Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.08 +/- 0.49
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b29e0ad6d4b17d391b0710e4d301133e8ae4c180e0fb253092e4d0caf302e5c6
|
3 |
+
size 107773
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb2b7afe5e0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fb2b7adde00>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1679786646100336407,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAmO7EPkTHnLswjxQ/mO7EPkTHnLswjxQ/mO7EPkTHnLswjxQ/mO7EPkTHnLswjxQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0igAPxoGOz8H45g/+iaYPz7vvL93aPe+UUlWv9JtZb/rMP6+WLuaP9ziBz/VFF8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACY7sQ+RMecuzCPFD+zUym89ZTsuu0SbruY7sQ+RMecuzCPFD+zUym89ZTsuu0SbruY7sQ+RMecuzCPFD+zUym89ZTsuu0SbruY7sQ+RMecuzCPFD+zUym89ZTsuu0SbruUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.38463283 -0.0047845 0.58030987]\n [ 0.38463283 -0.0047845 0.58030987]\n [ 0.38463283 -0.0047845 0.58030987]\n [ 0.38463283 -0.0047845 0.58030987]]",
|
60 |
+
"desired_goal": "[[ 0.50062287 0.73056185 1.1944283 ]\n [ 1.1886895 -1.4760511 -0.48321888]\n [-0.8370562 -0.896207 -0.49646696]\n [ 1.2088423 0.53080535 0.2178529 ]]",
|
61 |
+
"observation": "[[ 0.38463283 -0.0047845 0.58030987 -0.0103349 -0.00180498 -0.00363272]\n [ 0.38463283 -0.0047845 0.58030987 -0.0103349 -0.00180498 -0.00363272]\n [ 0.38463283 -0.0047845 0.58030987 -0.0103349 -0.00180498 -0.00363272]\n [ 0.38463283 -0.0047845 0.58030987 -0.0103349 -0.00180498 -0.00363272]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAV/PQPXdkwTySYqc8KQ0YvtJBET6nduk9bVUZPjKUED1Cyg0+OmwUvrtk2jxKMos+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.10202663 0.02360748 0.02043274]\n [-0.1484877 0.14185265 0.11399584]\n [ 0.14973994 0.03529758 0.13846686]\n [-0.1449441 0.02665936 