NazmusAshrafi
commited on
Commit
•
ee10475
1
Parent(s):
8c91056
Add SetFit ABSA model
Browse files- 1_Pooling/config.json +7 -0
- README.md +618 -1
- config.json +24 -0
- config_sentence_transformers.json +7 -0
- config_setfit.json +9 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +59 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,620 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: setfit
|
3 |
+
tags:
|
4 |
+
- setfit
|
5 |
+
- absa
|
6 |
+
- sentence-transformers
|
7 |
+
- text-classification
|
8 |
+
- generated_from_setfit_trainer
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
widget:
|
12 |
+
- text: EPS:Why do I invest in $TSLA? Do I have blind faith? No. I closely watch their
|
13 |
+
EPS, their P/E, their products, their forecast. This is the only investment I
|
14 |
+
KNOW. And I know this is a great investment. I don’t say this to convince anyone.
|
15 |
+
These are my thoughts about my investment.
|
16 |
+
- text: EPS:$TSLA at 57x Street 2023 EPS (45x my 2023 EPS) seems an absurd valuation
|
17 |
+
for 50%+ volume/EPS growth fueled by the dual tailwinds of soaring EV adoption
|
18 |
+
and TSLA capacity. Investors seem overly worried Elon will sell more TSLA shares
|
19 |
+
even though he says “no further sales planned.” https://t.co/80siAfL847
|
20 |
+
- text: 'TSLA:Cars ... for delivery ? Most likely so. $TSLA #GigaBerlin https://t.co/XL6auHEYjZ'
|
21 |
+
- text: companies:Mainstream media has done an amazing job at brainwashing people.
|
22 |
+
Today at work, we were asked what companies we believe in & I said @Tesla
|
23 |
+
because they make the safest cars & EVERYONE disagreed with me because they
|
24 |
+
heard“they catch on fire & the batteries cost 20k to replace”
|
25 |
+
- text: 'cash flow:The market won’t be able to hold Tesla stock down longer, once
|
26 |
+
all factories are ramping and in full production.
|
27 |
+
|
28 |
+
|
29 |
+
There’s a certain point where the # of cars being produced, revenue & profit
|
30 |
+
& cash flow generated makes the valuation of Tesla look ridiculous.
|
31 |
+
|
32 |
+
|
33 |
+
$TSLA #Tesla'
|
34 |
+
pipeline_tag: text-classification
|
35 |
+
inference: false
|
36 |
+
base_model: sentence-transformers/paraphrase-mpnet-base-v2
|
37 |
+
model-index:
|
38 |
+
- name: SetFit Aspect Model with sentence-transformers/paraphrase-mpnet-base-v2
|
39 |
+
results:
|
40 |
+
- task:
|
41 |
+
type: text-classification
|
42 |
+
name: Text Classification
|
43 |
+
dataset:
|
44 |
+
name: Unknown
|
45 |
+
type: unknown
|
46 |
+
split: test
|
47 |
+
metrics:
|
48 |
+
- type: accuracy
|
49 |
+
value: 0.9798115746971736
|
50 |
+
name: Accuracy
|
51 |
---
|
52 |
+
|
53 |
+
# SetFit Aspect Model with sentence-transformers/paraphrase-mpnet-base-v2
|
54 |
+
|
55 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
|
56 |
+
|
57 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
58 |
+
|
59 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
60 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
61 |
+
|
62 |
+
This model was trained within the context of a larger system for ABSA, which looks like so:
|
63 |
+
|
64 |
+
1. Use a spaCy model to select possible aspect span candidates.
|
65 |
+
2. **Use this SetFit model to filter these possible aspect span candidates.**
|
66 |
+
3. Use a SetFit model to classify the filtered aspect span candidates.
