing"):
650
+ vectorized_datasets = raw_datasets.map(
651
+ prepare_dataset,
652
+ remove_columns=next(iter(raw_datasets.values())).column_names,
653
+ num_proc=num_workers,
654
+ desc="preprocess datasets",
655
+ )
656
+
657
+ def is_audio_in_length_range(length):
658
+ return length > min_input_length and length < max_input_length
659
+
660
+ # filter data that is shorter than min_input_length
661
+ vectorized_datasets = vectorized_datasets.filter(
662
+ is_audio_in_length_range,
663
+ num_proc=num_workers,
664
+ input_columns=["input_length"],
665
+ )
666
+
667
+ # 7. Next, we can prepare the training.
668
+ # Let's use word error rate (WER) as our evaluation metric,
669
+ # instantiate a data collator and the trainer
670
+
671
+ # Define evaluation metrics during training, *i.e.* word error rate, character error rate
672
+ eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
673
+
674
+ # for large datasets it is advised to run the preprocessing on a
675
+ # single machine first with ``args.preprocessing_only`` since there will mostly likely
676
+ # be a timeout when running the script in distributed mode.
677
+ # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
678
+ # cached dataset
679
+ if data_args.preprocessing_only:
680
+ logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
681
+ return
682
+
683
+ def compute_metrics(pred):
684
+ pred_logits = pred.predictions
685
+ pred_ids = np.argmax(pred_logits, axis=-1)
686
+
687
+ pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
688
+
689
+ pred_str = tokenizer.batch_decode(pred_ids)
690
+ # we do not want to group tokens when computing the metrics
691
+ label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
692
+
693
+ metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
694
+
695
+ return metrics
696
+
697
+ # Now save everything to be able to create a single processor later
698
+ if is_main_process(training_args.local_rank):
699
+ # save feature extractor, tokenizer and config
700
+ feature_extractor.save_pretrained(training_args.output_dir)
701
+ tokenizer.save_pretrained(training_args.output_dir)
702
+ config.save_pretrained(training_args.output_dir)
703
+
704
+ try:
705
+ processor = AutoProcessor.from_pretrained(training_args.output_dir)
706
+ except (OSError, KeyError):
707
+ warnings.warn(
708
+ "Loading a processor from a feature extractor config that does not"
709
+ " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
710
+ " attribute to your `preprocessor_config.json` file to suppress this warning: "
711
+ " `'processor_class': 'Wav2Vec2Processor'`",
712
+ FutureWarning,
713
+ )
714
+ processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
715
+
716
+ # Instantiate custom data collator
717
+ data_collator = DataCollatorCTCWithPadding(processor=processor)
718
+
719
+ # Initialize Trainer
720
+ trainer = Trainer(
721
+ model=model,
722
+ data_collator=data_collator,
723
+ args=training_args,
724
+ compute_metrics=compute_metrics,
725