0.27186805]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInZ53Y0GBAMCUhpRSlIwBbJRLMowBdJRHQKyx40FbFCN1fZQoaAZoCWgPQwgRxHk4gSkAwJSGlFKUaBVLMmgWR0CssTuJcgQpdX2UKGgGaAloD0MI+THmriWk/7+UhpRSlGgVSzJoFkdArLCS+N96TnV9lChoBmgJaA9DCKUsQxzrQgLAlIaUUpRoFUsyaBZHQKyv5tk4FRp1fZQoaAZoCWgPQwgrEhPU8C3nv5SGlFKUaBVLMmgWR0CstBDyvs7ddX2UKGgGaAloD0MIU+dR8X/HBsCUhpRSlGgVSzJoFkdArLNp6MR6GHV9lChoBmgJaA9DCL8K8N3mDem/lIaUUpRoFUsyaBZHQKyywYm9g4R1fZQoaAZoCWgPQwjWpxyTxR0GwJSGlFKUaBVLMmgWR0CsshWOIZZTdX2UKGgGaAloD0MIJ4dPOpEAA8CUhpRSlGgVSzJoFkdArLZoXyiEhHV9lChoBmgJaA9DCEdaKm9HOOi/lIaUUpRoFUsyaBZHQKy1wQzUI9l1fZQoaAZoCWgPQwhDAkaXNwfyv5SGlFKUaBVLMmgWR0CstRi8e0XxdX2UKGgGaAloD0MIZof4hy39+7+UhpRSlGgVSzJoFkdArLRsxh2GI3V9lChoBmgJaA9DCCpVouwtZe2/lIaUUpRoFUsyaBZHQKy4xAwfyPN1fZQoaAZoCWgPQwi77UJznQb1v5SGlFKUaBVLMmgWR0CsuByJKraNdX2UKGgGaAloD0MI5iMp6WEo/r+UhpRSlGgVSzJoFkdArLd2DjBEa3V9lChoBmgJaA9DCNKKbyh8FgXAlIaUUpRoFUsyaBZHQKy2yi5/b0x1fZQoaAZoCWgPQwjhm6bPDjjsv5SGlFKUaBVLMmgWR0CsuwWWpqASdX2UKGgGaAloD0MIhUAuceTB/r+UhpRSlGgVSzJoFkdArLpdNet0WHV9lChoBmgJaA9DCIfEPZY+dOW/lIaUUpRoFUsyaBZHQKy5s5o4+8p1fZQoaAZoCWgPQwgNVTGVfsLfv5SGlFKUaBVLMmgWR0CsuQZprULEdX2UKGgGaAloD0MIm3XG98Ul/7+UhpRSlGgVSzJoFkdArLxgj2SMcnV9lChoBmgJaA9DCCkmb4CZ7+a/lIaUUpRoFUsyaBZHQKy7uAS39aV1fZQoaAZoCWgPQwjPEfkupe7wv5SGlFKUaBVLMmgWR0Csuw5K3/gjdX2UKGgGaAloD0MIq1s9J73vA8CUhpRSlGgVSzJoFkdArLpg/keZHHV9lChoBmgJaA9DCOHvF7MlK+m/lIaUUpRoFUsyaBZHQKy9sK64DtB1fZQoaAZoCWgPQwhvLCgMynT+v5SGlFKUaBVLMmgWR0CsvQgssg+ydX2UKGgGaAloD0MIKA01Cknm+7+UhpRSlGgVSzJoFkdArLxer2g3+HV9lChoBmgJaA9DCLsKKT+p9um/lIaUUpRoFUsyaBZHQKy7saaTfSB1fZQoaAZoCWgPQwjrU47J4r7xv5SGlFKUaBVLMmgWR0CsvwAGjbi7dX2UKGgGaAloD0MIXfqXpDLF9L+UhpRSlGgVSzJoFkdArL5XtShrWXV9lChoBmgJaA9DCAKfH0YID+i/lIaUUpRoFUsyaBZHQKy9rfTCtRx1fZQoaAZoCWgPQwj3IW+5+vH4v5SGlFKUaBVLMmgWR0CsvQCq6vq1dX2UKGgGaAloD0MIDd5X5UJl+L+UhpRSlGgVSzJoFkdArMCE2m51/3V9lChoBmgJaA9DCPsD5bZ9bwHAlIaUUpRoFUsyaBZHQKy/3H2AXl91fZQoaAZoCWgPQwgkCi3r/vH2v5SGlFKUaBVLMmgWR0CsvzLi++M7dX2UKGgGaAloD0MIW0HTEiuj6r+UhpRSlGgVSzJoFkdArL6FlAeJYXV9lChoBmgJaA9DCMTMPo9RnvW/lIaUUpRoFUsyaBZHQKzB05Ke05V1fZQoaAZoCWgPQwirJoi6DwDwv5SGlFKUaBVLMmgWR0CswSs7lq8EdX2UKGgGaAloD0MIAP+UKlH2/7+UhpRSlGgVSzJoFkdArMCBpUPxx3V9lChoBmgJaA9DCAGKkSVzLOm/lIaUUpRoFUsyaBZHQKy/1Gff4yp1fZQoaAZoCWgPQwgDeAskKH7iv5SGlFKUaBVLMmgWR0Cswysf7rLRdX2UKGgGaAloD0MIP3CVJxB26L+UhpRSlGgVSzJoFkdArMKC0x/NJXV9lChoBmgJaA9DCEDbatYZ3/S/lIaUUpRoFUsyaBZHQKzB2VcD8tR1fZQoaAZoCWgPQwjj4T0HlqPsv5SGlFKUaBVLMmgWR0CswSw1zhgmdX2UKGgGaAloD0MIUIvBw7Sv9r+UhpRSlGgVSzJoFkdArMR+foRqXXV9lChoBmgJaA9DCH/6z5ofPwfAlIaUUpRoFUsyaBZHQKzD1id8Rcx1fZQoaAZoCWgPQwgX9N4YAkD3v5SGlFKUaBVLMmgWR0CswyyS3b22dX2UKGgGaAloD0MIyGDFqdbC4r+UhpRSlGgVSzJoFkdArMJ/kq+ajXV9lChoBmgJaA9DCPAyw0ZZf/m/lIaUUpRoFUsyaBZHQKzF1Vd5Y5l1fZQoaAZoCWgPQwiL/PohNpjxv5SGlFKUaBVLMmgWR0CsxSzxgAp8dX2UKGgGaAloD0MIy03U0twKA8CUhpRSlGgVSzJoFkdArMSDV+Zw43V9lChoBmgJaA9DCPMeZ5qw/eO/lIaUUpRoFUsyaBZHQKzD1iT+vQp1fZQoaAZoCWgPQwhQjCyZY3npv5SGlFKUaBVLMmgWR0CsxyekYXO4dX2UKGgGaAloD0MIlQ1rKovC7b+UhpRSlGgVSzJoFkdArMZ/T5O8CnV9lChoBmgJaA9DCN6rVib8Eve/lIaUUpRoFUsyaBZHQKzF1Z3cHnl1fZQoaAZoCWgPQwjSVE/mH50BwJSGlFKUaBVLMmgWR0CsxShciW3SdX2UKGgGaAloD0MItJQsJ6F077+UhpRSlGgVSzJoFkdArMh4rxy4nXV9lChoBmgJaA9DCOLIA5FF2vK/lIaUUpRoFUsyaBZHQKzH0EKVpsZ1fZQoaAZoCWgPQwg9RQ4RNyfyv5SGlFKUaBVLMmgWR0Csxyalk6LgdX2UKGgGaAloD0MIfZV87C5Q7b+UhpRSlGgVSzJoFkdArMZ5QSBbwHV9lChoBmgJaA9DCDhJ88e0tuq/lIaUUpRoFUsyaBZHQKzJ1wAlv611fZQoaAZoCWgPQwhZTkLpC6H/v5SGlFKUaBVLMmgWR0CsyS6dtl7MdX2UKGgGaAloD0MIbO7of7kW7r+UhpRSlGgVSzJoFkdArMiE1sLv1HV9lChoBmgJaA9DCCvB4nDmNwHAlIaUUpRoFUsyaBZHQKzH15+H8CR1fZQoaAZoCWgPQwgepKfIISLxv5SGlFKUaBVLMmgWR0CsyymgSOBEdX2UKGgGaAloD0MIda4oJQQr6b+UhpRSlGgVSzJoFkdArMqBWzWwvHV9lChoBmgJaA9DCDP5Zpsb0/a/lIaUUpRoFUsyaBZHQKzJ18VHnU51fZQoaAZoCWgPQwjk1w+xwULuv5SGlFKUaBVLMmgWR0CsySqQRwqBdX2UKGgGaAloD0MImkF8YMe/87+UhpRSlGgVSzJoFkdArMyHGff4y3V9lChoBmgJaA9DCMHFihpMg/q/lIaUUpRoFUsyaBZHQKzL32zv7WN1fZQoaAZoCWgPQwhF2PD0Spnwv5SGlFKUaBVLMmgWR0CsyzbuMMqjdX2UKGgGaAloD0MIXMgjuJHy+7+UhpRSlGgVSzJoFkdArMqKaPS2IHV9lChoBmgJaA9DCDv9oC5SKO2/lIaUUpRoFUsyaBZHQKzOD9JjDsN1fZQoaAZoCWgPQwgBaf8DrBX2v5SGlFKUaBVLMmgWR0CszWc89wFUdX2UKGgGaAloD0MIsvUM4Zhl67+UhpRSlGgVSzJoFkdArMy9jiGWU3V9lChoBmgJaA9DCMqpnWFqS/i/lIaUUpRoFUsyaBZHQKzMEYXwb2l1fZQoaAZoCWgPQwjNWZ9yTNbxv5SGlFKUaBVLMmgWR0Csz62Y4Qz2dX2UKGgGaAloD0MIzCkBMQmX9r+UhpRSlGgVSzJoFkdArM8GUD+zdHV9lChoBmgJaA9DCD//PXjtUuS/lIaUUpRoFUsyaBZHQKzOXYoy9El1fZQoaAZoCWgPQwjfiO5Z12jwv5SGlFKUaBVLMmgWR0CszbFhPTG6dX2UKGgGaAloD0MIqI/AH36+8b+UhpRSlGgVSzJoFkdArNHST6i0wHV9lChoBmgJaA9DCLw+c9anXPW/lIaUUpRoFUsyaBZHQKzRKpkwvg51fZQoaAZoCWgPQwiKyoY1lcXvv5SGlFKUaBVLMmgWR0Cs0IH1e0HAdX2UKGgGaAloD0MIPDPBcK4h+b+UhpRSlGgVSzJoFkdArM/VrVOKwnV9lChoBmgJaA9DCK8kea7vw+q/lIaUUpRoFUsyaBZHQKzUKD28IzF1fZQoaAZoCWgPQwg2c0hqoWTvv5SGlFKUaBVLMmgWR0Cs04ENWluWdX2UKGgGaAloD0MIJjeKrDXU/b+UhpRSlGgVSzJoFkdArNLZfdAPd3V9lChoBmgJaA9DCGGJB5RNOfi/lIaUUpRoFUsyaBZHQKzSLa/RE4N1fZQoaAZoCWgPQwimXyLeOn/wv5SGlFKUaBVLMmgWR0Cs1nJgb6xgdX2UKGgGaAloD0MI1e3sKw/S27+UhpRSlGgVSzJoFkdArNXLQiRnvnV9lChoBmgJaA9DCLPttDUiGOm/lIaUUpRoFUsyaBZHQKzVIvPC2tx1fZQoaAZoCWgPQwhXJ2co7nj0v5SGlFKUaBVLMmgWR0Cs1HjkMkQgdX2UKGgGaAloD0MIeJyiI7l87r+UhpRSlGgVSzJoFkdArNjJwZOzp3V9lChoBmgJaA9DCAOy17s/Xuq/lIaUUpRoFUsyaBZHQKzYIsp5NXZ1fZQoaAZoCWgPQwiS6GUUyy30v5SGlFKUaBVLMmgWR0Cs13n62v0RdX2UKGgGaAloD0MIyhtg5jv4+L+UhpRSlGgVSzJoFkdArNbN6C17Y3V9lChoBmgJaA9DCBSSzOod7u2/lIaUUpRoFUsyaBZHQKzbAka/ATJ1fZQoaAZoCWgPQwh5kJ4ih0j0v5SGlFKUaBVLMmgWR0Cs2lnq/ub7dX2UKGgGaAloD0MIwoU8ghsp2L+UhpRSlGgVSzJoFkdArNmwVbiZOXV9lChoBmgJaA9DCOXsndFWRQHAlIaUUpRoFUsyaBZHQKzZAyUs4DN1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d890876a497202f2633f65f74ab6008d7e24a0d59e9f021322a2a934330abc8
|
3 |
+
size 44606
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f07d74522b46df484979986e0a759dd29592bd123c80d2943184c6a12af2cfd5
|
3 |
+
size 45886
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb2b7afe5e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb2b7adde00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679786646100336407, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAmO7EPkTHnLswjxQ/mO7EPkTHnLswjxQ/mO7EPkTHnLswjxQ/mO7EPkTHnLswjxQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0igAPxoGOz8H45g/+iaYPz7vvL93aPe+UUlWv9JtZb/rMP6+WLuaP9ziBz/VFF8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACY7sQ+RMecuzCPFD+zUym89ZTsuu0SbruY7sQ+RMecuzCPFD+zUym89ZTsuu0SbruY7sQ+RMecuzCPFD+zUym89ZTsuu0SbruY7sQ+RMecuzCPFD+zUym89ZTsuu0SbruUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.38463283 -0.0047845 0.58030987]\n [ 0.38463283 -0.0047845 0.58030987]\n [ 0.38463283 -0.0047845 0.58030987]\n [ 0.38463283 -0.0047845 0.58030987]]", "desired_goal": "[[ 0.50062287 0.73056185 1.1944283 ]\n [ 1.1886895 -1.4760511 -0.48321888]\n [-0.8370562 -0.896207 -0.49646696]\n [ 1.2088423 0.53080535 0.2178529 ]]", "observation": "[[ 