Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1388.27 +/- 220.89
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9eaea44f4d135e596aea58adf5fa45aeebda2ffbe3eb3e6d0da7e53d99f17797
|
3 |
+
size 129246
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7e7859004550>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e78590045e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e7859004670>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e7859004700>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7e7859004790>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7e7859004820>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7e78590048b0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e7859004940>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7e78590049d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e7859004a60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e7859004af0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7e7859004b80>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e7859011240>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1690440744081263753,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFoVkT98/bU+hxKmPj1KML6bSTY/Dr7GvlbShr8Cfhw/YDz2vYCvrj55/nW/t1I9wL7AYb+z0TU/YmTmvpDaR7+MGBG/Fp1Uv/JIHMDb7QXAKKGEv0XFyDzab7k/BC/Jv16Rcr/qqCI/TFS6PsVWEz81cDC+nPbHPtpMlz4lLVC/1guxP/oRnT5XNWI+DhOGviskvr6bQb8/8HqBP/lHDj+ix7u/VzixPFTEYz9B/Dg/YYB+P9cFKUAhKjQ/FCRtPjHb/j+ZHXdAJK8VP9SaFUCGFoc/enPJv0xUuj4VZt6/ziRNvkEFxj7q7Jg+jmc3P8ohsz8e742/mNcvP0VIBb7JzZi+4R9CP/T6nD8tiF0/4dGFPyTzzz6TYJ0+2KncPxcFBbuchdU/RmE6P9GjBEDnexK/h2C7PzPPSr/tmSs+hhaHP+qoIj9W3C/AxVYTP6B0gz+iVZy9hXIZP5ajdT/VfcE/dA3OvvuXHb91AF69NQqdvm6qVL8Rfua+q8tbvyc0dT3nlWE/DIJavjC1Hb+tVMo77y9iv3Mthb8Gru6/JxGEv5NM9zw9bY0/lhyOv16Rcr/qqCI/TFS6PsVWEz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC8FtQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARcHlvQAAAADJSe6/AAAAAInYlz0AAAAAHfLqPwAAAAAXe927AAAAAJgx8T8AAAAAh8i1vQAAAACzZPC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7f4NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNDmC74AAAAAkUn8vwAAAAD2kWG9AAAAAHZt5T8AAAAA+eEQPgAAAACN+fc/AAAAAAANDT4AAAAARtDyvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE5WkTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBW/Su9AAAAAMMt2r8AAAAAVlO+vQAAAAC98t0/AAAAADHh0D0AAAAAV9XvPwAAAACXfA++AAAAAKmS4L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABJ6+M1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAci8OwAAAAD3dvC/AAAAAC94WTwAAAAAnCfvPwAAAADClbW8AAAAAC5n2z8AAAAA6lfBvQAAAADm7gDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJYXMeNkvsaMAWyUTegDjAF0lEdAqWfj4nF5wHV9lChoBkdAl58WIfr8i2gHTegDaAhHQKlvHDu0CzV1fZQoaAZHQJgMojiXIENoB03oA2gIR0Cpb3vc8DB/dX2UKGgGR0CVBrSkCV8kaAdN6ANoCEdAqXCivTw2EXV9lChoBkdAl0hoXoC+12gHTegDaAhHQKl1Cj2zv7Z1fZQoaAZHQJYAFi5NGmVoB03oA2gIR0CpfYQJ5VwQdX2UKGgGR0CV/K2dd3SsaAdN6ANoCEdAqX3i/VRUFXV9lChoBkdAlerHavicXmgHTegDaAhHQKl/CCqZML51fZQoaAZHQJWz9tALRa5oB03oA2gIR0CpgsfQ8fV7dX2UKGgGR0CVeS779AHFaAdN6ANoCEdAqYnsawUxmHV9lChoBkdAlQttOM2m52gHTegDaAhHQKmKU2ycCo11fZQoaAZHQJZ9dVsDW9VoB03oA2gIR0Cpi3yVObiIdX2UKGgGR0CXwgv1lGwzaAdN6ANoCEdAqZDCf+S8rnV9lChoBkdAl5eYBNmDlGgHTegDaAhHQKmYSRDkU9J1fZQoaAZHQJa/OugYgq5oB03oA2gIR0CpmKhpg1FZdX2UKGgGR0CXSJ75VOsUaAdN6ANoCEdAqZnLUI9kjHV9lChoBkdAlSX7KV6eG2gHTegDaAhHQKmdi7YkE9t1fZQoaAZHQJdjFv1lGw1oB03oA2gIR0CppNEm6XjVdX2UKGgGR0CSxgUXHim3aAdN6ANoCEdAqaUtObiIcnV9lChoBkdAmCn+uRs/IWgHTegDaAhHQKmmsRODaoN1fZQoaAZHQJffHK/20zFoB03oA2gIR0Cpq896LOzIdX2UKGgGR0CY43qnm7rcaAdN6ANoCEdAqbMT2tdRi3V9lChoBkdAmHopsCT2WmgHTegDaAhHQKmzbrvb48F1fZQoaAZHQJhogOTaCcxoB03oA2gIR0CptJA/9pAVdX2UKGgGR0CcCv3KB/ZvaAdN6ANoCEdAqbhxobn5i3V9lChoBkdAmpuPTXrdFmgHTegDaAhHQKm/9Lxqfvp1fZQoaAZHQJgaw4jrzGxoB03oA2gIR0CpwIHRCx/vdX2UKGgGR0CVUhJrcj7iaAdN6ANoCEdAqcI1UKiPAHV9lChoBkdAlwLXlS0jT2gHTegDaAhHQKnGp4s3AEd1fZQoaAZHQJTRCf16E8JoB03oA2gIR0CpzdEX+ERKdX2UKGgGR0CWNfpfQa73aAdN6ANoCEdAqc4tYuCf6HV9lChoBkdAllCPTkQwsWgHTegDaAhHQKnPUKZUkv91fZQoaAZHQJK3mn+AEuBoB03oA2gIR0Cp0vx59mYjdX2UKGgGR0CX563Sa3I/aAdN6ANoCEdAqdsraXa8H3V9lChoBkdAk+ylBUrCnGgHTegDaAhHQKnbu8PnSv11fZQoaAZHQJMxM1IiC8RoB03oA2gIR0Cp3XA4ffXPdX2UKGgGR0CVbOT8HfMwaAdN6ANoCEdAqeEV4JNTLnV9lChoBkdAlRwFwxWT5mgHTegDaAhHQKnoMR3/xUh1fZQoaAZHQJSQPRSgoPVoB03oA2gIR0Cp6I6NVBD5dX2UKGgGR0CUetqcmShbaAdN6ANoCEdAqem2KoAGS3V9lChoBkdAlK78IJJGv2gHTegDaAhHQKnthgbZOBV1fZQoaAZHQJWmaw3YL9doB03oA2gIR0Cp9p96cAindX2UKGgGR0CVIJmJ3xFzaAdN6ANoCEdAqfcAwZflZHV9lChoBkdAlThU29+PR2gHTegDaAhHQKn4Ke7tiQV1fZQoaAZHQJcZ6Il+mWNoB03oA2gIR0Cp+9yM98qndX2UKGgGR0CXqQBp5/smaAdN6ANoCEdAqgMu65Gz8nV9lChoBkdAmDCjlo11n2gHTegDaAhHQKoDjk6Lfk51fZQoaAZHQJY0u8oQWepoB03oA2gIR0CqBLiIcinpdX2UKGgGR0CTAfg8bJfZaAdN6ANoCEdAqgiMB4lhPXV9lChoBkdAkk5S1Vo6CGgHTegDaAhHQKoRpnSOR1Z1fZQoaAZHQJU6xL8JlatoB03oA2gIR0CqEgHU2DQJdX2UKGgGR0CVbYUWl/H6aAdN6ANoCEdAqhMy5AhStXV9lChoBkdAln0FhsqJ/GgHTegDaAhHQKoW+NHYpUh1fZQoaAZHQJQoOWE9MbpoB03oA2gIR0CqHjQJXyRTdX2UKGgGR0CWs1HpbD/EaAdN6ANoCEdAqh6QVdonKHV9lChoBkdAlWuB2B8QZmgHTegDaAhHQKofssFt8/l1fZQoaAZHQJI5U3974SJoB03oA2gIR0CqI3X1J17qdX2UKGgGR0CNzhcHnlnzaAdN6ANoCEdAqixKNp/PPnV9lChoBkdAksXNrO7g9GgHTegDaAhHQKosstxMnJF1fZQoaAZHQI35KNZNfw9oB03oA2gIR0CqLe0163RYdX2UKGgGR0COmS5uIhyKaAdN6ANoCEdAqjGjrPdEcHV9lChoBkdAkGnKPXCj12gHTegDaAhHQKo44DpTuOV1fZQoaAZHQIkjoJeE7GNoB03oA2gIR0CqOTjpcHGCdX2UKGgGR0CLnFPyCnP3aAdN6ANoCEdAqjph7TlT33V9lChoBkdAhbpuzhP0qmgHTegDaAhHQKo+eOXE61d1fZQoaAZHQJTZuF23azxoB03oA2gIR0CqRtO2RaHLdX2UKGgGR0CXTBvvjOs1aAdN6ANoCEdAqkcwHoouw3V9lChoBkdAlPR6hlDneWgHTegDaAhHQKpIYLMLWqd1fZQoaAZHQJexp39rGipoB03oA2gIR0CqTBLcKw6idX2UKGgGR0CUwcDmKZUlaAdN6ANoCEdAqlMvukUKzHV9lChoBkdAl/eaa1Cw8mgHTegDaAhHQKpTkZMtbs51fZQoaAZHQJfKlbC79Q5oB03oA2gIR0CqVLOx0MgEdX2UKGgGR0CV2ET850bMaAdN6ANoCEdAqlmMRzzVc3V9lChoBkdAkXDXUlRgqmgHTegDaAhHQKphN+3H7xd1fZQoaAZHQJbSqoS+QEJoB03oA2gIR0CqYZQFLWZrdX2UKGgGR0B+q2LuQZGbaAdN6ANoCEdAqmK7mjj7ynV9lChoBkdAisDyVnmJWWgHTegDaAhHQKpmZ6sySFJ1fZQoaAZHQJQT2jZcs19oB03oA2gIR0CqbY/W+XZ5dX2UKGgGR0CWJnPDpC8faAdN6ANoCEdAqm3oPZqVQnV9lChoBkdAlgMWQCCBgGgHTegDaAhHQKpvBQxesxR1fZQoaAZHQJVAV8jRlYloB03oA2gIR0CqdGoDgZTAdX2UKGgGR0CWB8Axzq8laAdN6ANoCEdAqnuELfDUE3V9lChoBkdAlax88cMmW2gHTegDaAhHQKp739ZzPrx1fZQoaAZHQJIZDRUm2LJoB03oA2gIR0CqfQQtz0YkdX2UKGgGR0CW0Y6ltTDPaAdN6ANoCEdAqoDErqdH2HV9lChoBkdAlw4MfFJg9mgHTegDaAhHQKqH2ggX/HZ1fZQoaAZHQJPSxqveP7xoB03oA2gIR0CqiDgEEC/5dX2UKGgGR0CV2My6MBIXaAdN6ANoCEdAqonQL9deIHV9lChoBkdAlkeZeJHiFWgHTegDaAhHQKqOwACnxax1fZQoaAZHQJbC18Rcu8NoB03oA2gIR0Cqld+enQ6ZdX2UKGgGR0CJKo4m1IAfaAdN6ANoCEdAqpY+knCwbHV9lChoBkdAkvoCQcPvrmgHTegDaAhHQKqXaEMb3oN1fZQoaAZHQJYz2wRoRI1oB03oA2gIR0CqmwF+Vkc0dX2UKGgGR0CTqyjEvTPTaAdN6ANoCEdAqqJgQWepXXV9lChoBkdAk+gOAmReTmgHTegDaAhHQKqi6BZpztF1fZQoaAZHQJS1hIvrWy1oB03oA2gIR0CqpJlMh5gPdX2UKGgGR0CVmg5p8F6iaAdN6ANoCEdAqqkQHzH0b3V9lChoBkdAkUMZeJHiFWgHTegDaAhHQKqwMQdS2ph1fZQoaAZHQJF67Nt65XloB03oA2gIR0CqsInYQJ5WdX2UKGgGR0CScim0mdAgaAdN6ANoCEdAqrGoE8q4IHVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7001e0ec71a203f70e3e6d76896e43cec623d8f9379426bf4753ce73ba314213
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74c9627d8c06bb1378eca2a6d95c1f0c5ca8fa8fc597dd35df7311ae8f65a420