+ train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
726
+ eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
727
+ tokenizer=feature_extractor,
728
+ )
729
+
730
+ # 8. Finally, we can start training
731
+
732
+ # Training
733
+ if training_args.do_train:
734
+
735
+ # use last checkpoint if exist
736
+ if last_checkpoint is not None:
737
+ checkpoint = last_checkpoint
738
+ elif os.path.isdir(model_args.model_name_or_path):
739
+ checkpoint = model_args.model_name_or_path
740
+ else:
741
+ checkpoint = None
742
+
743
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
744
+ trainer.save_model()
745
+
746
+ metrics = train_result.metrics
747
+ max_train_samples = (
748
+ data_args.max_train_samples
749
+ if data_args.max_train_samples is not None
750
+ else len(vectorized_datasets["train"])
751
+ )
752
+ metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
753
+
754
+ trainer.log_metrics("train", metrics)
755
+ trainer.save_metrics("train", metrics)
756
+ trainer.save_state()
757
+
758
+ # Evaluation
759
+ results = {}
760
+ if training_args.do_eval:
761
+ logger.info("*** Evaluate ***")
762
+ metrics = trainer.evaluate()
763
+ max_eval_samples = (
764
+ data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
765
+ )
766
+ metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
767
+
768
+ trainer.log_metrics("eval", metrics)
769
+ trainer.save_metrics("eval", metrics)
770
+
771
+ # Write model card and (optionally) push to hub
772
+ config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
773
+ kwargs = {
774
+ "finetuned_from": model_args.model_name_or_path,
775
+ "tasks": "speech-recognition",
776
+ "tags": ["automatic-speech-recognition", data_args.dataset_name],
777
+ "dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
778
+ "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
779
+ }
780
+ if "common_voice" in data_args.dataset_name:
781
+ kwargs["language"] = config_name
782
+
783
+ if training_args.push_to_hub:
784
+ trainer.push_to_hub(**kwargs)
785
+ else:
786
+ trainer.create_model_card(**kwargs)
787
+
788
+ return results
789
+
790
+
791
+ if __name__ == "__main__":
792
+ main()
wandb/run-20220201_153024-1w85vsuu/files/config.yaml ADDED
The diff for this file is too large to render. See raw diff
 
wandb/run-20220201_153024-1w85vsuu/files/output.log ADDED
@@ -0,0 +1,719 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+
4
+
5
+
6
+
7
+
8
+
9
+
10
+
11
+
12
+
13
+
14
+
15
+
16
+
17
+
18
+
19
+
20
+
21
+
22
+
23
+
24
+
25
+
26
+
27
+
28
+
29
+
30
+
31
+
32
+
33
+
34
+
35
+
36
+
37
+
38
+
39
+
40
+
41
+
42
+
43
+
44
+
45
+
46
+
47
+
48
+
49
+
50
+
51
+
52
+
53
+
54
+
55
+
56
+
57
+
58
+
59
+
60
+
61
+
62
+
63
+
64
+
65
+
66
+
67
+
68
+
69
+
70
+
71
+
72
+
73
+
74
+
75
+
76
+
77
+
78
+
79
+
80
+
81
+
82
+
83
+
84
+
85
+
86
+
87
+
88
+
89
+
90
+
91
+
92
+ 0%|█ | 100/23265 [06:27<5:40:44, 1.13it/s]
93
+
94
+
95
+
96
+
97
+
98
+
99
+
100
+
101
+
102
+
103
+
104
+
105
+
106
+
107
+
108
+
109
+
110
+
111
+
112
+
113
+
114
+
115
+
116
+
117
+