0.38463283 -0.0047845 0.58030987 -0.0103349 -0.00180498 -0.00363272]\n [ 0.38463283 -0.0047845 0.58030987 -0.0103349 -0.00180498 -0.00363272]\n [ 0.38463283 -0.0047845 0.58030987 -0.0103349 -0.00180498 -0.00363272]\n [ 0.38463283 -0.0047845 0.58030987 -0.0103349 -0.00180498 -0.00363272]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAV/PQPXdkwTySYqc8KQ0YvtJBET6nduk9bVUZPjKUED1Cyg0+OmwUvrtk2jxKMos+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.10202663 0.02360748 0.02043274]\n [-0.1484877 0.14185265 0.11399584]\n [ 0.14973994 0.03529758 0.13846686]\n [-0.1449441 0.02665936 0.27186805]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInZ53Y0GBAMCUhpRSlIwBbJRLMowBdJRHQKyx40FbFCN1fZQoaAZoCWgPQwgRxHk4gSkAwJSGlFKUaBVLMmgWR0CssTuJcgQpdX2UKGgGaAloD0MI+THmriWk/7+UhpRSlGgVSzJoFkdArLCS+N96TnV9lChoBmgJaA9DCKUsQxzrQgLAlIaUUpRoFUsyaBZHQKyv5tk4FRp1fZQoaAZoCWgPQwgrEhPU8C3nv5SGlFKUaBVLMmgWR0CstBDyvs7ddX2UKGgGaAloD0MIU+dR8X/HBsCUhpRSlGgVSzJoFkdArLNp6MR6GHV9lChoBmgJaA9DCL8K8N3mDem/lIaUUpRoFUsyaBZHQKyywYm9g4R1fZQoaAZoCWgPQwjWpxyTxR0GwJSGlFKUaBVLMmgWR0CsshWOIZZTdX2UKGgGaAloD0MIJ4dPOpEAA8CUhpRSlGgVSzJoFkdArLZoXyiEhHV9lChoBmgJaA9DCEdaKm9HOOi/lIaUUpRoFUsyaBZHQKy1wQzUI9l1fZQoaAZoCWgPQwhDAkaXNwfyv5SGlFKUaBVLMmgWR0CstRi8e0XxdX2UKGgGaAloD0MIZof4hy39+7+UhpRSlGgVSzJoFkdArLRsxh2GI3V9lChoBmgJaA9DCCpVouwtZe2/lIaUUpRoFUsyaBZHQKy4xAwfyPN1fZQoaAZoCWgPQwi77UJznQb1v5SGlFKUaBVLMmgWR0CsuByJKraNdX2UKGgGaAloD0MI5iMp6WEo/r+UhpRSlGgVSzJoFkdArLd2DjBEa3V9lChoBmgJaA9DCNKKbyh8FgXAlIaUUpRoFUsyaBZHQKy2yi5/b0x1fZQoaAZoCWgPQwjhm6bPDjjsv5SGlFKUaBVLMmgWR0CsuwWWpqASdX2UKGgGaAloD0MIhUAuceTB/r+UhpRSlGgVSzJoFkdArLpdNet0WHV9lChoBmgJaA9DCIfEPZY+dOW/lIaUUpRoFUsyaBZHQKy5s5o4+8p1fZQoaAZoCWgPQwgNVTGVfsLfv5SGlFKUaBVLMmgWR0CsuQZprULEdX2UKGgGaAloD0MIm3XG98Ul/7+UhpRSlGgVSzJoFkdArLxgj2SMcnV9lChoBmgJaA9DCCkmb4CZ7+a/lIaUUpRoFUsyaBZHQKy7uAS39aV1fZQoaAZoCWgPQwjPEfkupe7wv5SGlFKUaBVLMmgWR0Csuw5K3/gjdX2UKGgGaAloD0MIq1s9J73vA8CUhpRSlGgVSzJoFkdArLpg/keZHHV9lChoBmgJaA9DCOHvF7MlK+m/lIaUUpRoFUsyaBZHQKy9sK64DtB1fZQoaAZoCWgPQwhvLCgMynT+v5SGlFKUaBVLMmgWR0CsvQgssg+ydX2UKGgGaAloD0MIKA01Cknm+7+UhpRSlGgVSzJoFkdArLxer2g3+HV9lChoBmgJaA9DCLsKKT+p9um/