NazmusAshrafi commited on
Commit
2ee875d
1 Parent(s): e20d2d6

Add SetFit ABSA model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md CHANGED
@@ -1,3 +1,210 @@
1
  ---
2
- license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - absa
6
+ - sentence-transformers
7
+ - text-classification
8
+ - generated_from_setfit_trainer
9
+ metrics:
10
+ - accuracy
11
+ widget:
12
+ - text: 'investors:Creating huge opportunities for investors who can see past this
13
+ rate hike cycle. Which should be over soon. #tesla $TSLA'
14
+ - text: 'Powerwall:@TeslaSolar roof stood up to #HurricaneIan with 155mph winds and
15
+ storm surge! This Powerwall was underwater for hours and is still working perfectly.'
16
+ - text: 'analysts:Ron Barron: We see so much potential, we don’t want to sell; Of
17
+ all companies I cover & analysts come pitch to me, the company I feel the
18
+ most confidence in is $TSLA; People think we''re going into a slowdown but demand
19
+ for their cars has never been better.'
20
+ - text: house:Thank you @Tesla for delivering a car to the wrong address (my house),
21
+ blocking my driveway for hours and not allowing me to pickup my kids from school
22
+ on such a hot day. On top of that, all your driver had to say was "call Tesla
23
+ and tell them, I'm just a driver". https://t.co/QqMXoAT7SJ
24
+ - text: 'pitch:Ron Barron: We see so much potential, we don’t want to sell; Of all
25
+ companies I cover & analysts come pitch to me, the company I feel the most
26
+ confidence in is $TSLA; People think we''re going into a slowdown but demand for
27
+ their cars has never been better.'
28
+ pipeline_tag: text-classification
29
+ inference: false
30
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
31
  ---
32
+
33
+ # SetFit Aspect Model with sentence-transformers/paraphrase-mpnet-base-v2
34
+
35
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
36
+
37
+ The model has been trained using an efficient few-shot learning technique that involves:
38
+
39
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
40
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
41
+
42
+ This model was trained within the context of a larger system for ABSA, which looks like so:
43
+
44
+ 1. Use a spaCy model to select possible aspect span candidates.
45
+ 2. **Use this SetFit model to filter these possible aspect span candidates.**
46
+ 3. Use a SetFit model to classify the filtered aspect span candidates.
47
+
48
+ ## Model Details
49
+
50
+ ### Model Description
51
+ - **Model Type:** SetFit
52
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
53
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
54
+ - **spaCy Model:** en_core_web_lg
55
+ - **SetFitABSA Aspect Model:** [NazmusAshrafi/setfit-absa-sm-stock-tweet-aspect](https://huggingface.co/NazmusAshrafi/setfit-absa-sm-stock-tweet-aspect)
56
+ - **SetFitABSA Polarity Model:** [NazmusAshrafi/setfit-absa-sm-stock-tweet-polarity](https://huggingface.co/NazmusAshrafi/setfit-absa-sm-stock-tweet-polarity)
57
+ - **Maximum Sequence Length:** 512 tokens
58
+ - **Number of Classes:** 2 classes
59
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
60
+ <!-- - **Language:** Unknown -->
61
+ <!-- - **License:** Unknown -->
62
+
63
+ ### Model Sources
64
+
65
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
66
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
67
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
68
+
69
+ ### Model Labels
70
+ | Label | Examples |
71
+ |:----------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
72
+ | aspect | <ul><li>'staff:But the staff was so horrible to us.'</li><li>'@WholeMarsBlog:For years @WholeMarsBlog viciously silenced @Tesla critics. Failing to silence me, he desperately lashes out with childish insults about me, my company, my products - and even my His fear and impotence spurs me on to ensure that everyone understands Full Self-Driving is Apple.'</li><li>'Apple:For years @WholeMarsBlog viciously silenced @Tesla critics. Failing to silence me, he desperately lashes out with childish insults about me, my company, my products - and even my His fear and impotence spurs me on to ensure that everyone understands Full Self-Driving is Apple.'</li></ul> |
73
+ | no aspect | <ul><li>'Tesla delivery estimates:Tesla delivery estimates are at around 364k from the analysts.'</li><li>'analysts:Tesla delivery estimates are at around 364k from the analysts.'</li><li>'@Tesla critics:For years @WholeMarsBlog viciously silenced @Tesla critics. Failing to silence me, he desperately lashes out with childish insults about me, my company, my products - and even my His fear and impotence spurs me on to ensure that everyone understands Full Self-Driving is Apple.'</li></ul> |
74
+
75
+ ## Uses
76
+
77
+ ### Direct Use for Inference
78
+
79
+ First install the SetFit library:
80
+
81
+ ```bash
82
+ pip install setfit
83
+ ```
84
+
85
+ Then you can load this model and run inference.