118
+
119
+
120
+
121
+
122
+
123
+
124
+
125
+
126
+
127
+
128
+
129
+
130
+
131
+
132
+
133
+
134
+
135
+
136
+
137
+
138
+
139
+
140
+
141
+
142
+
143
+
144
+
145
+
146
+
147
+
148
+
149
+
150
+
151
+
152
+
153
+
154
+
155
+
156
+
157
+
158
+
159
+
160
+
161
+
162
+
163
+
164
+
165
+
166
+
167
+
168
+
169
+
170
+
171
+
172
+
173
+
174
+
175
+
176
+
177
+
178
+
179
+
180
+
181
+
182
+ 1%|██ | 199/23265 [12:55<6:10:42, 1.04it/s]
183
+
184
+
185
+
186
+
187
+
188
+
189
+
190
+
191
+
192
+
193
+
194
+
195
+
196
+
197
+
198
+
199
+
200
+
201
+
202
+
203
+
204
+
205
+
206
+
207
+
208
+
209
+
210
+
211
+
212
+
213
+
214
+
215
+
216
+
217
+
218
+
219
+
220
+
221
+
222
+
223
+
224
+
225
+
226
+
227
+
228
+
229
+
230
+
231
+
232
+
233
+
234
+
235
+
236
+
237
+
238
+
239
+
240
+
241
+
242
+
243
+
244
+
245
+
246
+
247
+
248
+
249
+
250
+
251
+
252
+
253
+
254
+
255
+
256
+
257
+
258
+
259
+
260
+
261
+
262
+
263
+
264
+
265
+
266
+
267
+
268
+
269
+
270
+
271
+
272
+
273
+ 1%|███ | 300/23265 [19:23<5:54:38, 1.08it/s]
274
+
275
+
276
+
277
+
278
+
279
+
280
+
281
+
282
+
283
+
284
+
285
+
286
+
287
+
288
+
289
+
290
+
291
+
292
+
293
+
294
+
295
+
296
+
297
+
298
+
299
+
300
+
301
+
302
+
303
+
304
+
305
+
306
+
307
+
308
+
309
+
310
+
311
+
312
+
313
+
314
+
315
+
316
+
317
+
318
+
319
+
320
+
321
+
322
+
323
+
324
+
325
+
326
+
327
+
328
+
329
+
330
+
331
+
332
+
333
+
334
+
335
+
336
+
337
+
338
+
339
+
340
+
341
+
342
+
343
+
344
+
345
+
346
+
347
+
348
+
349
+
350
+
351
+
352
+
353
+
354
+
355
+
356
+
357
+
358
+
359
+
360
+
361
+
362
+
363
+ 2%|████ | 399/23265 [25:54<6:11:33, 1.03it/s]
364
+
365
+
366
+
367
+
368
+
369
+
370
+
371
+
372
+
373
+
374
+
375
+
376
+
377
+
378
+
379
+
380
+
381
+
382
+
383
+
384
+
385
+
386
+
387
+
388
+
389
+
390
+
391
+
392
+
393
+
394
+
395
+
396
+
397
+
398
+
399
+
400
+
401
+
402
+
403
+
404
+
405
+
406
+
407
+
408
+
409
+
410
+
411
+
412
+
413
+
414
+
415
+
416
+
417
+
418
+
419
+
420
+
421
+
422
+
423
+
424
+
425
+
426
+
427
+
428
+
429
+
430
+
431
+
432
+
433
+
434
+
435
+
436
+
437
+
438
+
439
+
440
+
441
+
442
+
443
+
444
+
445
+
446
+
447
+
448
+
449
+
450
+
451
+
452
+
453
+
454
+ 2%|█████▏ | 500/23265 [32:26<5:34:06, 1.14it/s]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length. If input_length are not expected by `Wav2Vec2ForCTC.forward`, you can safely ignore this message.
455
+ ***** Running Evaluation *****
456
+ Num examples = 5437
457
+ Batch size = 16
458
+ {'loss': 0.8361, 'learning_rate': 2.48e-05, 'epoch': 0.32}
459
+
460
+
461
+
462
+
463
+
464
+
465
+
466
+
467
+
468
+
469
+
470
+
471
+
472
+
473
+
474
+
475
+
476
+
477
+
478
+
479
+
480
+
481
+
482
+
483
+
484
+
485
+
486
+
487
+
488
+
489
+
490
+
491
+
492
+
493
+
494
+
495
+
496
+
497
+
498
+
499
+
500
+
501
+
502
+
503
+
504
+
505
+
506
+
507
+
508
+
509
+
510
+
511
+
512
+
513
+
514
+
515
+
516
+
517
+
518
+
519
+
520
+
521
+
522
+
523
+
524
+
525
+
526
+
527
+
528
+
529
+
530
+
531
+
532
+
533
+
534
+
535
+
536
+
537
+
538
+
539
+
540
+
541
