NassimAm commited on
Commit
d017916
1 Parent(s): cd81e6a

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 249.57 +/- 19.01
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f274c612170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f274c612200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f274c612290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f274c612320>", "_build": "<function ActorCriticPolicy._build at 0x7f274c6123b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f274c612440>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f274c6124d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f274c612560>", "_predict": "<function ActorCriticPolicy._predict at 0x7f274c6125f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f274c612680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f274c612710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f274c6127a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f274c7c2d80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718360460254592141, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA20iD3PAbs/tN2sPnti1r3xBc89usVjPgAAAAAAAAAA5ojSva5Z0rqWSK09cOqtvadh9zu2JZk+AACAPwAAgD/mEbM9jwZtuvESk7Uey3CwA6liutaxsTQAAIA/AACAP03Mcz1v3YM/rvjgPV5sx75Gjiw9YGh+vAAAAAAAAAAA6px2vlM0ej/3sqC+lMnrvky8nL7Zdkw9AAAAAAAAAABmTs+7w6KeP3rkALz2jPS+kHXaPApXVr0AAAAAAAAAAM0hk73FIV4+fZyxPdHQaL50sjw9O5H/vQAAAAAAAAAAAPGqPa4nj7rqTI25Q7+GtA05MDuK96M4AACAPwAAAACzm8K9aGafPhH2gj6HNIy+dmVGPa9ChLwAAAAAAAAAAMB1r71cU0+6EmPAOssSDzaDYzo5PSTeuQAAAAAAAIA/s7w6vRSYkLryV4w195UuMLg+3DrdALm0AACAPwAAgD/AMAa+Vz2SPip0dz6gQ8C9N6+hPbrBqToAAAAAAAAAAGAfGT6cURS8AymCPKaB27rYdoS954u2uwAAgD8AAIA/JvPGPa7dn7qWlUc2RMBpMc+uw7gD2Wa1AACAPwAAgD8Atse9uZIaP7MDAjy2LKe+J1sjvTqJgLsAAAAAAAAAAE1noL0rQO09XiL2Pat4Db7lDRo9YiFgvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGzZXCCSRr+MAWyUTcQBjAF0lEdAkoqJlWfbsXV9lChoBkdAcUWRoysS02gHTT0BaAhHQJKPHF6zE751fZQoaAZHQG6zLlvIfbNoB00DAWgIR0CSkGmMOwxGdX2UKGgGR0BwINL26ClKaAdNugFoCEdAkpCYPCl7+nV9lChoBkdAcQdN9ph4MWgHTZgBaAhHQJKTbGNrCWN1fZQoaAZHQGFNnLJSzgNoB03oA2gIR0CSlFAmzBykdX2UKGgGR0Bwd4SM98qnaAdNLAFoCEdAkpVSde6ZpnV9lChoBkdAcSp40Mw1zmgHTcABaAhHQJKZp1dPci51fZQoaAZHQG9O2KMvRJFoB03uAWgIR0CSm7MG5c1PdX2UKGgGR0Bs+QRChN/OaAdN6gFoCEdAkqOFKf4AS3V9lChoBkdAbynH/cWTHWgHTVoCaAhHQJKjqAbyYol1fZQoaAZHQHKuEBCD28JoB02mA2gIR0CSo9Xlr/KhdX2UKGgGR0BwPtChN/OMaAdNJQNoCEdAkq40WAPNFHV9lChoBkdAW37xri2lVWgHTegDaAhHQJKudbeMyad1fZQoaAZHQG9zOcc2itdoB00OAWgIR0CSw3VqN6w/dX2UKGgGR0Bwpm2CuloEaAdNrwFoCEdAksOnXiBGx3V9lChoBkdAcBTHcDbJwWgHTTIDaAhHQJLEFD5TIeZ1fZQoaAZHQHGsoWUKRdRoB02VAmgIR0CSxDJC0F8pdX2UKGgGR0BoJqf4AS39aAdN6ANoCEdAksRIFzMibHV9lChoBkdAb8VM3ZPEbmgHTScCaAhHQJLERy2hIvt1fZQoaAZHQHAN1p9JBgNoB02GAmgIR0CSxNU5+6RRdX2UKGgGR0BsLQO4G2TgaAdNRAFoCEdAksVejRD1G3V9lChoBkdAb/0uwosqa2gHTdkDaAhHQJLHRA/s3Q51fZQoaAZHQHGk7Uoa1kVoB03lAmgIR0CSyd+otL+QdX2UKGgGR0BwjvlPrOZ9aAdNwQJoCEdAksn8xoIv8XV9lChoBkdAcK8ta6jFh2gHTSkBaAhHQJLLS3x4IKN1fZQoaAZHQHNuzv7WNFVoB0v6aAhHQJLMaGzru6V1fZQoaAZHQHJA8afjCHhoB02mAmgIR0CSzR7ihnJ1dX2UKGgGR0BytWicoYvWaAdNKwFoCEdAks6gvL5h0HV9lChoBkdAcngV0tAcDWgHTVkCaAhHQJLPV/EwWWR1fZQoaAZHQHMKZng5zYFoB01eAWgIR0CS0YQxesxPdX2UKGgGR0BwosIqslsxaAdNcgFoCEdAktHU9yLhrHV9lChoBkdAckd8qFyq/GgHTcQBaAhHQJLSPqW1MM91fZQoaAZHQHDh+tfXwspoB01uAWgIR0CS0ldjXnQqdX2UKGgGR0BjRPYODrZ8aAdN6ANoCEdAktJZSeiBXnV9lChoBkdAcOYpVjqfOGgHTVEBaAhHQJLScpb2USt1fZQoaAZHQHFr8p9ZzPtoB00fAWgIR0CS0uV/c32mdX2UKGgGR0Bw6ZP557gLaAdNPAFoCEdAktmoHgP3BnV9lChoBkdAcBpH9WIXTGgHTSUCaAhHQJLZtb5dnkF1fZQoaAZHQHBAGxptaZBoB01sAWgIR0CS3hgEEC/5dX2UKGgGR0Bri3Adn004aAdNQgFoCEdAkuBKfvnbI3V9lChoBkdAcEYPH1e0HGgHTTgBaAhHQJLgtIOH3111fZQoaAZHQG6zVHOKO1hoB00MAmgIR0CS4X7EpAlfdX2UKGgGR0BwYT3oLXtjaAdNbgFoCEdAkuLAsf7rLXV9lChoBkdAcNx6wdKdx2gHTW0BaAhHQJLjFK/VRUF1fZQoaAZHQHCxAmReTmpoB02VAWgIR0CS5PDBdld1dX2UKGgGR0Bvx/RTjvNNaAdN4QFoCEdAkuXRKlHjInV9lChoBkdAb1zsa86FNGgHTf0BaAhHQJLmcmE4//x1fZQoaAZHQHLBMqe9SMtoB00sAWgIR0CS52vRqoIfdX2UKGgGR0Buj8yN4qwyaAdN4wFoCEdAkugTj/+85HV9lChoBkdAcQisZpBX0WgHTbgCaAhHQJLre2mYSg51fZQoaAZHQHDl+vllsgxoB00oA2gIR0CS/sJ6IFeOdX2UKGgGR0BuZG9L6DXfaAdNaQFoCEdAkv8OKoAGS3V9lChoBkdAcREfP5YYBWgHTUkBaAhHQJL/eoJiRW91fZQoaAZHQGOunP3SKFZoB03oA2gIR0CTAAxc3VCpdX2UKGgGR0BwCUOtnwocaAdNMAFoCEdAkwBrmZE2HnV9lChoBkdAcq33Ov+wT2gHTfYBaAhHQJMAuE25xzd1fZQoaAZHQHHVIEKVpsZoB01nAWgIR0CTARMSsbNsdX2UKGgGR0Bw1VvBJqZdaAdNnwJoCEdAkwGr8iwB53V9lChoBkdAbqu28Zk08GgHTRwBaAhHQJMDZO45Lh91fZQoaAZHQG6PmXgLqlhoB00RAWgIR0CTBAqLjxTbdX2UKGgGR0BwUBfE4vOAaAdNpQFoCEdAkwSXeizsyHV9lChoBkdAbdZSuyNXHWgHTUsBaAhHQJME0px3mmt1fZQoaAZHQG+Q85bQkX1oB02FAWgIR0CTBkDRtxdZdX2UKGgGR0BwzgDvE0iyaAdNwAFoCEdAkwcH/5tWMnV9lChoBkdAcQfK3/givGgHTRYBaAhHQJMI6YeDFqB1fZQoaAZHQHJLFz6rNnpoB018AWgIR0CTCVsNDtw8dX2UKGgGR0Bt2T2alUIcaAdNBwFoCEdAkwpa/VRUFXV9lChoBkdAcTMxIatLc2gHTQYBaAhHQJMKyJdjXnR1fZQoaAZHQHE823fAKv5oB00JAWgIR0CTC5y7wrlOdX2UKGgGR0BsqaHCXQdCaAdNGQFoCEdAkwy/LHMlknV9lChoBkdAbuwQqZtvXWgHTQ4BaAhHQJMM2PGQ0XR1fZQoaAZHQG8HqZ2IO6NoB01TAWgIR0CTDyAbyYoidX2UKGgGR0BuCpkTYdyUaAdNIgFoCEdAkw903fhuO3V9lChoBkdAclvKYRdyDWgHTSwBaAhHQJMQrzErGzd1fZQoaAZHQHEyTUVi4KBoB008AWgIR0CTEXSqEOAidX2UKGgGR0Bwnk5ZKWcCaAdNPQFoCEdAkxOcQyylenV9lChoBkdAcT4QQ+UyHmgHTTMBaAhHQJMU8RGtp251fZQoaAZHQHIS56Uqx1RoB03rAWgIR0CTFaUWVNYbdX2UKGgGR0Bw1Bi7TUiIaAdNMQFoCEdAkxaxb4agmXV9lChoBkdAcNIS+xnnMmgHTTEBaAhHQJMXcTpPhyd1fZQoaAZHQHIb6b4Ju2toB03iAWgIR0CTF3JwbVBldX2UKGgGR0BwfGu4gA6uaAdNwAFoCEdAkxhRlDneSHV9lChoBkdAcBSV9F4LTmgHTYkBaAhHQJMZzw1BMSN1fZQoaAZHQG4ffAj6eoVoB00iAWgIR0CTGr7GNrCWdX2UKGgGR0BxBaGQCCBgaAdNcwFoCEdAkxsMolUp/nV9lChoBkdAcoAyPMjeK2gHTXMBaAhHQJMbI6kqMFV1fZQoaAZHQG0N/T9bX6JoB03EAWgIR0CTGymCyyD7dX2UKGgGR0BxprRa5f+kaAdNAQFoCEdAkxuTo6jnFHV9lChoBkdAcAJD7qIJq2gHTeMCaAhHQJMcWjWTX8R1fZQoaAZHQHBTIdU83ddoB00iAWgIR0CTHldgOSW7dX2UKGgGR0ByIXJYDDCQaAdNEAFoCEdAkx7UqMFUynV9lChoBkdAb14qI7/4qWgHTbQBaAhHQJMg1BdD6WR1fZQoaAZHQHCogkLQXyloB03sAWgIR0CTITNmDlHSdX2UKGgGR0BxFQTewcHXaAdNHgFoCEdAkyGBeHBUJnV9lChoBkdAbfaSRKYiPmgHTR8BaAhHQJMiSKcd5pt1fZQoaAZHQHBz1Fpfx+doB01/AWgIR0CTJGAnDziCdX2UKGgGR0BtXBaC+UQkaAdNdAFoCEdAkySiV0Lc9HV9lChoBkdAcmCJ9y925mgHTUkBaAhHQJMlQIw/PgN1fZQoaAZHQHBiMNtqHoJoB00dAWgIR0CTJXA1NxlydWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f28bd7accbff88aa4488ecc45d6d4d81e8381af1fa2e61b52c7669ab2eca2db9
3
+ size 148084
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f274c612170>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f274c612200>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f274c612290>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f274c612320>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f274c6123b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f274c612440>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f274c6124d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f274c612560>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f274c6125f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f274c612680>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f274c612710>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f274c6127a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f274c7c2d80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1718360460254592141,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA20iD3PAbs/tN2sPnti1r3xBc89usVjPgAAAAAAAAAA5ojSva5Z0rqWSK09cOqtvadh9zu2JZk+AACAPwAAgD/mEbM9jwZtuvESk7Uey3CwA6liutaxsTQAAIA/AACAP03Mcz1v3YM/rvjgPV5sx75Gjiw9YGh+vAAAAAAAAAAA6px2vlM0ej/3sqC+lMnrvky8nL7Zdkw9AAAAAAAAAABmTs+7w6KeP3rkALz2jPS+kHXaPApXVr0AAAAAAAAAAM0hk73FIV4+fZyxPdHQaL50sjw9O5H/vQAAAAAAAAAAAPGqPa4nj7rqTI25Q7+GtA05MDuK96M4AACAPwAAAACzm8K9aGafPhH2gj6HNIy+dmVGPa9ChLwAAAAAAAAAAMB1r71cU0+6EmPAOssSDzaDYzo5PSTeuQAAAAAAAIA/s7w6vRSYkLryV4w195UuMLg+3DrdALm0AACAPwAAgD/AMAa+Vz2SPip0dz6gQ8C9N6+hPbrBqToAAAAAAAAAAGAfGT6cURS8AymCPKaB27rYdoS954u2uwAAgD8AAIA/JvPGPa7dn7qWlUc2RMBpMc+uw7gD2Wa1AACAPwAAgD8Atse9uZIaP7MDAjy2LKe+J1sjvTqJgLsAAAAAAAAAAE1noL0rQO09XiL2Pat4Db7lDRo9YiFgvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGzZXCCSRr+MAWyUTcQBjAF0lEdAkoqJlWfbsXV9lChoBkdAcUWRoysS02gHTT0BaAhHQJKPHF6zE751fZQoaAZHQG6zLlvIfbNoB00DAWgIR0CSkGmMOwxGdX2UKGgGR0BwINL26ClKaAdNugFoCEdAkpCYPCl7+nV9lChoBkdAcQdN9ph4MWgHTZgBaAhHQJKTbGNrCWN1fZQoaAZHQGFNnLJSzgNoB03oA2gIR0CSlFAmzBykdX2UKGgGR0Bwd4SM98qnaAdNLAFoCEdAkpVSde6ZpnV9lChoBkdAcSp40Mw1zmgHTcABaAhHQJKZp1dPci51fZQoaAZHQG9O2KMvRJFoB03uAWgIR0CSm7MG5c1PdX2UKGgGR0Bs+QRChN/OaAdN6gFoCEdAkqOFKf4AS3V9lChoBkdAbynH/cWTHWgHTVoCaAhHQJKjqAbyYol1fZQoaAZHQHKuEBCD28JoB02mA2gIR0CSo9Xlr/KhdX2UKGgGR0BwPtChN/OMaAdNJQNoCEdAkq40WAPNFHV9lChoBkdAW37xri2lVWgHTegDaAhHQJKudbeMyad1fZQoaAZHQG9zOcc2itdoB00OAWgIR0CSw3VqN6w/dX2UKGgGR0Bwpm2CuloEaAdNrwFoCEdAksOnXiBGx3V9lChoBkdAcBTHcDbJwWgHTTIDaAhHQJLEFD5TIeZ1fZQoaAZHQHGsoWUKRdRoB02VAmgIR0CSxDJC0F8pdX2UKGgGR0BoJqf4AS39aAdN6ANoCEdAksRIFzMibHV9lChoBkdAb8VM3ZPEbmgHTScCaAhHQJLERy2hIvt1fZQoaAZHQHAN1p9JBgNoB02GAmgIR0CSxNU5+6RRdX2UKGgGR0BsLQO4G2TgaAdNRAFoCEdAksVejRD1G3V9lChoBkdAb/0uwosqa2gHTdkDaAhHQJLHRA/s3Q51fZQoaAZHQHGk7Uoa1kVoB03lAmgIR0CSyd+otL+QdX2UKGgGR0BwjvlPrOZ9aAdNwQJoCEdAksn8xoIv8XV9lChoBkdAcK8ta6jFh2gHTSkBaAhHQJLLS3x4IKN1fZQoaAZHQHNuzv7WNFVoB0v6aAhHQJLMaGzru6V1fZQoaAZHQHJA8afjCHhoB02mAmgIR0CSzR7ihnJ1dX2UKGgGR0BytWicoYvWaAdNKwFoCEdAks6gvL5h0HV9lChoBkdAcngV0tAcDWgHTVkCaAhHQJLPV/EwWWR1fZQoaAZHQHMKZng5zYFoB01eAWgIR0CS0YQxesxPdX2UKGgGR0BwosIqslsxaAdNcgFoCEdAktHU9yLhrHV9lChoBkdAckd8qFyq/GgHTcQBaAhHQJLSPqW1MM91fZQoaAZHQHDh+tfXwspoB01uAWgIR0CS0ldjXnQqdX2UKGgGR0BjRPYODrZ8aAdN6ANoCEdAktJZSeiBXnV9lChoBkdAcOYpVjqfOGgHTVEBaAhHQJLScpb2USt1fZQoaAZHQHFr8p9ZzPtoB00fAWgIR0CS0uV/c32mdX2UKGgGR0Bw6ZP557gLaAdNPAFoCEdAktmoHgP3BnV9lChoBkdAcBpH9WIXTGgHTSUCaAhHQJLZtb5dnkF1fZQoaAZHQHBAGxptaZBoB01sAWgIR0CS3hgEEC/5dX2UKGgGR0Bri3Adn004aAdNQgFoCEdAkuBKfvnbI3V9lChoBkdAcEYPH1e0HGgHTTgBaAhHQJLgtIOH3111fZQoaAZHQG6zVHOKO1hoB00MAmgIR0CS4X7EpAlfdX2UKGgGR0BwYT3oLXtjaAdNbgFoCEdAkuLAsf7rLXV9lChoBkdAcNx6wdKdx2gHTW0BaAhHQJLjFK/VRUF1fZQoaAZHQHCxAmReTmpoB02VAWgIR0CS5PDBdld1dX2UKGgGR0Bvx/RTjvNNaAdN4QFoCEdAkuXRKlHjInV9lChoBkdAb1zsa86FNGgHTf0BaAhHQJLmcmE4//x1fZQoaAZHQHLBMqe9SMtoB00sAWgIR0CS52vRqoIfdX2UKGgGR0Buj8yN4qwyaAdN4wFoCEdAkugTj/+85HV9lChoBkdAcQisZpBX0WgHTbgCaAhHQJLre2mYSg51fZQoaAZHQHDl+vllsgxoB00oA2gIR0CS/sJ6IFeOdX2UKGgGR0BuZG9L6DXfaAdNaQFoCEdAkv8OKoAGS3V9lChoBkdAcREfP5YYBWgHTUkBaAhHQJL/eoJiRW91fZQoaAZHQGOunP3SKFZoB03oA2gIR0CTAAxc3VCpdX2UKGgGR0BwCUOtnwocaAdNMAFoCEdAkwBrmZE2HnV9lChoBkdAcq33Ov+wT2gHTfYBaAhHQJMAuE25xzd1fZQoaAZHQHHVIEKVpsZoB01nAWgIR0CTARMSsbNsdX2UKGgGR0Bw1VvBJqZdaAdNnwJoCEdAkwGr8iwB53V9lChoBkdAbqu28Zk08GgHTRwBaAhHQJMDZO45Lh91fZQoaAZHQG6PmXgLqlhoB00RAWgIR0CTBAqLjxTbdX2UKGgGR0BwUBfE4vOAaAdNpQFoCEdAkwSXeizsyHV9lChoBkdAbdZSuyNXHWgHTUsBaAhHQJME0px3mmt1fZQoaAZHQG+Q85bQkX1oB02FAWgIR0CTBkDRtxdZdX2UKGgGR0BwzgDvE0iyaAdNwAFoCEdAkwcH/5tWMnV9lChoBkdAcQfK3/givGgHTRYBaAhHQJMI6YeDFqB1fZQoaAZHQHJLFz6rNnpoB018AWgIR0CTCVsNDtw8dX2UKGgGR0Bt2T2alUIcaAdNBwFoCEdAkwpa/VRUFXV9lChoBkdAcTMxIatLc2gHTQYBaAhHQJMKyJdjXnR1fZQoaAZHQHE823fAKv5oB00JAWgIR0CTC5y7wrlOdX2UKGgGR0BsqaHCXQdCaAdNGQFoCEdAkwy/LHMlknV9lChoBkdAbuwQqZtvXWgHTQ4BaAhHQJMM2PGQ0XR1fZQoaAZHQG8HqZ2IO6NoB01TAWgIR0CTDyAbyYoidX2UKGgGR0BuCpkTYdyUaAdNIgFoCEdAkw903fhuO3V9lChoBkdAclvKYRdyDWgHTSwBaAhHQJMQrzErGzd1fZQoaAZHQHEyTUVi4KBoB008AWgIR0CTEXSqEOAidX2UKGgGR0Bwnk5ZKWcCaAdNPQFoCEdAkxOcQyylenV9lChoBkdAcT4QQ+UyHmgHTTMBaAhHQJMU8RGtp251fZQoaAZHQHIS56Uqx1RoB03rAWgIR0CTFaUWVNYbdX2UKGgGR0Bw1Bi7TUiIaAdNMQFoCEdAkxaxb4agmXV9lChoBkdAcNIS+xnnMmgHTTEBaAhHQJMXcTpPhyd1fZQoaAZHQHIb6b4Ju2toB03iAWgIR0CTF3JwbVBldX2UKGgGR0BwfGu4gA6uaAdNwAFoCEdAkxhRlDneSHV9lChoBkdAcBSV9F4LTmgHTYkBaAhHQJMZzw1BMSN1fZQoaAZHQG4ffAj6eoVoB00iAWgIR0CTGr7GNrCWdX2UKGgGR0BxBaGQCCBgaAdNcwFoCEdAkxsMolUp/nV9lChoBkdAcoAyPMjeK2gHTXMBaAhHQJMbI6kqMFV1fZQoaAZHQG0N/T9bX6JoB03EAWgIR0CTGymCyyD7dX2UKGgGR0BxprRa5f+kaAdNAQFoCEdAkxuTo6jnFHV9lChoBkdAcAJD7qIJq2gHTeMCaAhHQJMcWjWTX8R1fZQoaAZHQHBTIdU83ddoB00iAWgIR0CTHldgOSW7dX2UKGgGR0ByIXJYDDCQaAdNEAFoCEdAkx7UqMFUynV9lChoBkdAb14qI7/4qWgHTbQBaAhHQJMg1BdD6WR1fZQoaAZHQHCogkLQXyloB03sAWgIR0CTITNmDlHSdX2UKGgGR0BxFQTewcHXaAdNHgFoCEdAkyGBeHBUJnV9lChoBkdAbfaSRKYiPmgHTR8BaAhHQJMiSKcd5pt1fZQoaAZHQHBz1Fpfx+doB01/AWgIR0CTJGAnDziCdX2UKGgGR0BtXBaC+UQkaAdNdAFoCEdAkySiV0Lc9HV9lChoBkdAcmCJ9y925mgHTUkBaAhHQJMlQIw/PgN1fZQoaAZHQHBiMNtqHoJoB00dAWgIR0CTJXA1NxlydWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a4d08f102bf2c24ec9774896548735b457ec51dc174bac921310fe9a6a4673f
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:678c611e73df97984c75e1d48e034e23596efc58683dfc2a1bc403cd1089b52f
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (164 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 249.57341189999997, "std_reward": 19.013409425828126, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-14T10:51:45.052102"}