|
67 |
+
|
68 |
+
## Model Details
|
69 |
+
|
70 |
+
### Model Description
|
71 |
+
- **Model Type:** SetFit
|
72 |
+
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
|
73 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
74 |
+
- **spaCy Model:** en_core_web_lg
|
75 |
+
- **SetFitABSA Aspect Model:** [NazmusAshrafi/setfit-MiniLM-mpnet-absa-tesla-tweet-aspect](https://huggingface.co/NazmusAshrafi/setfit-MiniLM-mpnet-absa-tesla-tweet-aspect)
|
76 |
+
- **SetFitABSA Polarity Model:** [NazmusAshrafi/setfit-MiniLM-mpnet-absa-tesla-tweet-polarity](https://huggingface.co/NazmusAshrafi/setfit-MiniLM-mpnet-absa-tesla-tweet-polarity)
|
77 |
+
- **Maximum Sequence Length:** 512 tokens
|
78 |
+
- **Number of Classes:** 2 classes
|
79 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
80 |
+
<!-- - **Language:** Unknown -->
|
81 |
+
<!-- - **License:** Unknown -->
|
82 |
+
|
83 |
+
### Model Sources
|
84 |
+
|
85 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
86 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
87 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
88 |
+
|
89 |
+
### Model Labels
|
90 |
+
| Label | Examples |
|
91 |
+
|:----------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
92 |
+
| no aspect | <ul><li>'Tesla:Tesla could deliver 500K+ vehicles in Q4, increasing annual deliveries by 50%. Due to headwinds in 2022, now the manufacturer is ramping up production even harder to get as many EVs on the road as possible\n\n #Tesla $TSLA \nhttps://t.co/b2NCtZqDYn'</li><li>'vehicles:Tesla could deliver 500K+ vehicles in Q4, increasing annual deliveries by 50%. Due to headwinds in 2022, now the manufacturer is ramping up production even harder to get as many EVs on the road as possible\n\n #Tesla $TSLA \nhttps://t.co/b2NCtZqDYn'</li><li>'Q4:Tesla could deliver 500K+ vehicles in Q4, increasing annual deliveries by 50%. Due to headwinds in 2022, now the manufacturer is ramping up production even harder to get as many EVs on the road as possible\n\n #Tesla $TSLA \nhttps://t.co/b2NCtZqDYn'</li></ul> |
|
93 |
+
| aspect | <ul><li>"profit:I'm pretty sure, all an EV tax incentive will do, is raise the price of Teslas, at least for the next few years.\n\ni.e. just more profit for $TSLA\nAs if demand wasn't abundant enough already."</li><li>"price:I'm pretty sure, all an EV tax incentive will do, is raise the price of Teslas, at least for the next few years.\n\ni.e. just more profit for $TSLA\nAs if demand wasn't abundant enough already."</li><li>'car:John Hennessey gets a $TSLA Plaid. \nA retired OEM executive describes Tesla as a $30k car with $70k in batteries. \nThe perfect description of a Tesla https://t.co/m5J5m3AuMJ'</li></ul> |
|
94 |
+
|
95 |
+
## Evaluation
|
96 |
+
|
97 |
+
### Metrics
|
98 |
+
| Label | Accuracy |
|
99 |
+
|:--------|:---------|
|
100 |
+
| **all** | 0.9798 |
|
101 |
+
|
102 |
+
## Uses
|
103 |
+
|
104 |
+
### Direct Use for Inference
|
105 |
+
|
106 |
+
First install the SetFit library:
|
107 |
+
|
108 |
+
```bash
|
109 |
+
pip install setfit
|
110 |
+
```
|
111 |
+
|
112 |
+
Then you can load this model and run inference.
|
113 |
+
|
114 |
+
```python
|
115 |
+
from setfit import AbsaModel
|
116 |
+
|
117 |
+
# Download from the 🤗 Hub
|
118 |
+
model = AbsaModel.from_pretrained(
|
119 |
+
"NazmusAshrafi/setfit-MiniLM-mpnet-absa-tesla-tweet-aspect",