+
542
+
543
+
544
+
545
+
546
+
547
+
548
+
549
+
550
+
551
+
552
+
553
+
554
+
555
+
556
+
557
+
558
+
559
+
560
+
561
+
562
+
563
+
564
+
565
+
566
+
567
+
568
+
569
+
570
+
571
+
572
+
573
+
574
+
575
+
576
+
577
+
578
+
579
+
580
+
581
+
582
+
583
+
584
+
585
+
586
+
587
+
588
+
589
+
590
+
591
+
592
+
593
+
594
+
595
+
596
+
597
+
598
+
599
+
600
+
601
+
602
+
603
+
604
+
605
+
606
+
607
+
608
+
609
+
610
+
611
+
612
+
613
+
614
+
615
+
616
+
617
+
618
+
619
+
620
+
621
+
622
+
623
+
624
+
625
+
626
+
627
+
628
+
629
+
630
+
631
+
632
+
633
+
634
+
635
+
636
+
637
+
638
+
639
+
640
+
641
+
642
+
643
+
644
+
645
+
646
+
647
+
648
+
649
+
650
+
651
+
652
+
653
+
654
+
655
+
656
+
657
+
658
+
659
+
660
+
661
+
662
+
663
+
664
+
665
+
666
+
667
+
668
+
669
+
670
+
671
+
672
+
673
+
674
+
675
+
676
+
677
+
678
+
679
+
680
+
681
+
682
+
683
+
684
+
685
+
686
+
687
+
688
+
689
+
690
+
691
+
692
+
693
+
694
+
695
+
696
+
697
+
698
+
699
+
700
+
701
+
702
+
703
+
704
+
705
+
706
+
707
+
708
+
709
+
710
+
711
+
712
+
713
+
714
+
715
+
716
+ Configuration saved in ./checkpoint-500/config.json
717
+ {'eval_loss': 0.6304140686988831, 'eval_wer': 0.4970241305264396, 'eval_runtime': 553.4275, 'eval_samples_per_second': 9.824, 'eval_steps_per_second': 0.614, 'epoch': 0.32}
718
+ Model weights saved in ./checkpoint-500/pytorch_model.bin
719
+ Configuration saved in ./checkpoint-500/preprocessor_config.json
wandb/run-20220201_153024-1w85vsuu/files/requirements.txt ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ absl-py==1.0.0
2
+ aiohttp==3.8.1
3
+ aiosignal==1.2.0
4
+ appdirs==1.4.4
5
+ astunparse==1.6.3
6
+ async-timeout==4.0.2
7
+ attrs==21.4.0
8
+ audioread==2.1.9
9
+ cachetools==5.0.0
10
+ certifi==2021.10.8
11
+ cffi==1.15.0
12
+ charset-normalizer==2.0.11
13
+ click==8.0.3
14
+ configparser==5.2.0
15
+ datasets==1.18.3.dev0
16
+ decorator==5.1.1
17
+ deepspeed==0.5.10
18
+ dill==0.3.4
19
+ docker-pycreds==0.4.0
20
+ fairscale==0.4.5
21
+ filelock==3.4.2
22
+ flatbuffers==2.0
23
+ frozenlist==1.3.0
24
+ fsspec==2022.1.0
25
+ gast==0.4.0
26
+ gitdb==4.0.9
27
+ gitpython==3.1.26
28
+ google-auth-oauthlib==0.4.6
29
+ google-auth==2.6.0
30
+ google-pasta==0.2.0
31
+ grpcio==1.43.0
32
+ h5py==3.6.0
33
+ hjson==3.0.2
34
+ huggingface-hub==0.4.0
35
+ idna==3.3
36
+ importlib-metadata==4.10.1
37
+ jiwer==2.3.0
38
+ joblib==1.1.0
39
+ keras-preprocessing==1.1.2
40
+ keras==2.7.0
41
+ libclang==13.0.0
42
+ librosa==0.8.1
43
+ llvmlite==0.38.0
44
+ markdown==3.3.6
45
+ multidict==6.0.2
46
+ multiprocess==0.70.12.2
47
+ ninja==1.10.2.3
48
+ numba==0.55.1
49
+ numpy==1.21.5
50
+ oauthlib==3.2.0
51
+ opt-einsum==3.3.0
52
+ packaging==21.3
53
+ pandas==1.4.0
54
+ pathtools==0.1.2
55
+ pillow==9.0.0
56
+ pip==20.3.4
57
+ pkg-resources==0.0.0
58
+ pooch==1.6.0
59
+ promise==2.3
60
+ protobuf==3.19.4
61
+ psutil==5.9.0
62
+ py-cpuinfo==8.0.0
63
+ pyarrow==6.0.1
64
+ pyasn1-modules==0.2.8
65
+ pyasn1==0.4.8
66
+ pycparser==2.21
67
+ pyparsing==3.0.7
68
+ python-dateutil==2.8.2
