|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a | 
					
						
						|  | text file or a dataset. | 
					
						
						|  |  | 
					
						
						|  | Here is the full list of checkpoints on the hub that can be fine-tuned by this script: | 
					
						
						|  | https://huggingface.co/models?filter=masked-lm | 
					
						
						|  | """ | 
					
						
						|  | import logging | 
					
						
						|  | import os | 
					
						
						|  | import sys | 
					
						
						|  | import time | 
					
						
						|  | from dataclasses import dataclass, field | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from pathlib import Path | 
					
						
						|  | from typing import Dict, List, Optional, Tuple | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | from datasets import load_dataset | 
					
						
						|  | from tqdm import tqdm | 
					
						
						|  |  | 
					
						
						|  | import flax | 
					
						
						|  | import jax | 
					
						
						|  | import jax.numpy as jnp | 
					
						
						|  | import optax | 
					
						
						|  | from flax import jax_utils, traverse_util | 
					
						
						|  | from flax.training import train_state | 
					
						
						|  | from flax.training.common_utils import get_metrics, onehot, shard | 
					
						
						|  | from transformers import ( | 
					
						
						|  | CONFIG_MAPPING, | 
					
						
						|  | FLAX_MODEL_FOR_MASKED_LM_MAPPING, | 
					
						
						|  | AutoConfig, | 
					
						
						|  | AutoTokenizer, | 
					
						
						|  | FlaxAutoModelForMaskedLM, | 
					
						
						|  | HfArgumentParser, | 
					
						
						|  | PreTrainedTokenizerBase, | 
					
						
						|  | TensorType, | 
					
						
						|  | TrainingArguments, | 
					
						
						|  | is_tensorboard_available, | 
					
						
						|  | set_seed, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys()) | 
					
						
						|  | MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class ModelArguments: | 
					
						
						|  | """ | 
					
						
						|  | Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | model_name_or_path: Optional[str] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "The model checkpoint for weights initialization." | 
					
						
						|  | "Don't set if you want to train a model from scratch." | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | model_type: Optional[str] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, | 
					
						
						|  | ) | 
					
						
						|  | config_name: Optional[str] = field( | 
					
						
						|  | default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | 
					
						
						|  | ) | 
					
						
						|  | tokenizer_name: Optional[str] = field( | 
					
						
						|  | default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | 
					
						
						|  | ) | 
					
						
						|  | cache_dir: Optional[str] = field( | 
					
						
						|  | default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} | 
					
						
						|  | ) | 
					
						
						|  | use_fast_tokenizer: bool = field( | 
					
						
						|  | default=True, | 
					
						
						|  | metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, | 
					
						
						|  | ) | 
					
						
						|  | dtype: Optional[str] = field( | 
					
						
						|  | default="float32", | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`." | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class DataTrainingArguments: | 
					
						
						|  | """ | 
					
						
						|  | Arguments pertaining to what data we are going to input our model for training and eval. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | dataset_name: Optional[str] = field( | 
					
						
						|  | default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} | 
					
						
						|  | ) | 
					
						
						|  | dataset_config_name: Optional[str] = field( | 
					
						
						|  | default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | 
					
						
						|  | ) | 
					
						
						|  | train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) | 
					
						
						|  | validation_file: Optional[str] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, | 
					
						
						|  | ) | 
					
						
						|  | train_ref_file: Optional[str] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={"help": "An optional input train ref data file for whole word masking in Chinese."}, | 
					
						
						|  | ) | 
					
						
						|  | validation_ref_file: Optional[str] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."}, | 
					
						
						|  | ) | 
					
						
						|  | overwrite_cache: bool = field( | 
					
						
						|  | default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | 
					
						
						|  | ) | 
					
						
						|  | validation_split_percentage: Optional[int] = field( | 
					
						
						|  | default=5, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "The percentage of the train set used as validation set in case there's no validation split" | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | max_seq_length: Optional[int] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "The maximum total input sequence length after tokenization. Sequences longer " | 
					
						
						|  | "than this will be truncated. Default to the max input length of the model." | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | preprocessing_num_workers: Optional[int] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={"help": "The number of processes to use for the preprocessing."}, | 
					