|
120 |
+
"NazmusAshrafi/setfit-MiniLM-mpnet-absa-tesla-tweet-polarity",
|
121 |
+
)
|
122 |
+
# Run inference
|
123 |
+
preds = model("The food was great, but the venue is just way too busy.")
|
124 |
+
```
|
125 |
+
|
126 |
+
<!--
|
127 |
+
### Downstream Use
|
128 |
+
|
129 |
+
*List how someone could finetune this model on their own dataset.*
|
130 |
+
-->
|
131 |
+
|
132 |
+
<!--
|
133 |
+
### Out-of-Scope Use
|
134 |
+
|
135 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
136 |
+
-->
|
137 |
+
|
138 |
+
<!--
|
139 |
+
## Bias, Risks and Limitations
|
140 |
+
|
141 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
142 |
+
-->
|
143 |
+
|
144 |
+
<!--
|
145 |
+
### Recommendations
|
146 |
+
|
147 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
148 |
+
-->
|
149 |
+
|
150 |
+
## Training Details
|
151 |
+
|
152 |
+
### Training Set Metrics
|
153 |
+
| Training set | Min | Median | Max |
|
154 |
+
|:-------------|:----|:--------|:----|
|
155 |
+
| Word count | 11 | 41.4789 | 57 |
|
156 |
+
|
157 |
+
| Label | Training Sample Count |
|
158 |
+
|:----------|:----------------------|
|
159 |
+
| no aspect | 560 |
|
160 |
+
| aspect | 33 |
|
161 |
+
|
162 |
+
### Training Hyperparameters
|
163 |
+
- batch_size: (16, 2)
|
164 |
+
- num_epochs: (1, 16)
|
165 |
+
- max_steps: -1
|
166 |
+
- sampling_strategy: oversampling
|
167 |
+
- body_learning_rate: (2e-05, 1e-05)
|
168 |
+
- head_learning_rate: 0.01
|
169 |
+
- loss: CosineSimilarityLoss
|
170 |
+
- distance_metric: cosine_distance
|
171 |
+
- margin: 0.25
|
172 |
+
- end_to_end: False
|
173 |
+
- use_amp: False
|
174 |
+
- warmup_proportion: 0.1
|
175 |
+
- seed: 42
|
176 |
+
- eval_max_steps: -1
|
177 |
+
- load_best_model_at_end: False
|
178 |
+
|
179 |
+
### Training Results
|
180 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
181 |
+
|:------:|:-----:|:-------------:|:---------------:|
|
182 |
+
| 0.0001 | 1 | 0.2511 | - |
|
183 |
+
| 0.0025 | 50 | 0.2558 | - |
|
184 |
+
| 0.0051 | 100 | 0.2147 | - |
|
185 |
+
| 0.0076 | 150 | 0.2265 | - |
|
186 |
+
| 0.0101 | 200 | 0.2474 | - |
|
187 |
+
| 0.0127 | 250 | 0.2286 | - |
|
188 |
+
| 0.0152 | 300 | 0.1717 | - |
|
189 |
+
| 0.0178 | 350 | 0.0737 | - |
|
190 |
+
| 0.0203 | 400 | 0.0231 | - |
|
191 |
+
| 0.0228 | 450 | 0.0069 | - |
|
192 |
+
| 0.0254 | 500 | 0.0032 | - |
|
193 |
+
| 0.0279 | 550 | 0.002 | - |
|
194 |
+
| 0.0304 | 600 | 0.0008 | - |
|
195 |
+
| 0.0330 | 650 | 0.0023 | - |
|
196 |
+
| 0.0355 | 700 | 0.002 | - |
|
197 |
+
| 0.0381 | 750 | 0.0008 | - |
|
198 |
+
| 0.0406 | 800 | 0.0019 | - |
|
199 |
+
| 0.0431 | 850 | 0.0003 | - |
|
200 |
+
| 0.0457 | 900 | 0.0004 | - |
|
201 |
+
| 0.0482 | 950 | 0.0005 | - |
|
202 |
+
| 0.0507 | 1000 | 0.0003 | - |
|
203 |
+
| 0.0533 | 1050 | 0.0006 | - |
|
204 |
+
| 0.0558 | 1100 | 0.0071 | - |
|
205 |
+
| 0.0584 | 1150 | 0.0001 | - |
|
206 |
+
| 0.0609 | 1200 | 0.0001 | - |
|
207 |
+
| 0.0634 | 1250 | 0.0001 | - |
|
208 |
+
| 0.0660 | 1300 | 0.0001 | - |
|
209 |
+
| 0.0685 | 1350 | 0.0004 | - |
|
210 |
+
| 0.0710 | 1400 | 0.0001 | - |
|
211 |
+
| 0.0736 | 1450 | 0.0002 | - |
|
212 |
+
| 0.0761 | 1500 | 0.0002 | - |
|
213 |
+
| 0.0787 | 1550 | 0.0002 | - |
|
214 |
+
| 0.0812 | 1600 | 0.0001 | - |
|
215 |
+
| 0.0837 | 1650 | 0.0001 | - |
|
216 |
+
| 0.0863 | 1700 | 0.0007 | - |
|
217 |
+
| 0.0888 | 1750 | 0.0001 | - |
|
218 |
+