69
+ python-levenshtein==0.12.2
70
+ pytz==2021.3
71
+ pyyaml==6.0
72
+ regex==2022.1.18
73
+ requests-oauthlib==1.3.1
74
+ requests==2.27.1
75
+ resampy==0.2.2
76
+ rsa==4.8
77
+ sacremoses==0.0.47
78
+ scikit-learn==1.0.2
79
+ scipy==1.7.3
80
+ sentry-sdk==1.5.4
81
+ setuptools==44.1.1
82
+ shortuuid==1.0.8
83
+ six==1.16.0
84
+ smmap==5.0.0
85
+ soundfile==0.10.3.post1
86
+ subprocess32==3.5.4
87
+ tensorboard-data-server==0.6.1
88
+ tensorboard-plugin-wit==1.8.1
89
+ tensorboard==2.8.0
90
+ tensorflow-estimator==2.7.0
91
+ tensorflow-io-gcs-filesystem==0.23.1
92
+ tensorflow==2.7.0
93
+ termcolor==1.1.0
94
+ threadpoolctl==3.1.0
95
+ tokenizers==0.11.4
96
+ torch==1.10.2+cu113
97
+ torchaudio==0.10.2+cu113
98
+ torchvision==0.11.3+cu113
99
+ tqdm==4.62.3
100
+ transformers==4.17.0.dev0
101
+ triton==1.0.0
102
+ typing-extensions==4.0.1
103
+ urllib3==1.26.8
104
+ wandb==0.12.9
105
+ werkzeug==2.0.2
106
+ wheel==0.37.1
107
+ wrapt==1.13.3
108
+ xxhash==2.0.2
109
+ yarl==1.7.2
110
+ yaspin==2.1.0
111
+ zipp==3.7.0
wandb/run-20220201_153024-1w85vsuu/files/wandb-metadata.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "os": "Linux-5.13.0-27-generic-x86_64-with-glibc2.34",
3
+ "python": "3.9.7",
4
+ "heartbeatAt": "2022-02-01T14:30:26.487845",
5
+ "startedAt": "2022-02-01T14:30:24.198879",
6
+ "docker": null,
7
+ "gpu": "NVIDIA RTX A6000",
8
+ "gpu_count": 2,
9
+ "cpu_count": 96,
10
+ "cuda": null,
11
+ "args": [
12
+ "--dataset_name=NbAiLab/NPSC",
13
+ "--model_name_or_path=facebook/wav2vec2-xls-r-1b",
14
+ "--hub_model_id=NbAiLab/wav2vec2-xls-r-1b-npsc",
15
+ "--dataset_config_name=16K_mp3",
16
+ "--output_dir=./",
17
+ "--overwrite_output_dir",
18
+ "--num_train_epochs=15",
19
+ "--per_device_train_batch_size=16",
20
+ "--per_device_eval_batch_size=16",
21
+ "--gradient_accumulation_steps=2",
22
+ "--learning_rate=1e-4",
23
+ "--warmup_steps=2000",
24
+ "--length_column_name=input_length",
25
+ "--evaluation_strategy=steps",
26
+ "--text_column_name=text",
27
+ "--save_steps=500",
28
+ "--eval_steps=500",
29
+ "--logging_steps=100",
30
+ "--layerdrop=0.041",
31
+ "--attention_dropout=0.094",
32
+ "--activation_dropout=0.055",
33
+ "--hidden_dropout=0.047",
34
+ "--save_total_limit=3",
35
+ "--freeze_feature_encoder",
36
+ "--feat_proj_dropout=0.04",
37
+ "--mask_time_prob=0.082",
38
+ "--mask_time_length=10",
39
+ "--mask_feature_prob=0.25",
40
+ "--mask_feature_length=64",
41
+ "--gradient_checkpointing",
42
+ "--min_duration_in_seconds=0.5",
43
+ "--max_duration_in_seconds=30.0",
44
+ "--use_auth_token",
45
+ "--seed=42",
46
+ "--fp16",
47
+ "--group_by_length",
48
+ "--do_train",
49
+ "--do_eval",
50
+ "--push_to_hub",
51
+ "--preprocessing_num_workers=32"
52
+ ],
53
+ "state": "running",
54
+ "program": "/mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/run_speech_recognition_ctc.py",
55
+ "codePath": "run_speech_recognition_ctc.py",
56
+ "git": {
57
+ "remote": "https://huggingface.co/NbAiLab/wav2vec2-xls-r-1b-npsc",
58
