nb-nordic-lid / code /test_models.py
versae's picture
First full version of the models
486585a
raw
history blame
5.53 kB
from collections import defaultdict
import fasttext
import pandas as pd
from sklearn.metrics import classification_report
from tqdm import tqdm; tqdm.pandas()
#!pip install tabulate
import io
from pathlib import Path
import numpy as np
import pandas as pd
import requests
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.metrics import precision_recall_fscore_support
names = pd.read_csv(
io.StringIO(requests.get("https://iso639-3.sil.org/sites/iso639-3/files/downloads/iso-639-3.tab").text
), sep="\t").set_index("Id").rename(
columns={"Ref_Name": "name"}
)[["name"]].to_dict()["name"]
tato_names = pd.read_html(
"https://tatoeba.org/en/stats/sentences_by_language"
)[0].rename(
columns={"Unnamed: 2": "code", "Language": "name"}
).set_index("code")[["name"]].to_dict()["name"]
names.update(tato_names)
# langs = pd.read_csv("train.csv").lang.unique().tolist()
# langs_df = pd.DataFrame({"ISO-639-3": langs}).sort_values("ISO-639-3")
# langs_df["Language"] = langs_df["ISO-639-3"].apply(names.__getitem__)
# langs_df = langs_df.set_index("ISO-639-3")
def pandas_classification_report(y_true, y_pred, labels=None):
metrics_summary = precision_recall_fscore_support(
y_true=y_true,
y_pred=y_pred,
labels=labels)
weighted_avg = list(precision_recall_fscore_support(
y_true=y_true,
y_pred=y_pred,
labels=labels,
average='weighted'))
macro_avg = list(precision_recall_fscore_support(
y_true=y_true,
y_pred=y_pred,
labels=labels,
average='macro'))
accuracy = [np.nan, np.nan, accuracy_score(y_true=y_true, y_pred=y_pred), np.nan]
metrics_sum_index = ['precision', 'recall', 'f1-score', 'support']
class_report_df = pd.DataFrame(
list(metrics_summary),
index=metrics_sum_index,
columns=labels)
support = class_report_df.loc['support']
total = support.sum()
weighted_avg[-1] = total
macro_avg[-1] = total
accuracy[-1] = total
class_report_df['accuracy'] = accuracy
class_report_df['weighted avg'] = weighted_avg
class_report_df['macro avg'] = macro_avg
report = class_report_df.T
report["support"] = report["support"].astype(int)
return report
scores_text = ""
for model_name in ("nordic-lid.bin", "nordic-lid_all.bin"):
print(
f"""
------------
{model_name}
------------
""")
model = fasttext.load_model(model_name)
train = pd.read_csv("train.csv")
ddict = defaultdict(lambda: "---")
for k in train.lang.unique().tolist():
ddict[k] = k
train["nordic-lid"] = train.progress_apply(lambda row: ddict[model.predict(row["text"].replace("\n", " "))[0][0][-3:]], axis=1)
print("TRAIN")
print(model.test("train.txt"))
print(classification_report(train["lang"], train["nordic-lid"], digits=4))
val = pd.read_csv("validation.csv")
val["nordic-lid"] = val.progress_apply(lambda row: ddict[model.predict(row["text"].replace("\n", " "))[0][0][-3:]], axis=1)
print("VALIDATION")
print(model.test("validation.txt"))
print(classification_report(val["lang"], val["nordic-lid"], digits=4))
test = pd.read_csv("test.csv")
test["nordic-lid"] = test.progress_apply(lambda row: ddict[model.predict(row["text"].replace("\n", " "))[0][0][-3:]], axis=1)
print("TEST")
print(model.test("test.txt"))
print(classification_report(test["lang"], test["nordic-lid"], digits=4))
if "_all" in model_name:
train = pd.read_csv("train_all.csv")
ddict = defaultdict(lambda: "---")
for k in train.lang.unique().tolist():
ddict[k] = k
train["nordic-lid"] = train.progress_apply(lambda row: ddict[model.predict(row["text"].replace("\n", " "))[0][0][-3:]], axis=1)
print("TRAIN ALL")
print(model.test("train_all.txt"))
print(classification_report(train["lang"], train["nordic-lid"], digits=4))
val = pd.read_csv("validation_all.csv")
val["nordic-lid"] = val.progress_apply(lambda row: ddict[model.predict(row["text"].replace("\n", " "))[0][0][-3:]], axis=1)
print("VALIDATION ALL")
print(model.test("validation_all.txt"))
print(classification_report(val["lang"], val["nordic-lid"], digits=4))
test = pd.read_csv("test_all.csv")
test["nordic-lid"] = test.progress_apply(lambda row: ddict[model.predict(row["text"].replace("\n", " "))[0][0][-3:]], axis=1)
print("TEST ALL")
print(model.test("test_all.txt"))
print(classification_report(test["lang"], test["nordic-lid"], digits=4))
langs = pd.read_csv("train_all.csv").lang.unique().tolist()
else:
langs = pd.read_csv("train.csv").lang.unique().tolist()
langs_df = pd.DataFrame({"ISO-639-3": langs}).sort_values("ISO-639-3")
langs_df["Language"] = langs_df["ISO-639-3"].apply(names.__getitem__)
langs_df = langs_df.set_index("ISO-639-3")
report_df = pandas_classification_report(test["nordic-lid"], test["lang"], sorted(langs))
scores = report_df.join(langs_df)
scores.columns = map(str.title, scores.columns)
scores.index.name = "ISO-639-3"
scores = scores[["Language"] + [col.title() for col in scores.columns if col != "Language"]]
scores_text += f"## {model_name}\n\n{scores.reset_index().to_markdown(index=False, floatfmt='.4f')}\n\n"
print()
print(scores_text)
Path("./scores.md").write_text(scores_text)