						
						|  | ) | 
					
						
						|  | mlm_probability: float = field( | 
					
						
						|  | default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} | 
					
						
						|  | ) | 
					
						
						|  | pad_to_max_length: bool = field( | 
					
						
						|  | default=False, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "Whether to pad all samples to `max_seq_length`. " | 
					
						
						|  | "If False, will pad the samples dynamically when batching to the maximum length in the batch." | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | line_by_line: bool = field( | 
					
						
						|  | default=False, | 
					
						
						|  | metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def __post_init__(self): | 
					
						
						|  | if self.dataset_name is None and self.train_file is None and self.validation_file is None: | 
					
						
						|  | raise ValueError("Need either a dataset name or a training/validation file.") | 
					
						
						|  | else: | 
					
						
						|  | if self.train_file is not None: | 
					
						
						|  | extension = self.train_file.split(".")[-1] | 
					
						
						|  | assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." | 
					
						
						|  | if self.validation_file is not None: | 
					
						
						|  | extension = self.validation_file.split(".")[-1] | 
					
						
						|  | assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @flax.struct.dataclass | 
					
						
						|  | class FlaxDataCollatorForLanguageModeling: | 
					
						
						|  | """ | 
					
						
						|  | Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they | 
					
						
						|  | are not all of the same length. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`): | 
					
						
						|  | The tokenizer used for encoding the data. | 
					
						
						|  | mlm_probability (:obj:`float`, `optional`, defaults to 0.15): | 
					
						
						|  | The probability with which to (randomly) mask tokens in the input. | 
					
						
						|  |  | 
					
						
						|  | .. note:: | 
					
						
						|  |  | 
					
						
						|  | For best performance, this data collator should be used with a dataset having items that are dictionaries or | 
					
						
						|  | BatchEncoding, with the :obj:`"special_tokens_mask"` key, as returned by a | 
					
						
						|  | :class:`~transformers.PreTrainedTokenizer` or a :class:`~transformers.PreTrainedTokenizerFast` with the | 
					
						
						|  | argument :obj:`return_special_tokens_mask=True`. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | tokenizer: PreTrainedTokenizerBase | 
					
						
						|  | mlm_probability: float = 0.15 | 
					
						
						|  |  | 
					
						
						|  | def __post_init__(self): | 
					
						
						|  | if self.tokenizer.mask_token is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "This tokenizer does not have a mask token which is necessary for masked language modeling. " | 
					
						
						|  | "You should pass `mlm=False` to train on causal language modeling instead." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def __call__(self, examples: List[Dict[str, np.ndarray]], pad_to_multiple_of: int) -> Dict[str, np.ndarray]: | 
					
						
						|  |  | 
					
						
						|  | batch = self.tokenizer.pad(examples, pad_to_multiple_of=pad_to_multiple_of, return_tensors=TensorType.NUMPY) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | special_tokens_mask = batch.pop("special_tokens_mask", None) | 
					
						
						|  |  | 
					
						
						|  | batch["input_ids"], batch["labels"] = self.mask_tokens( | 
					
						
						|  | batch["input_ids"], special_tokens_mask=special_tokens_mask | 
					
						
						|  | ) | 
					
						
						|  | return batch | 
					
						
						|  |  | 
					
						
						|  | def mask_tokens( | 
					
						
						|  | self, inputs: np.ndarray, special_tokens_mask: Optional[np.ndarray] | 
					
						
						|  | ) -> Tuple[jnp.ndarray, jnp.ndarray]: | 
					
						
						|  | """ | 
					
						
						|  | Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. | 
					
						
						|  | """ | 
					
						
						|  | labels = inputs.copy() | 
					
						
						|  |  | 
					
						
						|  | probability_matrix = np.full(labels.shape, self.mlm_probability) | 
					
						
						|  | special_tokens_mask = special_tokens_mask.astype("bool") | 
					
						
						|  |  | 
					
						
						|  | probability_matrix[special_tokens_mask] = 0.0 | 
					
						
						|  | masked_indices = np.random.binomial(1, probability_matrix).astype("bool") | 
					
						
						|  | labels[~masked_indices] = -100 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | indices_replaced = np.random.binomial(1, np.full(labels.shape, 0.8)).astype("bool") & masked_indices | 
					