+ "commit": "49ef0066d0c9d470f4582bb5d9d905606961208d"
59
+ },
60
+ "email": "versae@gmail.com",
61
+ "root": "/mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc",
62
+ "host": "dante",
63
+ "username": "javierr",
64
+ "executable": "/mnt/lv_ai_1_dante/javierr/audio/bin/python"
65
+ }
wandb/run-20220201_153024-1w85vsuu/files/wandb-summary.json ADDED
The diff for this file is too large to render. See raw diff
 
wandb/run-20220201_153024-1w85vsuu/logs/debug-internal.log ADDED
The diff for this file is too large to render. See raw diff
 
wandb/run-20220201_153024-1w85vsuu/logs/debug.log ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2022-02-01 15:30:24,201 INFO MainThread:3265625 [wandb_setup.py:_flush():71] setting env: {'project': 'wav2vec2', 'entity': 'NbAiLab'}
2
+ 2022-02-01 15:30:24,202 INFO MainThread:3265625 [wandb_setup.py:_flush():71] setting login settings: {}
3
+ 2022-02-01 15:30:24,202 INFO MainThread:3265625 [wandb_init.py:_log_setup():371] Logging user logs to /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_153024-1w85vsuu/logs/debug.log
4
+ 2022-02-01 15:30:24,202 INFO MainThread:3265625 [wandb_init.py:_log_setup():372] Logging internal logs to /mnt/lv_ai_1_dante/javierr/wav2vec2-xls-r-1b-npsc/wandb/run-20220201_153024-1w85vsuu/logs/debug-internal.log
5
+ 2022-02-01 15:30:24,203 INFO MainThread:3265625 [wandb_init.py:init():404] calling init triggers
6
+ 2022-02-01 15:30:24,203 INFO MainThread:3265625 [wandb_init.py:init():409] wandb.init called with sweep_config: {}
7
+ config: {}
8
+ 2022-02-01 15:30:24,203 INFO MainThread:3265625 [wandb_init.py:init():460] starting backend
9
+ 2022-02-01 15:30:24,203 INFO MainThread:3265625 [backend.py:_multiprocessing_setup():99] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
10
+ 2022-02-01 15:30:24,277 INFO MainThread:3265625 [backend.py:ensure_launched():216] starting backend process...
11
+ 2022-02-01 15:30:24,340 INFO MainThread:3265625 [backend.py:ensure_launched():221] started backend process with pid: 3266867
12
+ 2022-02-01 15:30:24,342 INFO MainThread:3265625 [wandb_init.py:init():469] backend started and connected
13
+ 2022-02-01 15:30:24,351 INFO MainThread:3265625 [wandb_init.py:init():533] updated telemetry
14
+ 2022-02-01 15:30:24,502 INFO MainThread:3265625 [wandb_init.py:init():563] communicating current version
15
+ 2022-02-01 15:30:24,961 INFO MainThread:3265625 [wandb_init.py:init():568] got version response
16
+ 2022-02-01 15:30:24,961 INFO MainThread:3265625 [wandb_init.py:init():578] communicating run to backend with 30 second timeout
17
+ 2022-02-01 15:30:25,252 INFO MainThread:3265625 [wandb_init.py:init():606] starting run threads in backend
18
+ 2022-02-01 15:30:26,642 INFO MainThread:3265625 [wandb_run.py:_console_start():1810] atexit reg
19
+ 2022-02-01 15:30:26,643 INFO MainThread:3265625 [wandb_run.py:_redirect():1684] redirect: SettingsConsole.REDIRECT
20
+ 2022-02-01 15:30:26,645 INFO MainThread:3265625 [wandb_run.py:_redirect():1689] Redirecting console.