| 0.0913 | 1800 | 0.0002 | - |
|
219 |
+
| 0.0939 | 1850 | 0.0011 | - |
|
220 |
+
| 0.0964 | 1900 | 0.0007 | - |
|
221 |
+
| 0.0990 | 1950 | 0.001 | - |
|
222 |
+
| 0.1015 | 2000 | 0.0003 | - |
|
223 |
+
| 0.1040 | 2050 | 0.0004 | - |
|
224 |
+
| 0.1066 | 2100 | 0.0006 | - |
|
225 |
+
| 0.1091 | 2150 | 0.0004 | - |
|
226 |
+
| 0.1116 | 2200 | 0.0 | - |
|
227 |
+
| 0.1142 | 2250 | 0.0 | - |
|
228 |
+
| 0.1167 | 2300 | 0.0001 | - |
|
229 |
+
| 0.1193 | 2350 | 0.0017 | - |
|
230 |
+
| 0.1218 | 2400 | 0.0007 | - |
|
231 |
+
| 0.1243 | 2450 | 0.0023 | - |
|
232 |
+
| 0.1269 | 2500 | 0.0 | - |
|
233 |
+
| 0.1294 | 2550 | 0.0 | - |
|
234 |
+
| 0.1319 | 2600 | 0.0007 | - |
|
235 |
+
| 0.1345 | 2650 | 0.0 | - |
|
236 |
+
| 0.1370 | 2700 | 0.0004 | - |
|
237 |
+
| 0.1396 | 2750 | 0.0001 | - |
|
238 |
+
| 0.1421 | 2800 | 0.0002 | - |
|
239 |
+
| 0.1446 | 2850 | 0.0019 | - |
|
240 |
+
| 0.1472 | 2900 | 0.0002 | - |
|
241 |
+
| 0.1497 | 2950 | 0.0001 | - |
|
242 |
+
| 0.1522 | 3000 | 0.0 | - |
|
243 |
+
| 0.1548 | 3050 | 0.0001 | - |
|
244 |
+
| 0.1573 | 3100 | 0.0 | - |
|
245 |
+
| 0.1598 | 3150 | 0.0001 | - |
|
246 |
+
| 0.1624 | 3200 | 0.0007 | - |
|
247 |
+
| 0.1649 | 3250 | 0.0 | - |
|
248 |
+
| 0.1675 | 3300 | 0.0002 | - |
|
249 |
+
| 0.1700 | 3350 | 0.0004 | - |
|
250 |
+
| 0.1725 | 3400 | 0.0 | - |
|
251 |
+
| 0.1751 | 3450 | 0.0 | - |
|
252 |
+
| 0.1776 | 3500 | 0.0 | - |
|
253 |
+
| 0.1801 | 3550 | 0.0 | - |
|
254 |
+
| 0.1827 | 3600 | 0.0001 | - |
|
255 |
+
| 0.1852 | 3650 | 0.0 | - |
|
256 |
+
| 0.1878 | 3700 | 0.0001 | - |
|
257 |
+
| 0.1903 | 3750 | 0.0 | - |
|
258 |
+
| 0.1928 | 3800 | 0.0 | - |
|
259 |
+
| 0.1954 | 3850 | 0.0 | - |
|
260 |
+
| 0.1979 | 3900 | 0.0 | - |
|
261 |
+
| 0.2004 | 3950 | 0.0 | - |
|
262 |
+
| 0.2030 | 4000 | 0.0 | - |
|
263 |
+
| 0.2055 | 4050 | 0.0019 | - |
|
264 |
+
| 0.2081 | 4100 | 0.0 | - |
|
265 |
+
| 0.2106 | 4150 | 0.0001 | - |
|
266 |
+
| 0.2131 | 4200 | 0.0 | - |
|
267 |
+
| 0.2157 | 4250 | 0.0 | - |
|
268 |
+
| 0.2182 | 4300 | 0.0 | - |
|
269 |
+
| 0.2207 | 4350 | 0.0 | - |
|
270 |
+
| 0.2233 | 4400 | 0.0005 | - |
|
271 |
+
| 0.2258 | 4450 | 0.0 | - |
|
272 |
+
| 0.2284 | 4500 | 0.0 | - |
|
273 |
+
| 0.2309 | 4550 | 0.0 | - |
|
274 |
+
| 0.2334 | 4600 | 0.0 | - |
|
275 |
+
| 0.2360 | 4650 | 0.0 | - |
|
276 |
+
| 0.2385 | 4700 | 0.0009 | - |
|
277 |
+
| 0.2410 | 4750 | 0.0 | - |
|
278 |
+
| 0.2436 | 4800 | 0.0 | - |
|
279 |
+
| 0.2461 | 4850 | 0.0 | - |
|
280 |
+
| 0.2487 | 4900 | 0.0002 | - |
|
281 |
+
| 0.2512 | 4950 | 0.0 | - |
|
282 |
+
| 0.2537 | 5000 | 0.0011 | - |
|
283 |
+
| 0.2563 | 5050 | 0.0 | - |
|
284 |
+
| 0.2588 | 5100 | 0.0 | - |
|
285 |
+
| 0.2613 | 5150 | 0.0 | - |
|
286 |
+
| 0.2639 | 5200 | 0.0 | - |
|
287 |
+
| 0.2664 | 5250 | 0.0 | - |
|
288 |
+
| 0.2690 | 5300 | 0.0 | - |
|
289 |
+
| 0.2715 | 5350 | 0.0026 | - |
|
290 |
+
| 0.2740 | 5400 | 0.0 | - |
|
291 |
+
| 0.2766 | 5450 | 0.0021 | - |
|
292 |
+
| 0.2791 | 5500 | 0.0 | - |
|
293 |
+
| 0.2816 | 5550 | 0.0001 | - |
|
294 |
+
| 0.2842 | 5600 | 0.0 | - |
|
295 |
+
| 0.2867 | 5650 | 0.0001 | - |
|
296 |
+
| 0.2893 | 5700 | 0.0 | - |
|
297 |
+
| 0.2918 | 5750 | 0.0 | - |
|
298 |
+
| 0.2943 | 5800 | 0.0 | - |
|
299 |
+
| 0.2969 | 5850 | 0.0 | - |
|
300 |
+
| 0.2994 | 5900 | 0.0 | - |
|
301 |
+
| 0.3019 | 5950 | 0.0 | - |
|
302 |
+
| 0.3045 | 6000 | 0.0 | - |
|
303 |
+
| 0.3070 | 6050 | 0.0 | - |