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e7859004550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e78590045e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e7859004670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e7859004700>", "_build": "<function ActorCriticPolicy._build at 0x7e7859004790>", "forward": "<function ActorCriticPolicy.forward at 0x7e7859004820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e78590048b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e7859004940>", "_predict": "<function ActorCriticPolicy._predict at 0x7e78590049d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e7859004a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e7859004af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e7859004b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e7859011240>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690440744081263753, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFoVkT98/bU+hxKmPj1KML6bSTY/Dr7GvlbShr8Cfhw/YDz2vYCvrj55/nW/t1I9wL7AYb+z0TU/YmTmvpDaR7+MGBG/Fp1Uv/JIHMDb7QXAKKGEv0XFyDzab7k/BC/Jv16Rcr/qqCI/TFS6PsVWEz81cDC+nPbHPtpMlz4lLVC/1guxP/oRnT5XNWI+DhOGviskvr6bQb8/8HqBP/lHDj+ix7u/VzixPFTEYz9B/Dg/YYB+P9cFKUAhKjQ/FCRtPjHb/j+ZHXdAJK8VP9SaFUCGFoc/enPJv0xUuj4VZt6/ziRNvkEFxj7q7Jg+jmc3P8ohsz8e742/mNcvP0VIBb7JzZi+4R9CP/T6nD8tiF0/4dGFPyTzzz6TYJ0+2KncPxcFBbuchdU/RmE6P9GjBEDnexK/h2C7PzPPSr/tmSs+hhaHP+qoIj9W3C/AxVYTP6B0gz+iVZy9hXIZP5ajdT/VfcE/dA3OvvuXHb91AF69NQqdvm6qVL8Rfua+q8tbvyc0dT3nlWE/DIJavjC1Hb+tVMo77y9iv3Mthb8Gru6/JxGEv5NM9zw9bY0/lhyOv16Rcr/qqCI/TFS6PsVWEz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC8FtQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARcHlvQAAAADJSe6/AAAAAInYlz0AAAAAHfLqPwAAAAAXe927AAAAAJgx8T8AAAAAh8i1vQAAAACzZPC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7f4NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNDmC74AAAAAkUn8vwAAAAD2kWG9AAAAAHZt5T8AAAAA+eEQPgAAAACN+fc/AAAAAAANDT4AAAAARtDyvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE5WkTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBW/Su9AAAAAMMt2r8AAAAAVlO+vQAAAAC98t0/AAAAADHh0D0AAAAAV9XvPwAAAACXfA++AAAAAKmS4L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABJ6+M1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAci8OwAAAAD3dvC/AAAAAC94WTwAAAAAnCfvPwAAAADClbW8AAAAAC5n2z8AAAAA6lfBvQAAAADm7gDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJYXMeNkvsaMAWyUTegDjAF0lEdAqWfj4nF5wHV9lChoBkdAl58WIfr8i2gHTegDaAhHQKlvHDu0CzV1fZQoaAZHQJgMojiXIENoB03oA2gIR0Cpb3vc8DB/dX2UKGgGR0CVBrSkCV8kaAdN6ANoCEdAqXCivTw2EXV9lChoBkdAl0hoXoC+12gHTegDaAhHQKl1Cj2zv7Z1fZQoaAZHQJYAFi5NGmVoB03oA2gIR0CpfYQJ5VwQdX2UKGgGR0CV/K2dd3SsaAdN6ANoCEdAqX3i/VRUFXV9lChoBkdAlerHavicXmgHTegDaAhHQKl/CCqZML51fZQoaAZHQJWz9tALRa5oB03oA2gIR0CpgsfQ8fV7dX2UKGgGR0CVeS779AHFaAdN6ANoCEdAqYnsawUxmHV9lChoBkdAlQttOM2m52gHTegDaAhHQKmKU2ycCo11fZQoaAZHQJZ9dVsDW9VoB03oA2gIR0Cpi3yVObiIdX2UKGgGR0CXwgv1lGwzaAdN6ANoCEdAqZDCf+S8rnV9lChoBkdAl5eYBNmDlGgHTegDaAhHQKmYSRDkU9J1fZQoaAZHQJa/OugYgq5oB03oA2gIR0CpmKhpg1FZdX2UKGgGR0CXSJ75VOsUaAdN6ANoCEdAqZnLUI9kjHV9lChoBkdAlSX7KV6eG2gHTegDaAhHQKmdi7YkE9t1fZQoaAZHQJdjFv1lGw1oB03oA2gIR0CppNEm6XjVdX2UKGgGR0CSxgUXHim3aAdN6ANoCEdAqaUtObiIcnV9lChoBkdAmCn+uRs/IWgHTegDaAhHQKmmsRODaoN1fZQoaAZHQJffHK/20zFoB03oA2gIR0Cpq896LOzIdX2UKGgGR0CY43qnm7rcaAdN6ANoCEdAqbMT2tdRi3V9lChoBkdAmHopsCT2WmgHTegDaAhHQKmzbrvb48F1fZQoaAZHQJhogOTaCcxoB03oA2gIR0CptJA/9pAVdX2UKGgGR0CcCv3KB/ZvaAdN6ANoCEdAqbhxobn5i3V9lChoBkdAmpuPTXrdFmgHTegDaAhHQKm/9Lxqfvp1fZQoaAZHQJgaw4jrzGxoB03oA2gIR0CpwIHRCx/vdX2UKGgGR0CVUhJrcj7iaAdN6ANoCEdAqcI1UKiPAHV9lChoBkdAlwLXlS0jT2gHTegDaAhHQKnGp4s3AEd1fZQoaAZHQJTRCf16E8JoB03oA2gIR0CpzdEX+ERKdX2UKGgGR0CWNfpfQa73aAdN6ANoCEdAqc4tYuCf6HV9lChoBkdAllCPTkQwsWgHTegDaAhHQKnPUKZUkv91fZQoaAZHQJK3mn+AEuBoB03oA2gIR0Cp0vx59mYjdX2UKGgGR0CX563Sa3I/aAdN6ANoCEdAqdsraXa8H3V9lChoBkdAk+ylBUrCnGgHTegDaAhHQKnbu8PnSv11fZQoaAZHQJMxM1IiC8RoB03oA2gIR0Cp3XA4ffXPdX2UKGgGR0CVbOT8HfMwaAdN6ANoCEdAqeEV4JNTLnV9lChoBkdAlRwFwxWT5mgHTegDaAhHQKnoMR3/xUh1fZQoaAZHQJSQPRSgoPVoB03oA2gIR0Cp6I6NVBD5dX2UKGgGR0CUetqcmShbaAdN6ANoCEdAqem2KoAGS3V9lChoBkdAlK78IJJGv2gHTegDaAhHQKnthgbZOBV1fZQoaAZHQJWmaw3YL9doB03oA2gIR0Cp9p96cAindX2UKGgGR0CVIJmJ3xFzaAdN6ANoCEdAqfcAwZflZHV9lChoBkdAlThU29+PR2gHTegDaAhHQKn4Ke7tiQV1fZQoaAZHQJcZ6Il+mWNoB03oA2gIR0Cp+9yM98qndX2UKGgGR0CXqQBp5/smaAdN6ANoCEdAqgMu65Gz8nV9lChoBkdAmDCjlo11n2gHTegDaAhHQKoDjk6Lfk51fZQoaAZHQJY0u8oQWepoB03oA2gIR0CqBLiIcinpdX2UKGgGR0CTAfg8bJfZaAdN6ANoCEdAqgiMB4lhPXV9lChoBkdAkk5S1Vo6CGgHTegDaAhHQKoRpnSOR1Z1fZQoaAZHQJU6xL8JlatoB03oA2gIR0CqEgHU2DQJdX2UKGgGR0CVbYUWl/H6aAdN6ANoCEdAqhMy5AhStXV9lChoBkdAln0FhsqJ/GgHTegDaAhHQKoW+NHYpUh1fZQoaAZHQJQoOWE9MbpoB03oA2gIR0CqHjQJXyRTdX2UKGgGR0CWs1HpbD/EaAdN6ANoCEdAqh6