						
						|  | inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | indices_random = np.random.binomial(1, np.full(labels.shape, 0.5)).astype("bool") | 
					
						
						|  | indices_random &= masked_indices & ~indices_replaced | 
					
						
						|  |  | 
					
						
						|  | random_words = np.random.randint(self.tokenizer.vocab_size, size=labels.shape, dtype="i4") | 
					
						
						|  | inputs[indices_random] = random_words[indices_random] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return inputs, labels | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def generate_batch_splits(samples_idx: jnp.ndarray, batch_size: int) -> jnp.ndarray: | 
					
						
						|  | num_samples = len(samples_idx) | 
					
						
						|  | samples_to_remove = num_samples % batch_size | 
					
						
						|  |  | 
					
						
						|  | if samples_to_remove != 0: | 
					
						
						|  | samples_idx = samples_idx[:-samples_to_remove] | 
					
						
						|  | sections_split = num_samples // batch_size | 
					
						
						|  | batch_idx = np.split(samples_idx, sections_split) | 
					
						
						|  | return batch_idx | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def write_train_metric(summary_writer, train_metrics, train_time, step): | 
					
						
						|  | summary_writer.scalar("train_time", train_time, step) | 
					
						
						|  |  | 
					
						
						|  | train_metrics = get_metrics(train_metrics) | 
					
						
						|  | for key, vals in train_metrics.items(): | 
					
						
						|  | tag = f"train_{key}" | 
					
						
						|  | for i, val in enumerate(vals): | 
					
						
						|  | summary_writer.scalar(tag, val, step - len(vals) + i + 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def write_eval_metric(summary_writer, eval_metrics, step): | 
					
						
						|  | for metric_name, value in eval_metrics.items(): | 
					
						
						|  | summary_writer.scalar(f"eval_{metric_name}", value, step) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | 
					
						
						|  | if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | 
					
						
						|  | else: | 
					
						
						|  | model_args, data_args, training_args = parser.parse_args_into_dataclasses() | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | os.path.exists(training_args.output_dir) | 
					
						
						|  | and os.listdir(training_args.output_dir) | 
					
						
						|  | and training_args.do_train | 
					
						
						|  | and not training_args.overwrite_output_dir | 
					
						
						|  | ): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Output directory ({training_args.output_dir}) already exists and is not empty." | 
					
						
						|  | "Use --overwrite_output_dir to overcome." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logging.basicConfig( | 
					
						
						|  | format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | 
					
						
						|  | level="NOTSET", | 
					
						
						|  | datefmt="[%X]", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.getLogger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Training/evaluation parameters {training_args}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | set_seed(training_args.seed) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if data_args.dataset_name is not None: | 
					
						
						|  |  | 
					
						
						|  | datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir) | 
					
						
						|  |  | 
					
						
						|  | if "validation" not in datasets.keys(): | 
					
						
						|  | datasets["validation"] = load_dataset( | 
					
						
						|  | data_args.dataset_name, | 
					
						
						|  | data_args.dataset_config_name, | 
					
						
						|  | split=f"train[:{data_args.validation_split_percentage}%]", | 
					
						
						|  | cache_dir=model_args.cache_dir, | 
					
						
						|  | ) | 
					
						
						|  | datasets["train"] = load_dataset( | 
					
						
						|  | data_args.dataset_name, | 
					
						
						|  | data_args.dataset_config_name, | 
					
						
						|  | split=f"train[{data_args.validation_split_percentage}%:]", | 
					
						
						|  | cache_dir=model_args.cache_dir, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | data_files = {} | 
					
						
						|  | if data_args.train_file is not None: | 
					
						
						|  | data_files["train"] = data_args.train_file | 
					
						
						|  | if data_args.validation_file is not None: | 
					
						
						|  | data_files["validation"] = data_args.validation_file | 
					
						
						|  | extension = data_args.train_file.split(".")[-1] | 
					
						
						|  | if extension == "txt": | 
					
						
						|  | extension = "text" | 
					
						
						|  | datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir) | 
					
						
						|  |  | 
					
						
						|  | if "validation" not in datasets.keys(): | 
					
						
						|  | datasets["validation"] = load_dataset( | 
					
						
						|  | extension, | 
					
						
						|  | data_files=data_files, | 
					
						
						|  | split=f"train[:{data_args.validation_split_percentage}%]", | 
					
						
						|  | cache_dir=model_args.cache_dir, | 
					
						
						|  | ) | 
					
						
						|  | datasets["train"] = load_dataset( | 
					
						
						|  | extension, | 
					
						
						|  | data_files=data_files, | 
					
						
						|  | split=f"train[{data_args.validation_split_percentage}%:]", | 
					
						
						|  | cache_dir=model_args.cache_dir, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if model_args.config_name: | 
					