86
+
87
+ ```python
88
+ from setfit import AbsaModel
89
+
90
+ # Download from the 🤗 Hub
91
+ model = AbsaModel.from_pretrained(
92
+ "NazmusAshrafi/setfit-absa-sm-stock-tweet-aspect",
93
+ "NazmusAshrafi/setfit-absa-sm-stock-tweet-polarity",
94
+ )
95
+ # Run inference
96
+ preds = model("The food was great, but the venue is just way too busy.")
97
+ ```
98
+
99
+ <!--
100
+ ### Downstream Use
101
+
102
+ *List how someone could finetune this model on their own dataset.*
103
+ -->
104
+
105
+ <!--
106
+ ### Out-of-Scope Use
107
+
108
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
109
+ -->
110
+
111
+ <!--
112
+ ## Bias, Risks and Limitations
113
+
114
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
115
+ -->
116
+
117
+ <!--
118
+ ### Recommendations
119
+
120
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
121
+ -->
122
+
123
+ ## Training Details
124
+
125
+ ### Training Set Metrics
126
+ | Training set | Min | Median | Max |
127
+ |:-------------|:----|:--------|:----|
128
+ | Word count | 7 | 34.3860 | 54 |
129
+
130
+ | Label | Training Sample Count |
131
+ |:----------|:----------------------|
132
+ | no aspect | 93 |
133
+ | aspect | 21 |
134
+
135
+ ### Training Hyperparameters
136
+ - batch_size: (16, 2)
137
+ - num_epochs: (1, 16)
138
+ - max_steps: -1
139
+ - sampling_strategy: oversampling
140
+ - body_learning_rate: (2e-05, 1e-05)
141
+ - head_learning_rate: 0.01
142
+ - loss: CosineSimilarityLoss
143
+ - distance_metric: cosine_distance
144
+ - margin: 0.25
145
+ - end_to_end: False
146
+ - use_amp: False
147
+ - warmup_proportion: 0.1
148
+ - seed: 42
149
+ - eval_max_steps: -1
150
+ - load_best_model_at_end: False
151
+
152
+ ### Training Results
153
+ | Epoch | Step | Training Loss | Validation Loss |
154
+ |:------:|:----:|:-------------:|:---------------:|
155
+ | 0.0017 | 1 | 0.2658 | - |
156
+ | 0.0868 | 50 | 0.2171 | - |
157
+ | 0.1736 | 100 | 0.0649 | - |
158
+ | 0.2604 | 150 | 0.0259 | - |
159
+ | 0.3472 | 200 | 0.0802 | - |
160
+ | 0.4340 | 250 | 0.0425 | - |
161
+ | 0.5208 | 300 | 0.0258 | - |
162
+ | 0.6076 | 350 | 0.0435 | - |
163
+ | 0.6944 | 400 | 0.0793 | - |
164
+ | 0.7812 | 450 | 0.0072 | - |
165
+ | 0.8681 | 500 | 0.0003 | - |
166
+ | 0.9549 | 550 | 0.0116 | - |
167
+
168
+ ### Framework Versions
169
+ - Python: 3.10.12
170
+ - SetFit: 1.0.2
171
+ - Sentence Transformers: 2.2.2
172
+ - spaCy: 3.6.1
173
+ - Transformers: 4.35.2
174
+ - PyTorch: 2.1.0+cu121
175
+ - Datasets: 2.16.1
176
+ - Tokenizers: 0.15.0
177
+
178
+ ## Citation
179
+
180
+ ### BibTeX
181
+ ```bibtex
182
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
183
+ doi = {10.48550/ARXIV.2209.11055},
184
+ url = {https://arxiv.org/abs/2209.11055},
185
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
186
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
187
+ title = {Efficient Few-Shot Learning Without Prompts},
188
+ publisher = {arXiv},
189
+ year = {2022},
190
+ copyright = {Creative Commons Attribution 4.0 International}
191
+ }
192
+ ```
193
+
194
+ <!--
195
+ ## Glossary
196
+
197
+ *Clearly define terms in order to be accessible across audiences.*
198
+ -->
199
+
200
+ <!--
201
+ ## Model Card Authors
202
+
203
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
204
+ -->
205
+
206
+ <!--
207
+ ## Model Card Contact
208
+
209
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
210
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_paraphrase-mpnet-base-v2/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.35.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "span_context": 0,
4
+ "labels": [
5
+ "no aspect",
6
+ "aspect"
7
+ ],
8
+ "spacy_model": "en_core_web_lg"
9
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7a176caee1f1d602a3dc249bc3c844cfe7e8ad56905b3e3cdca33fb806e4485
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a61409fcf817008e7d1cf03b9f2f23984f1ffef4cf6dc99a7fb6009f3d979876
3
+ size 6975
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff