Narsil HF staff commited on
Commit
bb1790d
1 Parent(s): 058fa3a

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +181 -0
README.md ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ - endpoints-template
5
+ library_name: generic
6
+ datasets:
7
+ - funsd
8
+ model-index:
9
+ - name: layoutlm-funsd
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # layoutlm-funsd
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.0045
21
+ - Answer: {'precision': 0.7348314606741573, 'recall': 0.8084054388133498, 'f1': 0.7698646262507357, 'number': 809}
22
+ - Header: {'precision': 0.44285714285714284, 'recall': 0.5210084033613446, 'f1': 0.47876447876447875, 'number': 119}
23
+ - Question: {'precision': 0.8211009174311926, 'recall': 0.8403755868544601, 'f1': 0.8306264501160092, 'number': 1065}
24
+ - Overall Precision: 0.7599
25
+ - Overall Recall: 0.8083
26
+ - Overall F1: 0.7866
27
+ - Overall Accuracy: 0.8106
28
+
29
+ ### Training hyperparameters
30
+
31
+ The following hyperparameters were used during training:
32
+ - learning_rate: 3e-05
33
+ - train_batch_size: 16
34
+ - eval_batch_size: 8
35
+ - seed: 42
36
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
37
+ - lr_scheduler_type: linear
38
+ - num_epochs: 15
39
+ - mixed_precision_training: Native AMP
40
+
41
+ ## Deploy Model with Inference Endpoints
42
+
43
+ Before we can get started, make sure you meet all of the following requirements:
44
+
45
+ 1. An Organization/User with an active plan and *WRITE* access to the model repository.
46
+ 2. Can access the UI: [https://ui.endpoints.huggingface.co](https://ui.endpoints.huggingface.co/endpoints)
47
+
48
+
49
+
50
+ ### 1. Deploy LayoutLM and Send requests
51
+
52
+ In this tutorial, you will learn how to deploy a [LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm) to [Hugging Face Inference Endpoints](https://huggingface.co/inference-endpoints) and how you can integrate it via an API into your products.
53
+
54
+ This tutorial is not covering how you create the custom handler for inference. If you want to learn how to create a custom Handler for Inference Endpoints, you can either checkout the [documentation](https://huggingface.co/docs/inference-endpoints/guides/custom_handler) or go through [“Custom Inference with Hugging Face Inference Endpoints”](https://www.philschmid.de/custom-inference-handler)
55
+
56
+ We are going to deploy [philschmid/layoutlm-funsd](https://huggingface.co/philschmid/layoutlm-funsd) which implements the following `handler.py`
57
+
58
+ ```python
59
+ from typing import Dict, List, Any
60
+ from transformers import LayoutLMForTokenClassification, LayoutLMv2Processor
61
+ import torch
62
+ from subprocess import run
63
+
64
+ # install tesseract-ocr and pytesseract
65
+ run("apt install -y tesseract-ocr", shell=True, check=True)
66
+ run("pip install pytesseract", shell=True, check=True)
67
+
68
+ # helper function to unnormalize bboxes for drawing onto the image
69
+ def unnormalize_box(bbox, width, height):
70
+ return [
71
+ width * (bbox[0] / 1000),
72
+ height * (bbox[1] / 1000),
73
+ width * (bbox[2] / 1000),
74
+ height * (bbox[3] / 1000),
75
+ ]
76
+
77
+ # set device
78
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
79
+
80
+ class EndpointHandler:
81
+ def __init__(self, path=""):
82
+ # load model and processor from path
83
+ self.model = LayoutLMForTokenClassification.from_pretrained(path).to(device)
84
+ self.processor = LayoutLMv2Processor.from_pretrained(path)
85
+
86