						
						|  | config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir) | 
					
						
						|  | elif model_args.model_name_or_path: | 
					
						
						|  | config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir) | 
					
						
						|  | else: | 
					
						
						|  | config = CONFIG_MAPPING[model_args.model_type]() | 
					
						
						|  | logger.warning("You are instantiating a new config instance from scratch.") | 
					
						
						|  |  | 
					
						
						|  | if model_args.tokenizer_name: | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained( | 
					
						
						|  | model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer | 
					
						
						|  | ) | 
					
						
						|  | elif model_args.model_name_or_path: | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained( | 
					
						
						|  | model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "You are instantiating a new tokenizer from scratch. This is not supported by this script." | 
					
						
						|  | "You can do it from another script, save it, and load it from here, using --tokenizer_name." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if training_args.do_train: | 
					
						
						|  | column_names = datasets["train"].column_names | 
					
						
						|  | else: | 
					
						
						|  | column_names = datasets["validation"].column_names | 
					
						
						|  | text_column_name = "text" if "text" in column_names else column_names[0] | 
					
						
						|  |  | 
					
						
						|  | max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) | 
					
						
						|  |  | 
					
						
						|  | if data_args.line_by_line: | 
					
						
						|  |  | 
					
						
						|  | padding = "max_length" if data_args.pad_to_max_length else False | 
					
						
						|  |  | 
					
						
						|  | def tokenize_function(examples): | 
					
						
						|  |  | 
					
						
						|  | examples = [line for line in examples if len(line) > 0 and not line.isspace()] | 
					
						
						|  | return tokenizer( | 
					
						
						|  | examples, | 
					
						
						|  | return_special_tokens_mask=True, | 
					
						
						|  | padding=padding, | 
					
						
						|  | truncation=True, | 
					
						
						|  | max_length=max_seq_length, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | tokenized_datasets = datasets.map( | 
					
						
						|  | tokenize_function, | 
					
						
						|  | input_columns=[text_column_name], | 
					
						
						|  | batched=True, | 
					
						
						|  | num_proc=data_args.preprocessing_num_workers, | 
					
						
						|  | remove_columns=column_names, | 
					
						
						|  | load_from_cache_file=not data_args.overwrite_cache, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def tokenize_function(examples): | 
					
						
						|  | return tokenizer(examples[text_column_name], return_special_tokens_mask=True) | 
					
						
						|  |  | 
					
						
						|  | tokenized_datasets = datasets.map( | 
					
						
						|  | tokenize_function, | 
					
						
						|  | batched=True, | 
					
						
						|  | num_proc=data_args.preprocessing_num_workers, | 
					
						
						|  | remove_columns=column_names, | 
					
						
						|  | load_from_cache_file=not data_args.overwrite_cache, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def group_texts(examples): | 
					
						
						|  |  | 
					
						
						|  | concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()} | 
					
						
						|  | total_length = len(concatenated_examples[list(examples.keys())[0]]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if total_length >= max_seq_length: | 
					
						
						|  | total_length = (total_length // max_seq_length) * max_seq_length | 
					
						
						|  |  | 
					
						
						|  | result = { | 
					
						
						|  | k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)] | 
					
						
						|  | for k, t in concatenated_examples.items() | 
					
						
						|  | } | 
					
						
						|  | return result | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | tokenized_datasets = tokenized_datasets.map( | 
					
						
						|  | group_texts, | 
					
						
						|  | batched=True, | 
					
						
						|  | num_proc=data_args.preprocessing_num_workers, | 
					
						
						|  | load_from_cache_file=not data_args.overwrite_cache, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | has_tensorboard = is_tensorboard_available() | 
					