QVdonKHV9lChoBkdAlWuB2B8QZmgHTegDaAhHQKofssFt8/l1fZQoaAZHQJI5U3974SJoB03oA2gIR0CqI3X1J17qdX2UKGgGR0CNzhcHnlnzaAdN6ANoCEdAqixKNp/PPnV9lChoBkdAksXNrO7g9GgHTegDaAhHQKosstxMnJF1fZQoaAZHQI35KNZNfw9oB03oA2gIR0CqLe0163RYdX2UKGgGR0COmS5uIhyKaAdN6ANoCEdAqjGjrPdEcHV9lChoBkdAkGnKPXCj12gHTegDaAhHQKo44DpTuOV1fZQoaAZHQIkjoJeE7GNoB03oA2gIR0CqOTjpcHGCdX2UKGgGR0CLnFPyCnP3aAdN6ANoCEdAqjph7TlT33V9lChoBkdAhbpuzhP0qmgHTegDaAhHQKo+eOXE61d1fZQoaAZHQJTZuF23azxoB03oA2gIR0CqRtO2RaHLdX2UKGgGR0CXTBvvjOs1aAdN6ANoCEdAqkcwHoouw3V9lChoBkdAlPR6hlDneWgHTegDaAhHQKpIYLMLWqd1fZQoaAZHQJexp39rGipoB03oA2gIR0CqTBLcKw6idX2UKGgGR0CUwcDmKZUlaAdN6ANoCEdAqlMvukUKzHV9lChoBkdAl/eaa1Cw8mgHTegDaAhHQKpTkZMtbs51fZQoaAZHQJfKlbC79Q5oB03oA2gIR0CqVLOx0MgEdX2UKGgGR0CV2ET850bMaAdN6ANoCEdAqlmMRzzVc3V9lChoBkdAkXDXUlRgqmgHTegDaAhHQKphN+3H7xd1fZQoaAZHQJbSqoS+QEJoB03oA2gIR0CqYZQFLWZrdX2UKGgGR0B+q2LuQZGbaAdN6ANoCEdAqmK7mjj7ynV9lChoBkdAisDyVnmJWWgHTegDaAhHQKpmZ6sySFJ1fZQoaAZHQJQT2jZcs19oB03oA2gIR0CqbY/W+XZ5dX2UKGgGR0CWJnPDpC8faAdN6ANoCEdAqm3oPZqVQnV9lChoBkdAlgMWQCCBgGgHTegDaAhHQKpvBQxesxR1fZQoaAZHQJVAV8jRlYloB03oA2gIR0CqdGoDgZTAdX2UKGgGR0CWB8Axzq8laAdN6ANoCEdAqnuELfDUE3V9lChoBkdAlax88cMmW2gHTegDaAhHQKp739ZzPrx1fZQoaAZHQJIZDRUm2LJoB03oA2gIR0CqfQQtz0YkdX2UKGgGR0CW0Y6ltTDPaAdN6ANoCEdAqoDErqdH2HV9lChoBkdAlw4MfFJg9mgHTegDaAhHQKqH2ggX/HZ1fZQoaAZHQJPSxqveP7xoB03oA2gIR0CqiDgEEC/5dX2UKGgGR0CV2My6MBIXaAdN6ANoCEdAqonQL9deIHV9lChoBkdAlkeZeJHiFWgHTegDaAhHQKqOwACnxax1fZQoaAZHQJbC18Rcu8NoB03oA2gIR0Cqld+enQ6ZdX2UKGgGR0CJKo4m1IAfaAdN6ANoCEdAqpY+knCwbHV9lChoBkdAkvoCQcPvrmgHTegDaAhHQKqXaEMb3oN1fZQoaAZHQJYz2wRoRI1oB03oA2gIR0CqmwF+Vkc0dX2UKGgGR0CTqyjEvTPTaAdN6ANoCEdAqqJgQWepXXV9lChoBkdAk+gOAmReTmgHTegDaAhHQKqi6BZpztF1fZQoaAZHQJS1hIvrWy1oB03oA2gIR0CqpJlMh5gPdX2UKGgGR0CVmg5p8F6iaAdN6ANoCEdAqqkQHzH0b3V9lChoBkdAkUMZeJHiFWgHTegDaAhHQKqwMQdS2ph1fZQoaAZHQJF67Nt65XloB03oA2gIR0CqsInYQJ5WdX2UKGgGR0CScim0mdAgaAdN6ANoCEdAqrGoE8q4IHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c766395c9d824ea9818885c400502f87c3d9bfddbc5c10ec81867380092b8e6
|
3 |
+
size 1105008
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1388.2731392074725, "std_reward": 220.88511877496995, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-27T07:51:53.241533"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4425b956642373cedb2628bdeb33f4a414e3090f21917e4432ae796f917ca0c
|
3 |
+
size 2176
|