21
+ 2022-02-01 15:30:26,647 INFO MainThread:3265625 [wandb_run.py:_redirect():1745] Redirects installed.
22
+ 2022-02-01 15:30:26,648 INFO MainThread:3265625 [wandb_init.py:init():633] run started, returning control to user process
23
+ 2022-02-01 15:30:26,671 INFO MainThread:3265625 [wandb_run.py:_config_callback():956] config_cb None None {'return_dict': True, 'output_hidden_states': False, 'output_attentions': False, 'torchscript': False, 'torch_dtype': 'float32', 'use_bfloat16': False, 'pruned_heads': {}, 'tie_word_embeddings': True, 'is_encoder_decoder': False, 'is_decoder': False, 'cross_attention_hidden_size': None, 'add_cross_attention': False, 'tie_encoder_decoder': False, 'max_length': 20, 'min_length': 0, 'do_sample': False, 'early_stopping': False, 'num_beams': 1, 'num_beam_groups': 1, 'diversity_penalty': 0.0, 'temperature': 1.0, 'top_k': 50, 'top_p': 1.0, 'repetition_penalty': 1.0, 'length_penalty': 1.0, 'no_repeat_ngram_size': 0, 'encoder_no_repeat_ngram_size': 0, 'bad_words_ids': None, 'num_return_sequences': 1, 'chunk_size_feed_forward': 0, 'output_scores': False, 'return_dict_in_generate': False, 'forced_bos_token_id': None, 'forced_eos_token_id': None, 'remove_invalid_values': False, 'architectures': ['Wav2Vec2ForPreTraining'], 'finetuning_task': None, 'id2label': {0: 'LABEL_0', 1: 'LABEL_1'}, 'label2id': {'LABEL_0': 0, 'LABEL_1': 1}, 'tokenizer_class': None, 'prefix': None, 'bos_token_id': 1, 'pad_token_id': 31, 'eos_token_id': 2, 'sep_token_id': None, 'decoder_start_token_id': None, 'task_specific_params': None, 'problem_type': None, '_name_or_path': 'facebook/wav2vec2-xls-r-1b', 'transformers_version': '4.17.0.dev0', 'feat_extract_dropout': 0.0, 'model_type': 'wav2vec2', 'num_feat_extract_layers': 7, 'hidden_size': 1280, 'feat_extract_norm': 'layer', 'feat_extract_activation': 'gelu', 'conv_dim': [512, 512, 512, 512, 512, 512, 512], 'conv_stride': [5, 2, 2, 2, 2, 2, 2], 'conv_kernel': [10, 3, 3, 3, 3, 2, 2], 'conv_bias': True, 'num_conv_pos_embeddings': 128, 'num_conv_pos_embedding_groups': 16, 'num_hidden_layers': 48, 'intermediate_size': 5120, 'hidden_act': 'gelu', 'num_attention_heads': 16, 'hidden_dropout': 0.047, 'attention_dropout': 0.094, 'activation_dropout': 0.055, 'feat_proj_dropout': 0.04, 'final_dropout': 0.0, 'layerdrop': 0.041, 'layer_norm_eps': 1e-05, 'initializer_range': 0.02, 'vocab_size': 34, 'do_stable_layer_norm': True, 'use_weighted_layer_sum': False, 'apply_spec_augment': True, 'mask_time_prob': 0.082, 'mask_time_length': 10, 'mask_time_min_masks': 2, 'mask_feature_prob': 0.25, 'mask_feature_length': 64, 'mask_feature_min_masks': 0, 'num_codevectors_per_group': 320, 'num_codevector_groups': 2, 'contrastive_logits_temperature': 0.1, 'feat_quantizer_dropout': 0.0, 'num_negatives': 100, 'codevector_dim': 1024, 'proj_codevector_dim': 1024, 'diversity_loss_weight': 