NathanaelM commited on
Commit
8db29d1
1 Parent(s): 6a5e3bf

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1155.77 +/- 348.38
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ec9285ba52d8ddb76e1f75aa46f172f03fef355c2ae90574810711543719a9a
3
+ size 129256
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4b7f803af0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4b7f803b80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4b7f803c10>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4b7f803ca0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f4b7f803d30>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f4b7f803dc0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4b7f803e50>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4b7f803ee0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f4b7f803f70>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4b7f807040>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4b7f8070d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4b7f807160>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f4b7f8022d0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674227246321734390,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEgwLb//k6o+yPQRP2BrdD9jobY97f5pPiqd4LtBasg+doViPy1jJ77bxR+/YkxZPpDSTb8RVgDA4G+PPkbhH7++BJE/fkdPv5ucEz5h4jY9bMdjv3F6mT19ZBG/dnv6vwGbDz+l5LI+OIz/PpjNRD8EqDy/WWVmP36QBT8y9O29bQl2P1M52D9++y4/mCg5PmozyL5cd9o/JShbv3U75jxFE3e/NmM9QO9gVr5sovC+yNRBPtw5QUCWa0w/FVtCv95O/L6spCVADXlPv4E4DD9CLuS/peSyPjiM/z6YzUQ/JSdrPydZRr+QINXADmilP8bHvD5kS4A+7BwnPj/1jb9jS2g/wEqbu4heTD6jDz3AeX7ovoshBUA/qmI9EiFtP5fykD6OpvY/uoaoPhmuBsDPlDG/gF49P/Zx3j+cyEs/Qi7kv6Xksj44jP8+mM1EP/pJXb+16qw+1hISP/tvEz9vcvQ+JkxzPqE3oj4NH3s/EZdQP82sWr9kNDq/CFULwCWTyL9Ra/U+T2g+vn/3sj6m/iY/tkhCPyZDXz/805q/Wf5iv5ha6jzsa1S/APX9PgGbDz+l5LI+/jkAwJjNRD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAMu4G2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACACIS8vAAAAAD0LfK/AAAAAIRug70AAAAA1nLePwAAAADy0KG8AAAAACku6D8AAAAAOCTkPQAAAAC/0vK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyCO3NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIH9oLwAAAAAX63ZvwAAAACKIb88AAAAAE/m3D8AAAAAujo+PQAAAADJrOY/AAAAAJX39jwAAAAANp/tvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq+vzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC5Mei9AAAAACrT8L8AAAAAoxjGOQAAAAC8cP4/AAAAAKBxYj0AAAAA0sD5PwAAAAC0ErW9AAAAAKE9/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACFBYW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdRryPQAAAACLVAHAAAAAACj54LwAAAAAmjL1PwAAAAAA/LA9AAAAADhO4D8AAAAA4k/xPQAAAAA8bt+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJgNKfOD8LuMAWyUTegDjAF0lEdAxHmirc0tRXV9lChoBkdAmmDfvrnkk2gHTegDaAhHQMR6d11W8yx1fZQoaAZHQJw28xesxPBoB03oA2gIR0DEe0TWPLgXdX2UKGgGR0Cb0XBzmwJPaAdN6ANoCEdAxHxGBpYcN3V9lChoBkdAmN/4zrNW2mgHTegDaAhHQMR8mnEl3Ql1fZQoaAZHQJdXuNdZ7oloB03oA2gIR0DEfXHKISDidX2UKGgGR0CRI8GZ/kNnaAdN6ANoCEdAxH47ic5Ke3V9lChoBkdAkjGOQQtjC2gHTegDaAhHQMR/OWOZLIx1fZQoaAZHQJQ2AP1+RYBoB03oA2gIR0DEf49ZLZi/dX2UKGgGR0CGir0WdmQKaAdN6ANoCEdAxIBjDOTq0XV9lChoBkdAlRAa/yoXK2gHTegDaAhHQMSBV1PepGZ1fZQoaAZHQInZ1QZXMhZoB03oA2gIR0DEgupX2dupdX2UKGgGR0CYZOP3SKFaaAdN6ANoCEdAxINiurZJ1HV9lChoBkdAlZGSLuQZGmgHTegDaAhHQMSENFchTwV1fZQoaAZHQJZW7laKUFBoB03oA2gIR0DEhPxplBhQdX2UKGgGR0B5jiEvkBCEaAdN6ANoCEdAxIX3VEuxr3V9lChoBkdAmxJApazNU2gHTegDaAhHQMSGSzyz5XV1fZQoaAZHQJpwl8KG+K1oB03oA2gIR0DEhxt2q1gIdX2UKGgGR0CYRcbn5i3HaAdN6ANoCEdAxIfd+S8rZ3V9lChoBkdAnBl4MvysjmgHTegDaAhHQMSI2Hj6vaF1fZQoaAZHQJa7OI7/4qRoB03oA2gIR0DEiS3O6d1/dX2UKGgGR0CXSSrlNlAeaAdN6ANoCEdAxIoRyJbdJ3V9lChoBkdAmn8CQLeANGgHTegDaAhHQMSK7FcQiA51fZQoaAZHQJlBsZflZHNoB03oA2gIR0DEi+12X9iudX2UKGgGR0CXrD5myxA0aAdN6ANoCEdAxIxCYc/+sHV9lChoBkdAlxJGvGIbfmgHTegDaAhHQMSNFw+2Vml1fZQoaAZHQIxGskGA09BoB03oA2gIR0DEjeITdtVJdX2UKGgGR0CG8cbI91U3aAdN6ANoCEdAxI7dAwfyPXV9lChoBkdAhJ4+kxh2GWgHTYEDaAhHQMSO5DPnjhl1fZQoaAZHQHWID3ueBhBoB03oA2gIR0DEkAOkDZDidX2UKGgGR0CS0YJkXk5qaAdN6ANoCEdAxJDPEAHVw3V9lChoBkdAgIZpHI6sAGgHTegDaAhHQMSRzfzjFQ51fZQoaAZHQIw1kc0cfeVoB03oA2gIR0DEkdUXHim3dX2UKGgGR0CCyhUxVQyiaAdN6ANoCEdAxJLxn8Koh3V9lChoBkdAkGz3/o7muGgHTegDaAhHQMSTumkep4t1fZQoaAZHQJyZI2Kl54ZoB03oA2gIR0DElLS6pYLcdX2UKGgGR0Cck+35eqrBaAdN6ANoCEdAxJS86BAfMnV9lChoBkdAlHTH/DLr5mgHTegDaAhHQMSV2JSR8tx1fZQoaAZHQJn89qzqrzZoB03oA2gIR0DElp1BfKISdX2UKGgGR0CboWHnEETyaAdN6ANoCEdAxJeYDgZTAHV9lChoBkdAl2kRVMmF8GgHTegDaAhHQMSXnzK9wm51fZQoaAZHQJkHslNUOutoB03oA2gIR0DEmL7BEa2ndX2UKGgGR0CamQE2pAD8aAdN6ANoCEdAxJmRc45tFnV9lChoBkdAne7fNVzZH2gHTegDaAhHQMSakDG1hLJ1fZQoaAZHQJ1LY1+AmRhoB03oA2gIR0DEmphHkLhKdX2UKGgGR0CXoSm6oVEeaAdN6ANoCEdAxJu5qynk1nV9lChoBkdAmWHD+3pfQmgHTegDaAhHQMScgjNhVlx1fZQoaAZHQJWICT7l7t1oB03oA2gIR0DEnXr/dZaFdX2UKGgGR0Ca8UWvbGm2aAdN6ANoCEdAxJ2CRujynXV9lChoBkdAmgzK1PWQOmgHTegDaAhHQMSen0EHMU11fZQoaAZHQJtP02OyVwBoB03oA2gIR0DEn2M7jkuIdX2UKGgGR0Ca8P4gA6uGaAdN6ANoCEdAxKBd3WWhRXV9lChoBkdAlr3CpFTef2gHTegDaAhHQMSgZPh60IF1fZQoaAZHQJmnYClrM1VoB03oA2gIR0DEoYKpeeFtdX2UKGgGR0CZ32FC9h7WaAdN6ANoCEdAxKJIDbrTpnV9lChoBkdAllEn/giu+2gHTegDaAhHQMSjRXAEdNp1fZQoaAZHQJt46HDaXa9oB03oA2gIR0DEo0x+QU5/dX2UKGgGR0CYZtagmJFcaAdN6ANoCEdAxKRuFTNt7HV9lChoBkdAmRvGj4593WgHTegDaAhHQMSlNhDPWx11fZQoaAZHQIR7nl+3H7xoB03oA2gIR0DEpjQyZa3adX2UKGgGR0CEeRMvAXVLaAdN6ANoCEdAxKY7NTtLMHV9lChoBkdAmCxVAJLM92gHTegDaAhHQMSnU6V2Rq51fZQoaAZHQJi/FYLb5/NoB03oA2gIR0DEqB0uFpPAdX2UKGgGR0CapDQgLZzxaAdN6ANoCEdAxKkXQm/nGXV9lChoBkdAnNV2ipNsWWgHTegDaAhHQMSpH2fK6nR1fZQoaAZHQJws1wgkkbBoB03oA2gIR0DEqkCSaEzwdX2UKGgGR0CcbqGC7K7qaAdN6ANoCEdAxKsIPXkHU3V9lChoBkdAm8cSKFZgX2gHTegDaAhHQMSsBGs/6ft1fZQoaAZHQJxmoVpKzzFoB03oA2gIR0DErAvhl18tdX2UKGgGR0CaBkW/ag27aAdN6ANoCEdAxK0+djG1hXV9lChoBkdAmhv4I0IkaGgHTegDaAhHQMSuC+Fcpsp1fZQoaAZHQJzPyCSRr8BoB03oA2gIR0DErwBoK2KEdX2UKGgGR0Cb8qyIHkcTaAdN6ANoCEdAxK8HaTOgQHV9lChoBkdAmsHUtmL9/GgHTegDaAhHQMSwIePaL4x1fZQoaAZHQJqKDDGcWj5oB03oA2gIR0DEsOdnZkCndX2UKGgGR0CZE0HP/rB1aAdN6ANoCEdAxLHdIp6QeXV9lChoBkdAlvqqvicXnGgHTegDaAhHQMSx5B+4LCx1fZQoaAZHQJfIw9JSR8toB03oA2gIR0DEswPPE87qdX2UKGgGR0CX6EAPuognaAdN6ANoCEdAxLPJreIl+nV9lChoBkdAl4TheC04R2gHTegDaAhHQMS0w6GxlhB1fZQoaAZHQJnGIyDZlFtoB03oA2gIR0DEtMrZUT+OdX2UKGgGR0CYy4da+vhZaAdN6ANoCEdAxLXqQhfShXV9lChoBkdAddzJbt7a7GgHTegDaAhHQMS2tACwKSh1fZQoaAZHQJfsO1fE4vNoB03oA2gIR0DEt7CThYNidX2UKGgGR0CYIUH3UQTVaAdN6ANoCEdAxLe335eqrHV9lChoBkdAmYBGCqZMMGgHTegDaAhHQMS41BnanJl1fZQoaAZHQJhZww8GLUFoB03oA2gIR0DEua8hcJMQdX2UKGgGR0CZhrUA1ejVaAdN6ANoCEdAxLqoK/EfknV9lChoBkdAmgGUyHmA9WgHTegDaAhHQMS6rw/PgNx1fZQoaAZHQFYRgZTAFgVoB0uNaAhHQMS7D3RG+bp1fZQoaAZHQJYB5QizLOloB03oA2gIR0DEu8wP/aQFdX2UKGgGR0CV7POlO45MaAdN6ANoCEdAxLyRqSHM2XV9lChoBkdAl0AroGIKt2gHTegDaAhHQMS9ji2Dxsl1fZQoaAZHQJXG5Dtw71ZoB03oA2gIR0DEve0Y2sJZdX2UKGgGR0CW6VLH+6y0aAdN6ANoCEdAxL6p+pfhM3V9lChoBkdAlF1uHFglW2gHTegDaAhHQMS/cXbVSXN1fZQoaAZHQJXu7L0SRKZoB03oA2gIR0DEwHAAU+LWdX2UKGgGR0CWqIx7iQ1aaAdN6ANoCEdAxMDUMqBmPHV9lChoBkdAle+J8v24/mgHTegDaAhHQMTBlG4Ajpt1fZQoaAZHQJD6LJV81GdoB03oA2gIR0DEwlsupS75dWUu"
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c416c93d64390822f610a98acd83736626d31759f97fd716b6f580f93c15cdd