+ def __call__(self, data: Dict[str, bytes]) -> Dict[str, List[Any]]:
87
+ """
88
+ Args:
89
+ data (:obj:):
90
+ includes the deserialized image file as PIL.Image
91
+ """
92
+ # process input
93
+ image = data.pop("inputs", data)
94
+
95
+ # process image
96
+ encoding = self.processor(image, return_tensors="pt")
97
+
98
+ # run prediction
99
+ with torch.inference_mode():
100
+ outputs = self.model(
101
+ input_ids=encoding.input_ids.to(device),
102
+ bbox=encoding.bbox.to(device),
103
+ attention_mask=encoding.attention_mask.to(device),
104
+ token_type_ids=encoding.token_type_ids.to(device),
105
+ )
106
+ predictions = outputs.logits.softmax(-1)
107
+
108
+ # post process output
109
+ result = []
110
+ for item, inp_ids, bbox in zip(
111
+ predictions.squeeze(0).cpu(), encoding.input_ids.squeeze(0).cpu(), encoding.bbox.squeeze(0).cpu()
112
+ ):
113
+ label = self.model.config.id2label[int(item.argmax().cpu())]
114
+ if label == "O":
115
+ continue
116
+ score = item.max().item()
117
+ text = self.processor.tokenizer.decode(inp_ids)
118
+ bbox = unnormalize_box(bbox.tolist(), image.width, image.height)
119
+ result.append({"label": label, "score": score, "text": text, "bbox": bbox})
120
+ return {"predictions": result}
121
+ ```
122
+
123
+ ### 2. Send HTTP request using Python
124
+
125
+ Hugging Face Inference endpoints can directly work with binary data, this means that we can directly send our image from our document to the endpoint. We are going to use `requests` to send our requests. (make your you have it installed `pip install requests`)
126
+
127
+ ```python
128
+ import json
129
+ import requests as r
130
+ import mimetypes
131
+
132
+ ENDPOINT_URL="" # url of your endpoint
133
+ HF_TOKEN="" # organization token where you deployed your endpoint
134
+
135
+ def predict(path_to_image:str=None):
136
+ with open(path_to_image, "rb") as i:
137
+ b = i.read()
138
+ headers= {
139
+ "Authorization": f"Bearer {HF_TOKEN}",
140
+ "Content-Type": mimetypes.guess_type(path_to_image)[0]
141
+ }
142
+ response = r.post(ENDPOINT_URL, headers=headers, data=b)
143
+ return response.json()
144
+
145
+ prediction = predict(path_to_image="path_to_your_image.png")
146
+
147
+ print(prediction)
148
+ # {'predictions': [{'label': 'I-ANSWER', 'score': 0.4823932945728302, 'text': '[CLS]', 'bbox': [0.0, 0.0, 0.0, 0.0]}, {'label': 'B-HEADER', 'score': 0.992474377155304, 'text': 'your', 'bbox': [1712.529, 181.203, 1859.949, 228.88799999999998]},
149
+ ```
150
+
151
+
152
+ ### 3. Draw result on image
153
+
154
+ To get a better understanding of what the model predicted you can also draw the predictions on the provided image.
155
+
156
+ ```python
157
+ from PIL import Image, ImageDraw, ImageFont
158
+
159
+ # draw results on image
160
+ def draw_result(path_to_image,result):
161
+ image = Image.open(path_to_image)
162
+ label2color = {
163
+ "B-HEADER": "blue",
164
+ "B-QUESTION": "red",
165
+ "B-ANSWER": "green",
166
+ "I-HEADER": "blue",
167
+ "I-QUESTION": "red",
168
+ "I-ANSWER": "green",
169
+ }
170
+
171
+ # draw predictions over the image
172
+ draw = ImageDraw.Draw(image)
173
+ font = ImageFont.load_default()
174
+ for res in result:
175
+ draw.rectangle(res["bbox"], outline="black")
176
+ draw.rectangle(res["bbox"], outline=label2color[res["label"]])
177
+ draw.text((res["bbox"][0] + 10, res["bbox"][1] - 10), text=res["label"], fill=label2color[res["label"]], font=font)
178
+ return image
179
+
180
+ draw_result("path_to_your_image.png", prediction["predictions"])
181
+ ```