lIaUUpRoFUsyaBZHQKy7saaTfSB1fZQoaAZoCWgPQwjrU47J4r7xv5SGlFKUaBVLMmgWR0CsvwAGjbi7dX2UKGgGaAloD0MIXfqXpDLF9L+UhpRSlGgVSzJoFkdArL5XtShrWXV9lChoBmgJaA9DCAKfH0YID+i/lIaUUpRoFUsyaBZHQKy9rfTCtRx1fZQoaAZoCWgPQwj3IW+5+vH4v5SGlFKUaBVLMmgWR0CsvQCq6vq1dX2UKGgGaAloD0MIDd5X5UJl+L+UhpRSlGgVSzJoFkdArMCE2m51/3V9lChoBmgJaA9DCPsD5bZ9bwHAlIaUUpRoFUsyaBZHQKy/3H2AXl91fZQoaAZoCWgPQwgkCi3r/vH2v5SGlFKUaBVLMmgWR0CsvzLi++M7dX2UKGgGaAloD0MIW0HTEiuj6r+UhpRSlGgVSzJoFkdArL6FlAeJYXV9lChoBmgJaA9DCMTMPo9RnvW/lIaUUpRoFUsyaBZHQKzB05Ke05V1fZQoaAZoCWgPQwirJoi6DwDwv5SGlFKUaBVLMmgWR0CswSs7lq8EdX2UKGgGaAloD0MIAP+UKlH2/7+UhpRSlGgVSzJoFkdArMCBpUPxx3V9lChoBmgJaA9DCAGKkSVzLOm/lIaUUpRoFUsyaBZHQKy/1Gff4yp1fZQoaAZoCWgPQwgDeAskKH7iv5SGlFKUaBVLMmgWR0Cswysf7rLRdX2UKGgGaAloD0MIP3CVJxB26L+UhpRSlGgVSzJoFkdArMKC0x/NJXV9lChoBmgJaA9DCEDbatYZ3/S/lIaUUpRoFUsyaBZHQKzB2VcD8tR1fZQoaAZoCWgPQwjj4T0HlqPsv5SGlFKUaBVLMmgWR0CswSw1zhgmdX2UKGgGaAloD0MIUIvBw7Sv9r+UhpRSlGgVSzJoFkdArMR+foRqXXV9lChoBmgJaA9DCH/6z5ofPwfAlIaUUpRoFUsyaBZHQKzD1id8Rcx1fZQoaAZoCWgPQwgX9N4YAkD3v5SGlFKUaBVLMmgWR0CswyyS3b22dX2UKGgGaAloD0MIyGDFqdbC4r+UhpRSlGgVSzJoFkdArMJ/kq+ajXV9lChoBmgJaA9DCPAyw0ZZf/m/lIaUUpRoFUsyaBZHQKzF1Vd5Y5l1fZQoaAZoCWgPQwiL/PohNpjxv5SGlFKUaBVLMmgWR0CsxSzxgAp8dX2UKGgGaAloD0MIy03U0twKA8CUhpRSlGgVSzJoFkdArMSDV+Zw43V9lChoBmgJaA9DCPMeZ5qw/eO/lIaUUpRoFUsyaBZHQKzD1iT+vQp1fZQoaAZoCWgPQwhQjCyZY3npv5SGlFKUaBVLMmgWR0CsxyekYXO4dX2UKGgGaAloD0MIlQ1rKovC7b+UhpRSlGgVSzJoFkdArMZ/T5O8CnV9lChoBmgJaA9DCN6rVib8Eve/lIaUUpRoFUsyaBZHQKzF1Z3cHnl1fZQoaAZoCWgPQwjSVE/mH50BwJSGlFKUaBVLMmgWR0CsxShciW3SdX2UKGgGaAloD0MItJQsJ6F077+UhpRSlGgVSzJoFkdArMh4rxy4nXV9lChoBmgJaA9DCOLIA5FF2vK/lIaUUpRoFUsyaBZHQKzH0EKVpsZ1fZQoaAZoCWgPQwg9RQ4RNyfyv5SGlFKUaBVLMmgWR0Csxyalk6LgdX2UKGgGaAloD0MIfZV87C5Q7b+UhpRSlGgVSzJoFkdArMZ5QSBbwHV9lChoBmgJaA9DCDhJ88e0tuq/lIaUUpRoFUsyaBZHQKzJ1wAlv611fZQoaAZoCWgPQwhZTkLpC6H/v5SGlFKUaBVLMmgWR0CsyS6dtl7MdX2UKGgGaAloD0MIbO7of7kW7r+UhpRSlGgVSzJoFkdArMiE1sLv1HV9lChoBmgJaA9DCCvB4nDmNwHAlIaUUpRoFUsyaBZHQKzH15+H8CR1fZQoaAZoCWgPQwgepKfIISLxv5SGlFKUaBVLMmgWR0CsyymgSOBEdX2UKGgGaAloD0MIda4oJQQr6b+UhpRSlGgVSzJoFkdArMqBWzWwvHV9lChoBmgJaA9DCDP5Zpsb0/a/lIaUUpRoFUsyaBZHQKzJ18VHnU51fZQoaAZoCWgPQwjk1w+xwULuv5SGlFKUaBVLMmgWR0CsySqQRwqBdX2UKGgGaAloD0MImkF8YMe/87+UhpRSlGgVSzJoFkdArMyHGff4y3V9lChoBmgJaA9DCMHFihpMg/q/lIaUUpRoFUsyaBZHQKzL32zv7WN1fZQoaAZoCWgPQwhF2PD0Spnwv5SGlFKUaBVLMmgWR0CsyzbuMMqjdX2UKGgGaAloD0MIXMgjuJHy+7+UhpRSlGgVSzJoFkdArMqKaPS2IHV9lChoBmgJaA9DCDv9oC5SKO2/lIaUUpRoFUsyaBZHQKzOD9JjDsN1fZQoaAZoCWgPQwgBaf8DrBX2v5SGlFKUaBVLMmgWR0CszWc89wFUdX2UKGgGaAloD0MIsvUM4Zhl67+UhpRSlGgVSzJoFkdArMy9jiGWU3V9lChoBmgJaA9DCMqpnWFqS/i/lIaUUpRoFUsyaBZHQKzMEYXwb2l1fZQoaAZoCWgPQwjNWZ9yTNbxv5SGlFKUaBVLMmgWR0Csz62Y4Qz2dX2UKGgGaAloD0MIzCkBMQmX9r+UhpRSlGgVSzJoFkdArM8GUD+zdHV9lChoBmgJaA9DCD//PXjtUuS/lIaUUpRoFUsyaBZHQKzOXYoy9El1fZQoaAZoCWgPQwjfiO5Z12jwv5SGlFKUaBVLMmgWR0CszbFhPTG6dX2UKGgGaAloD0MIqI/AH36+8b+UhpRSlGgVSzJoFkdArNHST6i0wHV9lChoBmgJaA9DCLw+c9anXPW/lIaUUpRoFUsyaBZHQKzRKpkwvg51fZQoaAZoCWgPQwiKyoY1lcXvv5SGlFKUaBVLMmgWR0Cs0IH1e0HAdX2UKGgGaAloD0MIPDPBcK4h+b+UhpRSlGgVSzJoFkdArM/VrVOKwnV9lChoBmgJaA9DCK8kea7vw+q/lIaUUpRoFUsyaBZHQKzUKD28IzF1fZQoaAZoCWgPQwg2c0hqoWTvv5SGlFKUaBVLMmgWR0Cs04ENWluWdX2UKGgGaAloD0MIJjeKrDXU/b+UhpRSlGgVSzJoFkdArNLZfdAPd3V9lChoBmgJaA9DCGGJB5RNOfi/lIaUUpRoFUsyaBZHQKzSLa/RE4N1fZQoaAZoCWgPQwimXyLeOn/wv5SGlFKUaBVLMmgWR0Cs1nJgb6xgdX2UKGgGaAloD0MI1e3sKw/S27+UhpRSlGgVSzJoFkdArNXLQiRnvnV9lChoBmgJaA9DCLPttDUiGOm/lIaUUpRoFUsyaBZHQKzVIvPC2tx1fZQoaAZoCWgPQwhXJ2co7nj0v5SGlFKUaBVLMmgWR0Cs1HjkMkQgdX2UKGgGaAloD0MIeJyiI7l87r+UhpRSlGgVSzJoFkdArNjJwZOzp3V9lChoBmgJaA9DCAOy17s/Xuq/lIaUUpRoFUsyaBZHQKzYIsp5NXZ1fZQoaAZoCWgPQwiS6GUUyy30v5SGlFKUaBVLMmgWR0Cs13n62v0RdX2UKGgGaAloD0MIyhtg5jv4+L+UhpRSlGgVSzJoFkdArNbN6C17Y3V9lChoBmgJaA9DCBSSzOod7u2/lIaUUpRoFUsyaBZHQKzbAka/ATJ1fZQoaAZoCWgPQwh5kJ4ih0j0v5SGlFKUaBVLMmgWR0Cs2lnq/ub7dX2UKGgGaAloD0MIwoU8ghsp2L+UhpRSlGgVSzJoFkdArNmwVbiZOXV9lChoBmgJaA9DCOXsndFWRQHAlIaUUpRoFUsyaBZHQKzZAyUs4DN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (328 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.0830692735034972, "std_reward": 0.4888353233297109, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-26T00:25:42.868209"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e66bbc327e0201dea7c6ae7be93b61491f71da473c04d6a2bff2c39e680d7b4a
|
3 |
+
size 3056
|