|
|
import os |
|
|
from PIL import Image |
|
|
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline |
|
|
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref |
|
|
from src.unet_hacked_tryon import UNet2DConditionModel |
|
|
from transformers import ( |
|
|
CLIPImageProcessor, |
|
|
CLIPVisionModelWithProjection, |
|
|
CLIPTextModel, |
|
|
CLIPTextModelWithProjection, |
|
|
) |
|
|
from diffusers import DDPMScheduler, AutoencoderKL |
|
|
import torch |
|
|
from transformers import AutoTokenizer |
|
|
import numpy as np |
|
|
from utils_mask import get_mask_location |
|
|
from torchvision import transforms |
|
|
import apply_net |
|
|
from preprocess.humanparsing.run_parsing import Parsing |
|
|
from preprocess.openpose.run_openpose import OpenPose |
|
|
from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation |
|
|
from torchvision.transforms.functional import to_pil_image |
|
|
|
|
|
|
|
|
def pil_to_binary_mask(pil_image, threshold=0): |
|
|
np_image = np.array(pil_image) |
|
|
grayscale_image = Image.fromarray(np_image).convert("L") |
|
|
binary_mask = np.array(grayscale_image) > threshold |
|
|
mask = np.zeros(binary_mask.shape, dtype=np.uint8) |
|
|
for i in range(binary_mask.shape[0]): |
|
|
for j in range(binary_mask.shape[1]): |
|
|
if binary_mask[i, j]: |
|
|
mask[i, j] = 1 |
|
|
mask = (mask * 255).astype(np.uint8) |
|
|
output_mask = Image.fromarray(mask) |
|
|
return output_mask |
|
|
|
|
|
|
|
|
|
|
|
base_path = 'yisol/IDM-VTON' |
|
|
example_path = os.path.join(os.path.dirname(__file__), 'example') |
|
|
|
|
|
unet = UNet2DConditionModel.from_pretrained( |
|
|
base_path, |
|
|
subfolder="unet", |
|
|
torch_dtype=torch.float16, |
|
|
) |
|
|
unet.requires_grad_(False) |
|
|
|
|
|
tokenizer_one = AutoTokenizer.from_pretrained( |
|
|
base_path, |
|
|
subfolder="tokenizer", |
|
|
revision=None, |
|
|
use_fast=False, |
|
|
) |
|
|
tokenizer_two = AutoTokenizer.from_pretrained( |
|
|
base_path, |
|
|
subfolder="tokenizer_2", |
|
|
revision=None, |
|
|
use_fast=False, |
|
|
) |
|
|
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler") |
|
|
|
|
|
text_encoder_one = CLIPTextModel.from_pretrained( |
|
|
base_path, |
|
|
subfolder="text_encoder", |
|
|
torch_dtype=torch.float16, |
|
|
) |
|
|
text_encoder_two = CLIPTextModelWithProjection.from_pretrained( |
|
|
base_path, |
|
|
subfolder="text_encoder_2", |
|
|
torch_dtype=torch.float16, |
|
|
) |
|
|
image_encoder = CLIPVisionModelWithProjection.from_pretrained( |
|
|
base_path, |
|
|
subfolder="image_encoder", |
|
|
torch_dtype=torch.float16, |
|
|
) |
|
|
vae = AutoencoderKL.from_pretrained( |
|
|
base_path, |
|
|
subfolder="vae", |
|
|
torch_dtype=torch.float16, |
|
|
) |
|
|
|
|
|
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained( |
|
|
base_path, |
|
|
subfolder="unet_encoder", |
|
|
torch_dtype=torch.float16, |
|
|
) |
|
|
|
|
|
parsing_model = Parsing(0) |
|
|
openpose_model = OpenPose(0) |
|
|
|
|
|
UNet_Encoder.requires_grad_(False) |
|
|
image_encoder.requires_grad_(False) |
|
|
vae.requires_grad_(False) |
|
|
unet.requires_grad_(False) |
|
|
text_encoder_one.requires_grad_(False) |
|
|
text_encoder_two.requires_grad_(False) |
|
|
|
|
|
tensor_transfrom = transforms.Compose( |
|
|
[ |
|
|
transforms.ToTensor(), |
|
|
transforms.Normalize([0.5], [0.5]), |
|
|
] |
|
|
) |
|
|
|
|
|
pipe = TryonPipeline.from_pretrained( |
|
|
base_path, |
|
|
unet=unet, |
|
|
vae=vae, |
|
|
feature_extractor=CLIPImageProcessor(), |
|
|
text_encoder=text_encoder_one, |
|
|
text_encoder_2=text_encoder_two, |
|
|
tokenizer=tokenizer_one, |
|
|
tokenizer_2=tokenizer_two, |
|
|
scheduler=noise_scheduler, |
|
|
image_encoder=image_encoder, |
|
|
torch_dtype=torch.float16, |
|
|
) |
|
|
pipe.unet_encoder = UNet_Encoder |
|
|
|
|
|
|
|
|
def start_tryon(human_img_path, garm_img_path, garment_des, is_checked=True, is_checked_crop=False, denoise_steps=30, seed=42): |
|
|
device = "cuda" |
|
|
|
|
|
openpose_model.preprocessor.body_estimation.model.to(device) |
|
|
pipe.to(device) |
|
|
pipe.unet_encoder.to(device) |
|
|
|
|
|
garm_img = Image.open(garm_img_path).convert("RGB").resize((768, 1024)) |
|
|
human_img_orig = Image.open(human_img_path).convert("RGB") |
|
|
|
|
|
if is_checked_crop: |
|
|
width, height = human_img_orig.size |
|
|
target_width = int(min(width, height * (3 / 4))) |
|
|
target_height = int(min(height, width * (4 / 3))) |
|
|
left = (width - target_width) / 2 |
|
|
top = (height - target_height) / 2 |
|
|
right = (width + target_width) / 2 |
|
|
bottom = (height + target_height) / 2 |
|
|
cropped_img = human_img_orig.crop((left, top, right, bottom)) |
|
|
crop_size = cropped_img.size |
|
|
human_img = cropped_img.resize((768, 1024)) |
|
|
else: |
|
|
human_img = human_img_orig.resize((768, 1024)) |
|
|
|
|
|
if is_checked: |
|
|
keypoints = openpose_model(human_img.resize((384, 512))) |
|
|
model_parse, _ = parsing_model(human_img.resize((384, 512))) |
|
|
mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints) |
|
|
mask = mask.resize((768, 1024)) |
|
|
else: |
|
|
mask = pil_to_binary_mask(human_img.resize((768, 1024))) |
|
|
|
|
|
mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img) |
|
|
mask_gray = to_pil_image((mask_gray + 1.0) / 2.0) |
|
|
|
|
|
human_img_arg = _apply_exif_orientation(human_img.resize((384, 512))) |
|
|
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR") |
|
|
|
|
|
args = apply_net.create_argument_parser().parse_args( |
|
|
('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda') |
|
|
) |
|
|
pose_img = args.func(args, human_img_arg) |
|
|
pose_img = pose_img[:, :, ::-1] |
|
|
pose_img = Image.fromarray(pose_img).resize((768, 1024)) |
|
|
|
|
|
with torch.no_grad(): |
|
|
prompt = "model is wearing " + garment_des |
|
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
|
( |
|
|
prompt_embeds, |
|
|
negative_prompt_embeds, |
|
|
pooled_prompt_embeds, |
|
|
negative_pooled_prompt_embeds, |
|
|
) = pipe.encode_prompt( |
|
|
prompt, |
|
|
num_images_per_prompt=1, |
|
|
do_classifier_free_guidance=True, |
|
|
negative_prompt=negative_prompt, |
|
|
) |
|
|
|
|
|
prompt = "a photo of " + garment_des |
|
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
|
( |
|
|
prompt_embeds_c, |
|
|
_, |
|
|
_, |
|
|
_, |
|
|
) = pipe.encode_prompt( |
|
|
prompt, |
|
|
num_images_per_prompt=1, |
|
|
do_classifier_free_guidance=False, |
|
|
negative_prompt=negative_prompt, |
|
|
) |
|
|
|
|
|
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device, torch.float16) |
|
|
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device, torch.float16) |
|
|
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None |
|
|
images = pipe( |
|
|
prompt_embeds=prompt_embeds.to(device, torch.float16), |
|
|
negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16), |
|
|
pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16), |
|
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16), |
|
|
num_inference_steps=denoise_steps, |
|
|
generator=generator, |
|
|
strength=1.0, |
|
|
pose_img=pose_img.to(device, torch.float16), |
|
|
text_embeds_cloth=prompt_embeds_c.to(device, torch.float16), |
|
|
cloth=garm_tensor.to(device, torch.float16), |
|
|
mask_image=mask, |
|
|
image=human_img, |
|
|
height=1024, |
|
|
width=768, |
|
|
ip_adapter_image=garm_img.resize((768, 1024)), |
|
|
guidance_scale=2.0, |
|
|
)[0] |
|
|
|
|
|
if is_checked_crop: |
|
|
out_img = images[0].resize(crop_size) |
|
|
human_img_orig.paste(out_img, (int(left), int(top))) |
|
|
return human_img_orig, mask_gray |
|
|
else: |
|
|
return images[0], mask_gray |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
human_img_path = "WhatsApp Image 2025-02-28 at 21.44.16_e9541a96.jpg" |
|
|
garm_img_path = "tshirt.jpg" |
|
|
garment_des = "Short Sleeve Round Neck T-shirts" |
|
|
output_image, mask_image = start_tryon(human_img_path, garm_img_path, garment_des) |
|
|
|
|
|
|
|
|
output_image.save("output_image.jpg") |
|
|
mask_image.save("mask_image.jpg") |