|
304 |
+
| 0.3096 | 6100 | 0.0 | - |
|
305 |
+
| 0.3121 | 6150 | 0.0003 | - |
|
306 |
+
| 0.3146 | 6200 | 0.0 | - |
|
307 |
+
| 0.3172 | 6250 | 0.0 | - |
|
308 |
+
| 0.3197 | 6300 | 0.0 | - |
|
309 |
+
| 0.3222 | 6350 | 0.0001 | - |
|
310 |
+
| 0.3248 | 6400 | 0.0009 | - |
|
311 |
+
| 0.3273 | 6450 | 0.0 | - |
|
312 |
+
| 0.3298 | 6500 | 0.0 | - |
|
313 |
+
| 0.3324 | 6550 | 0.0 | - |
|
314 |
+
| 0.3349 | 6600 | 0.0 | - |
|
315 |
+
| 0.3375 | 6650 | 0.0 | - |
|
316 |
+
| 0.3400 | 6700 | 0.0 | - |
|
317 |
+
| 0.3425 | 6750 | 0.0 | - |
|
318 |
+
| 0.3451 | 6800 | 0.0 | - |
|
319 |
+
| 0.3476 | 6850 | 0.0 | - |
|
320 |
+
| 0.3501 | 6900 | 0.0 | - |
|
321 |
+
| 0.3527 | 6950 | 0.0 | - |
|
322 |
+
| 0.3552 | 7000 | 0.0 | - |
|
323 |
+
| 0.3578 | 7050 | 0.0 | - |
|
324 |
+
| 0.3603 | 7100 | 0.0536 | - |
|
325 |
+
| 0.3628 | 7150 | 0.0 | - |
|
326 |
+
| 0.3654 | 7200 | 0.0 | - |
|
327 |
+
| 0.3679 | 7250 | 0.0 | - |
|
328 |
+
| 0.3704 | 7300 | 0.0 | - |
|
329 |
+
| 0.3730 | 7350 | 0.0 | - |
|
330 |
+
| 0.3755 | 7400 | 0.0 | - |
|
331 |
+
| 0.3781 | 7450 | 0.0 | - |
|
332 |
+
| 0.3806 | 7500 | 0.0 | - |
|
333 |
+
| 0.3831 | 7550 | 0.0 | - |
|
334 |
+
| 0.3857 | 7600 | 0.0 | - |
|
335 |
+
| 0.3882 | 7650 | 0.0 | - |
|
336 |
+
| 0.3907 | 7700 | 0.0 | - |
|
337 |
+
| 0.3933 | 7750 | 0.0019 | - |
|
338 |
+
| 0.3958 | 7800 | 0.0 | - |
|
339 |
+
| 0.3984 | 7850 | 0.0 | - |
|
340 |
+
| 0.4009 | 7900 | 0.0548 | - |
|
341 |
+
| 0.4034 | 7950 | 0.0 | - |
|
342 |
+
| 0.4060 | 8000 | 0.0053 | - |
|
343 |
+
| 0.4085 | 8050 | 0.0 | - |
|
344 |
+
| 0.4110 | 8100 | 0.0 | - |
|
345 |
+
| 0.4136 | 8150 | 0.0 | - |
|
346 |
+
| 0.4161 | 8200 | 0.0 | - |
|
347 |
+
| 0.4187 | 8250 | 0.0624 | - |
|
348 |
+
| 0.4212 | 8300 | 0.0622 | - |
|
349 |
+
| 0.4237 | 8350 | 0.0618 | - |
|
350 |
+
| 0.4263 | 8400 | 0.0001 | - |
|
351 |
+
| 0.4288 | 8450 | 0.0 | - |
|
352 |
+
| 0.4313 | 8500 | 0.0001 | - |
|
353 |
+
| 0.4339 | 8550 | 0.0 | - |
|
354 |
+
| 0.4364 | 8600 | 0.0 | - |
|
355 |
+
| 0.4390 | 8650 | 0.0 | - |
|
356 |
+
| 0.4415 | 8700 | 0.0012 | - |
|
357 |
+
| 0.4440 | 8750 | 0.0001 | - |
|
358 |
+
| 0.4466 | 8800 | 0.0005 | - |
|
359 |
+
| 0.4491 | 8850 | 0.0 | - |
|
360 |
+
| 0.4516 | 8900 | 0.0 | - |
|
361 |
+
| 0.4542 | 8950 | 0.0 | - |
|
362 |
+
| 0.4567 | 9000 | 0.0 | - |
|
363 |
+
| 0.4593 | 9050 | 0.0 | - |
|
364 |
+
| 0.4618 | 9100 | 0.0 | - |
|
365 |
+
| 0.4643 | 9150 | 0.0 | - |
|
366 |
+
| 0.4669 | 9200 | 0.0 | - |
|
367 |
+
| 0.4694 | 9250 | 0.0408 | - |
|
368 |
+
| 0.4719 | 9300 | 0.0498 | - |
|
369 |
+
| 0.4745 | 9350 | 0.0 | - |
|
370 |
+
| 0.4770 | 9400 | 0.0 | - |
|
371 |
+
| 0.4795 | 9450 | 0.0017 | - |
|
372 |
+
| 0.4821 | 9500 | 0.0 | - |
|
373 |
+
| 0.4846 | 9550 | 0.0 | - |
|
374 |
+
| 0.4872 | 9600 | 0.0 | - |
|
375 |
+
| 0.4897 | 9650 | 0.0 | - |
|
376 |
+
| 0.4922 | 9700 | 0.0 | - |
|
377 |
+
| 0.4948 | 9750 | 0.0 | - |
|
378 |
+
| 0.4973 | 9800 | 0.0589 | - |
|
379 |
+
| 0.4998 | 9850 | 0.0 | - |
|
380 |
+
| 0.5024 | 9900 | 0.0 | - |
|
381 |
+
| 0.5049 | 9950 | 0.0015 | - |
|
382 |
+
| 0.5075 | 10000 | 0.0 | - |
|
383 |
+
| 0.5100 | 10050 | 0.0 | - |
|
384 |
+
| 0.5125 | 10100 | 0.0 | - |
|
385 |
+
| 0.5151 | 10150 | 0.0 | - |
|
386 |
+
| 0.5176 | 10200 | 0.0 | - |
|
387 |
+
| 0.5201 | 10250 | 0.0 | - |
|
388 |
+
| 0.5227 | 10300 | 0.0013 | - |
|
389 |
+
| 0.5252 | 10350 | 0.0023 | - |
|
390 |
+
| 0.5278 | 10400 | 0.0 | - |
|
391 |
+
| 0.5303 | 10450 | 0.0 | - |
|
392 |
+
| 0.5328 | 10500 | 0.0 | - |
|
393 |
+
| 0.5354 | 10550 | 0.0003 | - |
|
394 |
+
| 0.5379 | 10600 | 0.0 | - |
|
395 |
+
| 0.5404 | 10650 | 0.0 | - |
|
396 |
+
| 0.5430 | 10700 | 0.0002 | - |
|
397 |
+
| 0.5455 | 10750 | 0.0 | - |
|
398 |
+
| 0.5481 | 10800 | 0.0 | - |
|
399 |
+
| 0.5506 | 10850 | 0.0005 | - |
|
400 |
+
| 0.5531 | 10900 | 0.0 | - |
|
401 |
+
| 0.5557 | 10950 | 0.0 | - |
|
402 |
+
| 0.5582 | 11000 | 0.0 | - |
|
403 |
+
| 0.5607 | 11050 | 0.0 | - |
|
404 |
+
| 0.5633 | 11100 | 0.0 | - |
|
405 |
+
| 0.5658 | 11150 | 0.0 | - |
|
406 |
+
| 0.5684 | 11200 | 0.0 | - |
|
407 |
+
| 0.5709 | 11250 | 0.0 | - |
|
408 |
+
| 0.5734 | 11300 | 0.0 | - |
|
409 |
+
| 0.5760 | 11350 | 0.0008 | - |
|
410 |
+
| 0.5785 | 11400 | 0.0 | - |
|
411 |
+
| 0.5810 | 11450 | 0.0024 | - |
|
412 |
+
| 0.5836 | 11500 | 0.0 | - |
|
413 |
+
| 0.5861 | 11550 | 0.0 | - |
|
414 |
+
| 0.5887 | 11600 | 0.0 | - |
|
415 |
+
| 0.5912 | 11650 | 0.0 | - |
|
416 |
+
| 0.5937 | 11700 | 0.001 | - |
|
417 |
+
| 0.5963 | 11750 | 0.0 | - |
|
418 |
+
| 0.5988 | 11800 | 0.0 | - |
|
419 |
+
| 0.6013 | 11850 | 0.0 | - |
|
420 |
+
| 0.6039 | 11900 | 0.0527 | - |
|
421 |
+
| 0.6064 | 11950 | 0.0021 | - |
|
422 |
+
| 0.6090 | 12000 | 0.0 | - |
|
423 |
+
| 0.6115 | 12050 | 0.0 | - |
|
424 |
+
| 0.6140 | 12100 | 0.0 | - |
|
425 |
+
| 0.6166 | 12150 | 0.0 | - |
|
426 |
+
| 0.6191 | 12200 | 0.0 | - |
|
427 |
+
| 0.6216 | 12250 | 0.0 | - |
|
428 |
+
| 0.6242 | 12300 | 0.0 | - |
|
429 |
+
| 0.6267 | 12350 | 0.0006 | - |
|
430 |
+
| 0.6292 | 12400 | 0.0 | - |
|
431 |
+
| 0.6318 | 12450 | 0.0 | - |
|
432 |
+
| 0.6343 | 12500 | 0.001 | - |
|
433 |
+
| 0.6369 | 12550 | 0.0017 | - |
|
434 |
+
| 0.6394 | 12600 | 0.0 | - |
|
435 |
+
| 0.6419 | 12650 | 0.0 | - |
|
436 |
+
| 0.6445 | 12700 | 0.0 | - |
|
437 |
+
| 0.6470 | 12750 | 0.0012 | - |
|
438 |
+
| 0.6495 | 12800 | 0.0 | - |
|
439 |
+
| 0.6521 | 12850 | 0.0 | - |
|
440 |
+
| 0.6546 | 12900 | 0.0 | - |
|
441 |
+
| 0.6572 | 12950 | 0.0434 | - |
|
442 |
+
| 0.6597 | 13000 | 0.0 | - |
|
443 |
+
| 0.6622 | 13050 | 0.0 | - |
|
444 |
+
| 0.6648 | 13100 | 0.0003 | - |
|
445 |
+
| 0.6673 | 13150 | 0.0 | - |
|
446 |
+
| 0.6698 | 13200 | 0.0 | - |
|
447 |
+
| 0.6724 | 13250 | 0.0003 | - |
|
448 |
+
| 0.6749 | 13300 | 0.0 | - |
|
449 |
+
| 0.6775 | 13350 | 0.0 | - |
|
450 |
+
| 0.6800 | 13400 | 0.0005 | - |
|
451 |
+
| 0.6825 | 13450 | 0.0 | - |
|
452 |
+
| 0.6851 | 13500 | 0.0011 | - |
|
453 |
+
| 0.6876 | 13550 | 0.0475 | - |
|
454 |
+
| 0.6901 | 13600 | 0.0 | - |
|
455 |
+
| 0.6927 | 13650 | 0.0007 | - |
|
456 |
+
| 0.6952 | 13700 | 0.0 | - |
|
457 |
+
| 0.6978 | 13750 | 0.0 | - |
|
458 |
+
| 0.7003 | 13800 | 0.0 | - |
|
459 |
+
| 0.7028 | 13850 | 0.0 | - |
|
460 |
+
| 0.7054 | 13900 | 0.0 | - |
|
461 |
+
| 0.7079 | 13950 | 0.0015 | - |
|
462 |
+
| 0.7104 | 14000 | 0.0034 | - |
|
463 |
+
| 0.7130 | 14050 | 0.0009 | - |
|
464 |
+
| 0.7155 | 14100 | 0.0 | - |
|
465 |
+
| 0.7181 | 14150 | 0.0009 | - |
|
466 |
+
| 0.7206 | 14200 | 0.0 | - |
|
467 |
+
| 0.7231 | 14250 | 0.0003 | - |
|
468 |
+
| 0.7257 | 14300 | 0.0004 | - |
|
469 |
+
| 0.7282 | 14350 | 0.0 | - |
|
470 |
+
| 0.7307 | 14400 | 0.0003 | - |
|
471 |
+
| 0.7333 | 14450 | 0.0 | - |
|
472 |
+
| 0.7358 | 14500 | 0.0 | - |
|
473 |
+
| 0.7384 | 14550 | 0.0 | - |
|
474 |
+
| 0.7409 | 14600 | 0.0 | - |
|
475 |
+
| 0.7434 | 14650 | 0.0 | - |
|
476 |
+
| 0.7460 | 14700 | 0.0018 | - |
|
477 |
+
| 0.7485 | 14750 | 0.0012 | - |
|
478 |
+
| 0.7510 | 14800 | 0.0 | - |
|
479 |
+
| 0.7536 | 14850 | 0.0 | - |
|
480 |
+
| 0.7561 | 14900 | 0.0013 | - |
|
481 |
+
| 0.7587 | 14950 | 0.0 | - |
|
482 |
+
| 0.7612 | 15000 | 0.0 | - |
|
483 |
+
| 0.7637 | 15050 | 0.0 | - |
|
484 |
+
| 0.7663 | 15100 | 0.0 | - |
|
485 |
+
| 0.7688 | 15150 | 0.0 | - |
|
486 |
+
| 0.7713 | 15200 | 0.0 | - |
|
487 |
+
| 0.7739 | 15250 | 0.0 | - |
|
488 |
+
| 0.7764 | 15300 | 0.0 | - |
|
489 |
+
| 0.7790 | 15350 | 0.0 | - |
|
490 |
+
| 0.7815 | 15400 | 0.0 | - |
|
491 |
+
| 0.7840 | 15450 | 0.0 | - |
|
492 |
+
| 0.7866 | 15500 | 0.0 | - |
|
493 |
+
| 0.7891 | 15550 | 0.0 | - |
|
494 |
+
| 0.7916 | 15600 | 0.0004 | - |
|
495 |
+
| 0.7942 | 15650 | 0.0005 | - |
|
496 |
+
| 0.7967 | 15700 | 0.0 | - |
|
497 |
+
| 0.7992 | 15750 | 0.0 | - |
|
498 |
+
| 0.8018 | 15800 | 0.0 | - |
|
499 |
+
| 0.8043 | 15850 | 0.0 | - |
|
500 |
+
| 0.8069 | 15900 | 0.0 | - |
|
501 |
+
| 0.8094 | 15950 | 0.0555 | - |
|
502 |
+
| 0.8119 | 16000 | 0.0 | - |
|
503 |
+
| 0.8145 | 16050 | 0.0 | - |
|
504 |
+
| 0.8170 | 16100 | 0.0 | - |
|
505 |
+
| 0.8195 | 16150 | 0.0 | - |
|
506 |
+
| 0.8221 | 16200 | 0.0 | - |
|
507 |
+
| 0.8246 | 16250 | 0.0007 | - |
|
508 |
+
| 0.8272 | 16300 | 0.0 | - |
|
509 |
+
| 0.8297 | 16350 | 0.0 | - |
|
510 |
+
| 0.8322 | 16400 | 0.0 | - |
|
511 |
+
| 0.8348 | 16450 | 0.0003 | - |
|
512 |
+
| 0.8373 | 16500 | 0.0 | - |
|
513 |
+
| 0.8398 | 16550 | 0.0012 | - |
|
514 |
+
| 0.8424 | 16600 | 0.0 | - |
|
515 |
+
| 0.8449 | 16650 | 0.0 | - |
|
516 |
+
| 0.8475 | 16700 | 0.0 | - |
|
517 |
+
| 0.8500 | 16750 | 0.0 | - |
|
518 |
+
| 0.8525 | 16800 | 0.0 | - |
|
519 |
+
| 0.8551 | 16850 | 0.0 | - |
|
520 |
+
| 0.8576 | 16900 | 0.0007 | - |
|
521 |
+
| 0.8601 | 16950 | 0.0 | - |
|
522 |
+
| 0.8627 | 17000 | 0.001 | - |
|
523 |
+
| 0.8652 | 17050 | 0.0 | - |
|
524 |
+
| 0.8678 | 17100 | 0.0 | - |
|
525 |
+
| 0.8703 | 17150 | 0.0 | - |
|
526 |
+
| 0.8728 | 17200 | 0.0 | - |
|
527 |
+
| 0.8754 | 17250 | 0.0 | - |
|
528 |
+
| 0.8779 | 17300 | 0.0 | - |
|
529 |
+
| 0.8804 | 17350 | 0.0 | - |
|
530 |
+
| 0.8830 | 17400 | 0.0007 | - |
|
531 |
+
| 0.8855 | 17450 | 0.0 | - |
|
532 |
+
| 0.8881 | 17500 | 0.0 | - |
|
533 |
+
| 0.8906 | 17550 | 0.0505 | - |
|
534 |
+
| 0.8931 | 17600 | 0.0 | - |
|
535 |
+
| 0.8957 | 17650 | 0.0 | - |
|
536 |
+
| 0.8982 | 17700 | 0.0008 | - |
|
537 |
+
| 0.9007 | 17750 | 0.0 | - |
|
538 |
+
| 0.9033 | 17800 | 0.0003 | - |
|
539 |
+
| 0.9058 | 17850 | 0.0 | - |
|
540 |
+
| 0.9084 | 17900 | 0.0 | - |
|
541 |
+
| 0.9109 | 17950 | 0.0009 | - |
|
542 |
+
| 0.9134 | 18000 | 0.0 | - |
|
543 |
+
| 0.9160 | 18050 | 0.0 | - |
|
544 |
+
| 0.9185 | 18100 | 0.0 | - |
|
545 |
+
| 0.9210 | 18150 | 0.0 | - |
|
546 |
+
| 0.9236 | 18200 | 0.0 | - |
|
547 |
+
| 0.9261 | 18250 | 0.0 | - |
|
548 |
+
| 0.9287 | 18300 | 0.0 | - |
|
549 |
+
| 0.9312 | 18350 | 0.0008 | - |
|
550 |
+
| 0.9337 | 18400 | 0.0 | - |
|
551 |
+
| 0.9363 | 18450 | 0.0 | - |
|
552 |
+
| 0.9388 | 18500 | 0.0 | - |
|
553 |
+
| 0.9413 | 18550 | 0.0 | - |
|
554 |
+
| 0.9439 | 18600 | 0.0 | - |
|
555 |
+
| 0.9464 | 18650 | 0.0 | - |
|
556 |
+
| 0.9489 | 18700 | 0.0 | - |
|
557 |
+
| 0.9515 | 18750 | 0.0 | - |
|
558 |
+
| 0.9540 | 18800 | 0.0 | - |
|
559 |
+
| 0.9566 | 18850 | 0.0 | - |
|
560 |
+
| 0.9591 | 18900 | 0.0 | - |
|
561 |
+
| 0.9616 | 18950 | 0.0 | - |
|
562 |
+
| 0.9642 | 19000 | 0.0 | - |
|
563 |
+
| 0.9667 | 19050 | 0.0 | - |
|
564 |
+
| 0.9692 | 19100 | 0.0 | - |
|
565 |
+
| 0.9718 | 19150 | 0.0 | - |
|
566 |
+
| 0.9743 | 19200 | 0.0 | - |
|
567 |
+
| 0.9769 | 19250 | 0.0 | - |
|
568 |
+
| 0.9794 | 19300 | 0.0005 | - |
|
569 |
+
| 0.9819 | 19350 | 0.0 | - |
|
570 |
+
| 0.9845 | 19400 | 0.0 | - |
|
571 |
+
| 0.9870 | 19450 | 0.0 | - |
|
572 |
+
| 0.9895 | 19500 | 0.0 | - |
|
573 |
+
| 0.9921 | 19550 | 0.0011 | - |
|
574 |
+
| 0.9946 | 19600 | 0.0 | - |
|
575 |
+
| 0.9972 | 19650 | 0.0 | - |
|
576 |
+
| 0.9997 | 19700 | 0.0 | - |
|
577 |
+
|
578 |
+
### Framework Versions
|
579 |
+
- Python: 3.10.12
|
580 |
+
- SetFit: 1.0.3
|
581 |
+
- Sentence Transformers: 2.2.2
|
582 |
+
- spaCy: 3.6.1
|
583 |
+
- Transformers: 4.35.2
|
584 |
+
- PyTorch: 2.1.0+cu121
|
585 |
+
- Datasets: 2.16.1
|
586 |
+
- Tokenizers: 0.15.1
|
587 |
+
|
588 |
+
## Citation
|
589 |
+
|
590 |
+
### BibTeX
|
591 |
+
```bibtex
|
592 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
593 |
+
doi = {10.48550/ARXIV.2209.11055},
|
594 |
+
url = {https://arxiv.org/abs/2209.11055},
|
595 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
596 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
597 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
598 |
+
publisher = {arXiv},
|
599 |
+
year = {2022},
|
600 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
601 |
+
}
|
602 |
+
```
|
603 |
+
|
604 |
+
<!--
|
605 |
+
## Glossary
|
606 |
+
|
607 |
+
*Clearly define terms in order to be accessible across audiences.*
|
608 |
+
-->
|
609 |
+
|
610 |
+
<!--
|
611 |
+
## Model Card Authors
|
612 |
+
|
613 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
614 |
+
-->
|
615 |
+
|
616 |
+
<!--
|
617 |
+
## Model Card Contact
|
618 |
+
|
619 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
620 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_paraphrase-mpnet-base-v2/",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.35.2",
|
23 |
+
"vocab_size": 30527
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.7.0",
|
5 |
+
"pytorch": "1.9.0+cu102"
|
6 |
+
}
|
7 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"span_context": 0,
|
3 |
+
"labels": [
|
4 |
+
"no aspect",
|
5 |
+
"aspect"
|
6 |
+
],
|
7 |
+
"normalize_embeddings": false,
|
8 |
+
"spacy_model": "en_core_web_lg"
|
9 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd3890482c8271b0eee7f6d41b191faab6b7ae6d7d99102ccd886f8b1db8658d
|
3 |
+
size 437967672
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f59d809144c1b7f843932eb57bffc928bb61af809d510d9fdd5eb9107bf8b379
|
3 |
+
size 6975
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": true,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"104": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"30526": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": true,
|
49 |
+
"eos_token": "</s>",
|
50 |
+
"mask_token": "<mask>",
|
51 |
+
"model_max_length": 512,
|
52 |
+
"never_split": null,
|
53 |
+
"pad_token": "<pad>",
|
54 |
+
"sep_token": "</s>",
|
55 |
+
"strip_accents": null,
|
56 |
+
"tokenize_chinese_chars": true,
|
57 |
+
"tokenizer_class": "MPNetTokenizer",
|
58 |
+
"unk_token": "[UNK]"
|
59 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|