0.1, 'ctc_loss_reduction': 'mean', 'ctc_zero_infinity': False, 'add_adapter': False, 'adapter_kernel_size': 3, 'adapter_stride': 2, 'num_adapter_layers': 3, 'output_hidden_size': 1280, 'classifier_proj_size': 256, 'tdnn_dim': [512, 512, 512, 512, 1500], 'tdnn_kernel': [5, 3, 3, 1, 1], 'tdnn_dilation': [1, 2, 3, 1, 1], 'xvector_output_dim': 512, 'output_dir': './', 'overwrite_output_dir': True, 'do_train': True, 'do_eval': True, 'do_predict': False, 'evaluation_strategy': 'steps', 'prediction_loss_only': False, 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'per_gpu_train_batch_size': 'None', 'per_gpu_eval_batch_size': 'None', 'gradient_accumulation_steps': 2, 'eval_accumulation_steps': 'None', 'learning_rate': 0.0001, 'weight_decay': 0.0, 'adam_beta1': 0.9, 'adam_beta2': 0.999, 'adam_epsilon': 1e-08, 'max_grad_norm': 1.0, 'num_train_epochs': 15.0, 'max_steps': -1, 'lr_scheduler_type': 'linear', 'warmup_ratio': 0.0, 'warmup_steps': 2000, 'log_level': -1, 'log_level_replica': -1, 'log_on_each_node': True, 'logging_dir': './runs/Feb01_15-29-26_dante', 'logging_strategy': 'steps', 'logging_first_step': False, 'logging_steps': 100, 'logging_nan_inf_filter': True, 'save_strategy': 'steps', 'save_steps': 500, 'save_total_limit': 3, 'save_on_each_node': False, 'no_cuda': False, 'seed': 42, 'bf16': False, 'fp16': True, 'fp16_opt_level': 'O1', 'half_precision_backend': 'amp', 'bf16_full_eval': False, 'fp16_full_eval': False, 'tf32': 'None', 'local_rank': -1, 'xpu_backend': 'None', 'tpu_num_cores': 'None', 'tpu_metrics_debug': False, 'debug': '[]', 'dataloader_drop_last': False, 'eval_steps': 500, 'dataloader_num_workers': 0, 'past_index': -1, 'run_name': './', 'disable_tqdm': False, 'remove_unused_columns': True, 'label_names': 'None', 'load_best_model_at_end': False, 'metric_for_best_model': 'None', 'greater_is_better': 'None', 'ignore_data_skip': False, 'sharded_ddp': '[]', 'deepspeed': 'None', 'label_smoothing_factor': 0.0, 'optim': 'adamw_hf', 'adafactor': False, 'group_by_length': True, 'length_column_name': 'input_length', 'report_to': "['tensorboard', 'wandb']", 'ddp_find_unused_parameters': 'None', 'ddp_bucket_cap_mb': 'None', 'dataloader_pin_memory': True, 'skip_memory_metrics': True, 'use_legacy_prediction_loop': False, 'push_to_hub': True, 'resume_from_checkpoint': 'None', 'hub_model_id': 'NbAiLab/wav2vec2-xls-r-1b-npsc', 'hub_strategy': 'every_save', 'hub_token': '<HUB_TOKEN>', 'gradient_checkpointing': True, 'fp16_backend': 'auto', 'push_to_hub_model_id': 'None', 'push_to_hub_organization': 'None', 'push_to_hub_token': '<PUSH_TO_HUB_TOKEN>', '_n_gpu': 1, 'mp_parameters': '', 'train_batch_size': 16, 'eval_batch_size': 16}
24
+ 2022-02-01 15:30:26,674 INFO MainThread:3265625 [wandb_watch.py:watch():43] Watching
wandb/run-20220201_153024-1w85vsuu/run-1w85vsuu.wandb ADDED
Binary file (6.93 MB). View file