NatthawatTung commited on
Commit
0d240ff
1 Parent(s): b06a99a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: ALL_manual_mt5-base_15_spider_no_sch_15
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # ALL_manual_mt5-base_15_spider_no_sch_15
14
+
15
+ This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.0378
18
+ - Rouge2 Precision: 0.7495
19
+ - Rouge2 Recall: 0.5027
20
+ - Rouge2 Fmeasure: 0.5711
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 5e-05
40
+ - train_batch_size: 15
41
+ - eval_batch_size: 16
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 15
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
50
+ |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:|
51
+ | 1.7943 | 1.0 | 1293 | 0.3227 | 0.2802 | 0.1766 | 0.1964 |
52
+ | 0.2825 | 2.0 | 2586 | 0.1790 | 0.4482 | 0.2731 | 0.318 |
53
+ | 0.2224 | 3.0 | 3879 | 0.1336 | 0.5122 | 0.3371 | 0.3817 |
54
+ | 0.1691 | 4.0 | 5172 | 0.1052 | 0.5597 | 0.3717 | 0.4211 |
55
+ | 0.1483 | 5.0 | 6465 | 0.0861 | 0.6096 | 0.4062 | 0.4603 |
56
+ | 0.1261 | 6.0 | 7758 | 0.0735 | 0.6317 | 0.4226 | 0.4787 |
57
+ | 0.1088 | 7.0 | 9051 | 0.0637 | 0.6726 | 0.4493 | 0.5099 |
58
+ | 0.1015 | 8.0 | 10344 | 0.0569 | 0.688 | 0.462 | 0.5237 |
59
+ | 0.0915 | 9.0 | 11637 | 0.0512 | 0.6945 | 0.4626 | 0.526 |
60
+ | 0.0865 | 10.0 | 12930 | 0.0469 | 0.7244 | 0.4879 | 0.5529 |
61
+ | 0.0799 | 11.0 | 14223 | 0.0439 | 0.7377 | 0.495 | 0.5615 |
62
+ | 0.0757 | 12.0 | 15516 | 0.0413 | 0.743 | 0.4983 | 0.5659 |
63
+ | 0.074 | 13.0 | 16809 | 0.0393 | 0.749 | 0.5028 | 0.5707 |
64
+ | 0.0718 | 14.0 | 18102 | 0.0382 | 0.7485 | 0.5018 | 0.5701 |
65
+ | 0.0708 | 15.0 | 19395 | 0.0378 | 0.7495 | 0.5027 | 0.5711 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.26.1
71
+ - Pytorch 2.1.2
72
+ - Datasets 2.16.1
73
+ - Tokenizers 0.13.3