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:762431a99fd3cb77dfbb604dece874b64ec9a477023544b97cdfd5ddf7d5c6ce
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4b7f803af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4b7f803b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4b7f803c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4b7f803ca0>", "_build": "<function ActorCriticPolicy._build at 0x7f4b7f803d30>", "forward": "<function ActorCriticPolicy.forward at 0x7f4b7f803dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4b7f803e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4b7f803ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4b7f803f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4b7f807040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4b7f8070d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4b7f807160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4b7f8022d0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674227246321734390, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEgwLb//k6o+yPQRP2BrdD9jobY97f5pPiqd4LtBasg+doViPy1jJ77bxR+/YkxZPpDSTb8RVgDA4G+PPkbhH7++BJE/fkdPv5ucEz5h4jY9bMdjv3F6mT19ZBG/dnv6vwGbDz+l5LI+OIz/PpjNRD8EqDy/WWVmP36QBT8y9O29bQl2P1M52D9++y4/mCg5PmozyL5cd9o/JShbv3U75jxFE3e/NmM9QO9gVr5sovC+yNRBPtw5QUCWa0w/FVtCv95O/L6spCVADXlPv4E4DD9CLuS/peSyPjiM/z6YzUQ/JSdrPydZRr+QINXADmilP8bHvD5kS4A+7BwnPj/1jb9jS2g/wEqbu4heTD6jDz3AeX7ovoshBUA/qmI9EiFtP5fykD6OpvY/uoaoPhmuBsDPlDG/gF49P/Zx3j+cyEs/Qi7kv6Xksj44jP8+mM1EP/pJXb+16qw+1hISP/tvEz9vcvQ+JkxzPqE3oj4NH3s/EZdQP82sWr9kNDq/CFULwCWTyL9Ra/U+T2g+vn/3sj6m/iY/tkhCPyZDXz/805q/Wf5iv5ha6jzsa1S/APX9PgGbDz+l5LI+/jkAwJjNRD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAMu4G2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACACIS8vAAAAAD0LfK/AAAAAIRug70AAAAA1nLePwAAAADy0KG8AAAAACku6D8AAAAAOCTkPQAAAAC/0vK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyCO3NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIH9oLwAAAAAX63ZvwAAAACKIb88AAAAAE/m3D8AAAAAujo+PQAAAADJrOY/AAAAAJX39jwAAAAANp/tvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq+vzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC5Mei9AAAAACrT8L8AAAAAoxjGOQAAAAC8cP4/AAAAAKBxYj0AAAAA0sD5PwAAAAC0ErW9AAAAAKE9/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACFBYW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdRryPQAAAACLVAHAAAAAACj54LwAAAAAmjL1PwAAAAAA/LA9AAAAADhO4D8AAAAA4k/xPQAAAAA8bt+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJgNKfOD8LuMAWyUTegDjAF0lEdAxHmirc0tRXV9lChoBkdAmmDfvrnkk2gHTegDaAhHQMR6d11W8yx1fZQoaAZHQJw28xesxPBoB03oA2gIR0DEe0TWPLgXdX2UKGgGR0Cb0XBzmwJPaAdN6ANoCEdAxHxGBpYcN3V9lChoBkdAmN/4zrNW2mgHTegDaAhHQMR8mnEl3Ql1fZQoaAZHQJdXuNdZ7oloB03oA2gIR0DEfXHKISDidX2UKGgGR0CRI8GZ/kNnaAdN6ANoCEdAxH47ic5Ke3V9lChoBkdAkjGOQQtjC2gHTegDaAhHQMR/OWOZLIx1fZQoaAZHQJQ2AP1+RYBoB03oA2gIR0DEf49ZLZi/dX2UKGgGR0CGir0WdmQKaAdN6ANoCEdAxIBjDOTq0XV9lChoBkdAlRAa/yoXK2gHTegDaAhHQMSBV1PepGZ1fZQoaAZHQInZ1QZXMhZoB03oA2gIR0DEgupX2dupdX2UKGgGR0CYZOP3SKFaaAdN6ANoCEdAxINiurZJ1HV9lChoBkdAlZGSLuQZGmgHTegDaAhHQMSENFchTwV1fZQoaAZHQJZW7laKUFBoB03oA2gIR0DEhPxplBhQdX2UKGgGR0B5jiEvkBCEaAdN6ANoCEdAxIX3VEuxr3V9lChoBkdAmxJApazNU2gHTegDaAhHQMSGSzyz5XV1fZQoaAZHQJpwl8KG+K1oB03oA2gIR0DEhxt2q1gIdX2UKGgGR0CYRcbn5i3HaAdN6ANoCEdAxIfd+S8rZ3V9lChoBkdAnBl4MvysjmgHTegDaAhHQMSI2Hj6vaF1fZQoaAZHQJa7OI7/4qRoB03oA2gIR0DEiS3O6d1/dX2UKGgGR0CXSSrlNlAeaAdN6ANoCEdAxIoRyJbdJ3V9lChoBkdAmn8CQLeANGgHTegDaAhHQMSK7FcQiA51fZQoaAZHQJlBsZflZHNoB03oA2gIR0DEi+12X9iudX2UKGgGR0CXrD5myxA0aAdN6ANoCEdAxIxCYc/+sHV9lChoBkdAlxJGvGIbfmgHTegDaAhHQMSNFw+2Vml1fZQoaAZHQIxGskGA09BoB03oA2gIR0DEjeITdtVJdX2UKGgGR0CG8cbI91U3aAdN6ANoCEdAxI7dAwfyPXV9lChoBkdAhJ4+kxh2GWgHTYEDaAhHQMSO5DPnjhl1fZQoaAZHQHWID3ueBhBoB03oA2gIR0DEkAOkDZDidX2UKGgGR0CS0YJkXk5qaAdN6ANoCEdAxJDPEAHVw3V9lChoBkdAgIZpHI6sAGgHTegDaAhHQMSRzfzjFQ51fZQoaAZHQIw1kc0cfeVoB03oA2gIR0DEkdUXHim3dX2UKGgGR0CCyhUxVQyiaAdN6ANoCEdAxJLxn8Koh3V9lChoBkdAkGz3/o7muGgHTegDaAhHQMSTumkep4t1fZQoaAZHQJyZI2Kl54ZoB03oA2gIR0DElLS6pYLcdX2UKGgGR0Cck+35eqrBaAdN6ANoCEdAxJS86BAfMnV9lChoBkdAlHTH/DLr5mgHTegDaAhHQMSV2JSR8tx1fZQoaAZHQJn89qzqrzZoB03oA2gIR0DElp1BfKISdX2UKGgGR0CboWHnEETyaAdN6ANoCEdAxJeYDgZTAHV9lChoBkdAl2kRVMmF8GgHTegDaAhHQMSXnzK9wm51fZQoaAZHQJkHslNUOutoB03oA2gIR0DEmL7BEa2ndX2UKGgGR0CamQE2pAD8aAdN6ANoCEdAxJmRc45tFnV9lChoBkdAne7fNVzZH2gHTegDaAhHQMSakDG1hLJ1fZQoaAZHQJ1LY1+AmRhoB03oA2gIR0DEmphHkLhKdX2UKGgGR0CXoSm6oVEeaAdN6ANoCEdAxJu5qynk1nV9lChoBkdAmWHD+3pfQmgHTegDaAhHQMScgjNhVlx1fZQoaAZHQJWICT7l7t1oB03oA2gIR0DEnXr/dZaFdX2UKGgGR0Ca8UWvbGm2aAdN6ANoCEdAxJ2CRujynXV9lChoBkdAmgzK1PWQOmgHTegDaAhHQMSen0EHMU11fZQoaAZHQJtP02OyVwBoB03oA2gIR0DEn2M7jkuIdX2UKGgGR0Ca8P4gA6uGaAdN6ANoCEdAxKBd3WWhRXV9lChoBkdAlr3CpFTef2gHTegDaAhHQMSgZPh60IF