						
						|  | if has_tensorboard and jax.process_index() == 0: | 
					
						
						|  | try: | 
					
						
						|  | from flax.metrics.tensorboard import SummaryWriter | 
					
						
						|  |  | 
					
						
						|  | summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) | 
					
						
						|  | except ImportError as ie: | 
					
						
						|  | has_tensorboard = False | 
					
						
						|  | logger.warning( | 
					
						
						|  | f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | logger.warning( | 
					
						
						|  | "Unable to display metrics through TensorBoard because the package is not installed: " | 
					
						
						|  | "Please run pip install tensorboard to enable." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | data_collator = FlaxDataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | rng = jax.random.PRNGKey(training_args.seed) | 
					
						
						|  | dropout_rngs = jax.random.split(rng, jax.local_device_count()) | 
					
						
						|  |  | 
					
						
						|  | if model_args.model_name_or_path: | 
					
						
						|  | model = FlaxAutoModelForMaskedLM.from_pretrained( | 
					
						
						|  | model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype) | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | model = FlaxAutoModelForMaskedLM.from_config( | 
					
						
						|  | config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_epochs = int(training_args.num_train_epochs) | 
					
						
						|  | train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() | 
					
						
						|  | eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count() | 
					
						
						|  |  | 
					
						
						|  | num_train_steps = len(tokenized_datasets["train"]) // train_batch_size * num_epochs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | warmup_fn = optax.linear_schedule( | 
					
						
						|  | init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps | 
					
						
						|  | ) | 
					
						
						|  | decay_fn = optax.linear_schedule( | 
					
						
						|  | init_value=training_args.learning_rate, | 
					
						
						|  | end_value=0, | 
					
						
						|  | transition_steps=num_train_steps - training_args.warmup_steps, | 
					
						
						|  | ) | 
					
						
						|  | linear_decay_lr_schedule_fn = optax.join_schedules( | 
					
						
						|  | schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def decay_mask_fn(params): | 
					
						
						|  | flat_params = traverse_util.flatten_dict(params) | 
					
						
						|  | flat_mask = {path: (path[-1] != "bias" and path[-2:] != ("LayerNorm", "scale")) for path in flat_params} | 
					
						
						|  | return traverse_util.unflatten_dict(flat_mask) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if training_args.adafactor: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | optimizer = optax.adafactor( | 
					
						
						|  | learning_rate=linear_decay_lr_schedule_fn, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | optimizer = optax.adamw( | 
					
						
						|  | learning_rate=linear_decay_lr_schedule_fn, | 
					
						
						|  | b1=training_args.adam_beta1, | 
					
						
						|  | b2=training_args.adam_beta2, | 
					
						
						|  | eps=training_args.adam_epsilon, | 
					
						
						|  | weight_decay=training_args.weight_decay, | 
					
						
						|  | mask=decay_mask_fn, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def train_step(state, batch, dropout_rng): | 
					
						
						|  | dropout_rng, new_dropout_rng = jax.random.split(dropout_rng) | 
					
						
						|  |  | 
					
						
						|  | def loss_fn(params): | 
					
						
						|  | labels = batch.pop("labels") | 
					
						
						|  |  | 
					
						
						|  | logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | label_mask = jnp.where(labels > 0, 1.0, 0.0) | 
					
						
						|  | loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | loss = loss.sum() / label_mask.sum() | 
					
						
						|  |  | 
					
						
						|  | return loss | 
					
						
						|  |  | 
					
						
						|  | grad_fn = jax.value_and_grad(loss_fn) | 
					
						
						|  | loss, grad = grad_fn(state.params) | 
					
						
						|  | grad = jax.lax.pmean(grad, "batch") | 
					
						
						|  | new_state = state.apply_gradients(grads=grad) | 
					
						
						|  |  | 
					
						
						|  | metrics = jax.lax.pmean( | 
					
						
						|  | {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}, axis_name="batch" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return new_state, metrics, new_dropout_rng | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def eval_step(params, batch): | 
					
						
						|  | labels = batch.pop("labels") | 
					
						
						|  |  | 
					
						
						|  | logits = model(**batch, params=params, train=False)[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | label_mask = jnp.where(labels > 0, 1.0, 0.0) | 
					
						
						|  | loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels) * label_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | metrics = {"loss": loss.sum(), "accuracy": accuracy.sum(), "normalizer": label_mask.sum()} | 
					
						
						|  | metrics = jax.lax.psum(metrics, axis_name="batch") | 
					
						
						|  |  | 
					
						
						|  | return metrics | 
					
						
						|  |  | 
					
						
						|  | p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | state = jax_utils.replicate(state) | 
					
						
						|  |  | 
					
						
						|  | train_time = 0 | 
					
						
						|  | epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) | 
					
						
						|  | for epoch in epochs: | 
					
						
						|  |  | 
					
						
						|  | train_start = time.time() | 
					
						
						|  | train_metrics = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | rng, input_rng = jax.random.split(rng) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_train_samples = len(tokenized_datasets["train"]) | 
					
						
						|  | train_samples_idx = jax.random.permutation(input_rng, jnp.arange(num_train_samples)) | 
					
						
						|  | train_batch_idx = generate_batch_splits(train_samples_idx, train_batch_size) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for step, batch_idx in enumerate(tqdm(train_batch_idx, desc="Training...", position=1)): | 
					
						
						|  | samples = [tokenized_datasets["train"][int(idx)] for idx in batch_idx] | 
					
						
						|  | model_inputs = data_collator(samples, pad_to_multiple_of=16) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_inputs = shard(model_inputs.data) | 
					
						
						|  | state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs) | 
					
						
						|  | train_metrics.append(train_metric) | 
					
						
						|  |  | 
					
						
						|  | cur_step = epoch * (num_train_samples // train_batch_size) + step | 
					
						
						|  |  | 
					
						
						|  | if cur_step % training_args.logging_steps == 0 and cur_step > 0: | 
					
						
						|  |  | 
					
						
						|  | train_metric = jax_utils.unreplicate(train_metric) | 
					
						
						|  | train_time += time.time() - train_start | 
					
						
						|  | if has_tensorboard and jax.process_index() == 0: | 
					
						
						|  | write_train_metric(summary_writer, train_metrics, train_time, cur_step) | 
					
						
						|  |  | 
					
						
						|  | epochs.write( | 
					
						
						|  | f"Step... ({cur_step} | Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | train_metrics = [] | 
					
						
						|  |  | 
					
						
						|  | if cur_step % training_args.eval_steps == 0 and cur_step > 0: | 
					
						
						|  |  | 
					
						
						|  | num_eval_samples = len(tokenized_datasets["validation"]) | 
					
						
						|  | eval_samples_idx = jnp.arange(num_eval_samples) | 
					
						
						|  | eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size) | 
					
						
						|  |  | 
					
						
						|  | eval_metrics = [] | 
					
						
						|  | for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)): | 
					
						
						|  | samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx] | 
					
						
						|  | model_inputs = data_collator(samples, pad_to_multiple_of=16) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_inputs = shard(model_inputs.data) | 
					
						
						|  | metrics = p_eval_step(state.params, model_inputs) | 
					
						
						|  | eval_metrics.append(metrics) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | eval_metrics = get_metrics(eval_metrics) | 
					
						
						|  | eval_metrics = jax.tree_map(jnp.sum, eval_metrics) | 
					
						
						|  | eval_normalizer = eval_metrics.pop("normalizer") | 
					
						
						|  | eval_metrics = jax.tree_map(lambda x: x / eval_normalizer, eval_metrics) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | epochs.desc = f"Step... ({cur_step} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if has_tensorboard and jax.process_index() == 0: | 
					
						
						|  | write_eval_metric(summary_writer, eval_metrics, cur_step) | 
					
						
						|  |  | 
					
						
						|  | if cur_step % training_args.save_steps == 0 and cur_step > 0: | 
					
						
						|  |  | 
					
						
						|  | if jax.process_index() == 0: | 
					
						
						|  | params = jax.device_get(jax.tree_map(lambda x: x[0], state.params)) | 
					
						
						|  | model.save_pretrained( | 
					
						
						|  | training_args.output_dir, | 
					
						
						|  | params=params, | 
					
						
						|  | push_to_hub=training_args.push_to_hub, | 
					
						
						|  | commit_message=f"Saving weights and logs of step {cur_step}", | 
					
						
						|  | ) | 
					
						
						|  |  |