1fZQoaAZHQJmnYClrM1VoB03oA2gIR0DEoYKpeeFtdX2UKGgGR0CZ32FC9h7WaAdN6ANoCEdAxKJIDbrTpnV9lChoBkdAllEn/giu+2gHTegDaAhHQMSjRXAEdNp1fZQoaAZHQJt46HDaXa9oB03oA2gIR0DEo0x+QU5/dX2UKGgGR0CYZtagmJFcaAdN6ANoCEdAxKRuFTNt7HV9lChoBkdAmRvGj4593WgHTegDaAhHQMSlNhDPWx11fZQoaAZHQIR7nl+3H7xoB03oA2gIR0DEpjQyZa3adX2UKGgGR0CEeRMvAXVLaAdN6ANoCEdAxKY7NTtLMHV9lChoBkdAmCxVAJLM92gHTegDaAhHQMSnU6V2Rq51fZQoaAZHQJi/FYLb5/NoB03oA2gIR0DEqB0uFpPAdX2UKGgGR0CapDQgLZzxaAdN6ANoCEdAxKkXQm/nGXV9lChoBkdAnNV2ipNsWWgHTegDaAhHQMSpH2fK6nR1fZQoaAZHQJws1wgkkbBoB03oA2gIR0DEqkCSaEzwdX2UKGgGR0CcbqGC7K7qaAdN6ANoCEdAxKsIPXkHU3V9lChoBkdAm8cSKFZgX2gHTegDaAhHQMSsBGs/6ft1fZQoaAZHQJxmoVpKzzFoB03oA2gIR0DErAvhl18tdX2UKGgGR0CaBkW/ag27aAdN6ANoCEdAxK0+djG1hXV9lChoBkdAmhv4I0IkaGgHTegDaAhHQMSuC+Fcpsp1fZQoaAZHQJzPyCSRr8BoB03oA2gIR0DErwBoK2KEdX2UKGgGR0Cb8qyIHkcTaAdN6ANoCEdAxK8HaTOgQHV9lChoBkdAmsHUtmL9/GgHTegDaAhHQMSwIePaL4x1fZQoaAZHQJqKDDGcWj5oB03oA2gIR0DEsOdnZkCndX2UKGgGR0CZE0HP/rB1aAdN6ANoCEdAxLHdIp6QeXV9lChoBkdAlvqqvicXnGgHTegDaAhHQMSx5B+4LCx1fZQoaAZHQJfIw9JSR8toB03oA2gIR0DEswPPE87qdX2UKGgGR0CX6EAPuognaAdN6ANoCEdAxLPJreIl+nV9lChoBkdAl4TheC04R2gHTegDaAhHQMS0w6GxlhB1fZQoaAZHQJnGIyDZlFtoB03oA2gIR0DEtMrZUT+OdX2UKGgGR0CYy4da+vhZaAdN6ANoCEdAxLXqQhfShXV9lChoBkdAddzJbt7a7GgHTegDaAhHQMS2tACwKSh1fZQoaAZHQJfsO1fE4vNoB03oA2gIR0DEt7CThYNidX2UKGgGR0CYIUH3UQTVaAdN6ANoCEdAxLe335eqrHV9lChoBkdAmYBGCqZMMGgHTegDaAhHQMS41BnanJl1fZQoaAZHQJhZww8GLUFoB03oA2gIR0DEua8hcJMQdX2UKGgGR0CZhrUA1ejVaAdN6ANoCEdAxLqoK/EfknV9lChoBkdAmgGUyHmA9WgHTegDaAhHQMS6rw/PgNx1fZQoaAZHQFYRgZTAFgVoB0uNaAhHQMS7D3RG+bp1fZQoaAZHQJYB5QizLOloB03oA2gIR0DEu8wP/aQFdX2UKGgGR0CV7POlO45MaAdN6ANoCEdAxLyRqSHM2XV9lChoBkdAl0AroGIKt2gHTegDaAhHQMS9ji2Dxsl1fZQoaAZHQJXG5Dtw71ZoB03oA2gIR0DEve0Y2sJZdX2UKGgGR0CW6VLH+6y0aAdN6ANoCEdAxL6p+pfhM3V9lChoBkdAlF1uHFglW2gHTegDaAhHQMS/cXbVSXN1fZQoaAZHQJXu7L0SRKZoB03oA2gIR0DEwHAAU+LWdX2UKGgGR0CWqIx7iQ1aaAdN6ANoCEdAxMDUMqBmPHV9lChoBkdAle+J8v24/mgHTegDaAhHQMTBlG4Ajpt1fZQoaAZHQJD6LJV81GdoB03oA2gIR0DEwlsupS75dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (499 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1155.765066377353, "std_reward": 348.37615728052106, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-20T16:00:51.081949"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5361c181076cd05edc977361d8aac749edcaed6ada46d3742c16b084369a3a4d
3
+ size 2136