ppo-LunarLander-v2 / config.json
Nandita01's picture
Upload PPO LunarLander-v2 trained agent
7ebf925 verified
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cf5951d8ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cf5951d8d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cf5951d8dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cf5951d8e50>", "_build": "<function ActorCriticPolicy._build at 0x7cf5951d8ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7cf5951d8f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cf5951d9000>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cf5951d9090>", "_predict": "<function ActorCriticPolicy._predict at 0x7cf5951d9120>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cf5951d91b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cf5951d9240>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cf5951d92d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cf59517c7c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717246572892810584, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaIYzytT6A/gETYPaTqHL/1tPE8UvCLvAAAAAAAAAAAgKWZveGcmbpaQ5g7Pk19OGY8EjogFCm5AAAAAAAAgD8zETI9m9a7P21tHj8r5Y4+EEs3vaigvb0AAAAAAAAAACB/Nr4iTg8/Aw/UPYW/xb6WVAa+zrESPgAAAAAAAAAAfX6GPpAUnz/FbgY/TO0Xv3Qvzz71em8+AAAAAAAAAABmKQM9KL2OPwjwbz0Qbyi/AW6VPYoUdj0AAAAAAAAAADM2Qz2vdTo/jrRavbzxA7/Vt3I9Mhe1vQAAAAAAAAAAgKEYvc8JFbzNYSQ8WyqZPPK9c729F349AACAPwAAgD+Gw0a+o9mKP0Clh765pBO/uz+RvrJip70AAAAAAAAAAA1yg70Bat092qFmPgXqqL4SbSs9u3DMPQAAAAAAAAAAAHlTPfHGsT9o7q0+pAx6vtI0oTz6Fg4+AAAAAAAAAACm96A9e+WLPT4IMb405KO+iLAAvX1sib0AAAAAAAAAALMxyj2W2rw/kdKgPizDjL6QBiI9qBgCPgAAAAAAAAAAApWQvklPZz/atkK+3cn7vqLF3r7AJb69AAAAAAAAAADAS4S97CSDP+KLJb51nQ+/hevDvVmxCb0AAAAAAAAAACBWZz6FIig/1a+Ivdf5D7/G+nI+qpgSvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG2QHj6vaDiMAWyUS/iMAXSUR0CiwLdiMHbAdX2UKGgGR0By2IrYoRZmaAdLxGgIR0CiwTAhKUV0dX2UKGgGR0ByXeH/LkjpaAdL1WgIR0CiwTFbVz6rdX2UKGgGR0BxgUvIwM6SaAdL5WgIR0CiwT/YraufdX2UKGgGR0BxrFLSNOuaaAdLt2gIR0CiwX9a+vhZdX2UKGgGR0BwfsJ3PiT/aAdNDAFoCEdAosGGrwOOKnV9lChoBkdAb7wKm8/Uv2gHS9FoCEdAosGoEpy6tnV9lChoBkdAc/63Q2MsH2gHS75oCEdAosHXKji4rnV9lChoBkdAcgTSSvC/GmgHS8hoCEdAosKPH7xd6nV9lChoBkdAchYymygPE2gHS9ZoCEdAosK9d7fHgnV9lChoBkdActlBWgezU2gHS8VoCEdAosL1HavicXV9lChoBkdAclhm8ujASGgHS9xoCEdAosMsbLlmvnV9lChoBkdAcw9yvLX+VGgHS/NoCEdAosNWVTrE+HV9lChoBkdAcPIGYrrgO2gHTRgBaAhHQKLDXxyXD3x1fZQoaAZHQHGpYEr5IpZoB0v9aAhHQKLDjyOJcgR1fZQoaAZHQHFq2V3Ux21oB0vvaAhHQKLD0E4//vR1fZQoaAZHQHJ2KTnq3VloB0vVaAhHQKLD2wgTyrh1fZQoaAZHQHHRnUYsNDtoB0vAaAhHQKLEGt6HCXR1fZQoaAZHQHOhl6AvtdBoB0vpaAhHQKLEvkOqebx1fZQoaAZHQHEJpqubI91oB0vbaAhHQKLE6KgqVhV1fZQoaAZHQHDkCMglnh9oB0vxaAhHQKLE+p9ZzPt1fZQoaAZHQHHNK2v0ROFoB0vnaAhHQKLFFJrcj7h1fZQoaAZHQHN7lBhQWN5oB0veaAhHQKLFGgoPTXt1fZQoaAZHQHHJBUvPC2toB0vkaAhHQKLFZAymALB1fZQoaAZHQHAVdZmqYJFoB0vaaAhHQKLdEFK02Lp1fZQoaAZHQHJzEI1LrX1oB0vLaAhHQKLdl/kNnXd1fZQoaAZHQHDx9HUc4o9oB0vxaAhHQKLdmw5/9YR1fZQoaAZHQHMB1/YrauhoB0vtaAhHQKLdwwztTk11fZQoaAZHQHBMJaiblRxoB0vlaAhHQKLd2RRMvh91fZQoaAZHQHH4P3i704BoB0vIaAhHQKLeI4Ajps51fZQoaAZHQHJ6GnjyWiVoB0v0aAhHQKLeS4y44Id1fZQoaAZHQHJfwbVBlc1oB0v9aAhHQKLeoSg5BC51fZQoaAZHQHQupWJaaCtoB0v1aAhHQKLexdX1ant1fZQoaAZHQHDc0OmR/3FoB0vEaAhHQKLe9P4VRDV1fZQoaAZHQHOcDr3TNMZoB0vuaAhHQKLe/Jr+Hah1fZQoaAZHQHMQcm8dxQ1oB0vCaAhHQKLfIaJhvzh1fZQoaAZHQHLF3yAhB7hoB0vGaAhHQKLfSMXrMTx1fZQoaAZHQHJIuq//NqxoB0vyaAhHQKLfyxZ+x4Z1fZQoaAZHQG+nrR0EHMVoB0vVaAhHQKLf0ZdfLLZ1fZQoaAZHQG9860hNdqtoB0vqaAhHQKLf2qn3ta91fZQoaAZHQHEitSVGCqZoB0vSaAhHQKLgTw4sEq51fZQoaAZHQHFu9+ocaOxoB0vNaAhHQKLgzgHeJpF1fZQoaAZHQHEboHs1KoRoB0vJaAhHQKLg7HCGetl1fZQoaAZHQHFZ2ce8wpRoB0vZaAhHQKLhPhky1u11fZQoaAZHQHBPOM2m52BoB0vRaAhHQKLhd8wYced1fZQoaAZHQHBxiYLLIPtoB0v+aAhHQKLhfWNFSbZ1fZQoaAZHQHJNkeIVM25oB0vKaAhHQKLhouPmxMZ1fZQoaAZHQHIHNZeRgZ1oB0vraAhHQKLho4ku6Et1fZQoaAZHQHHPeZkTYd1oB0u2aAhHQKLhx6t1ZDB1fZQoaAZHQHPrNVinYQJoB0vSaAhHQKLh9iwSrYJ1fZQoaAZHQHM84cebNKRoB0viaAhHQKLiAnH/9511fZQoaAZHQHJoDzd1uBNoB0vVaAhHQKLiBEd/8VJ1fZQoaAZHQHJxLzPKMehoB0vWaAhHQKLiOeVcD8t1fZQoaAZHQHCaiXQdCE9oB0vGaAhHQKLibHWBjF11fZQoaAZHQHEh6o/A0sRoB0vSaAhHQKLilZDArQR1fZQoaAZHQHIlHYtg8bJoB0v8aAhHQKLjARK6Fuh1fZQoaAZHQHIShNh3JPtoB0vMaAhHQKLjK0sOG0x1fZQoaAZHQHGvogmqo61oB0vraAhHQKLjMo2n8891fZQoaAZHQHDEZH7P6bhoB0vZaAhHQKLjY/N7jT91fZQoaAZHQHAQkn5SFXdoB0vkaAhHQKLjwk5ZKWd1fZQoaAZHQHGRhNVR1oxoB0veaAhHQKLj8WIoE0V1fZQoaAZHQHKV5OzposZoB0vkaAhHQKLj/hS9/SZ1fZQoaAZHQEqL5VwPy09oB0uMaAhHQKLkAxgy/K11fZQoaAZHQHIc0MspXp5oB0u5aAhHQKLkEHKwIMV1fZQoaAZHQHAhuGbkOqhoB0vRaAhHQKLkGQz1sch1fZQoaAZHQHKLUPpY9xJoB0vIaAhHQKLkOKqGUOd1fZQoaAZHQHQ7y5/b0vpoB0vQaAhHQKLkRAwfyPN1fZQoaAZHQHGozi83+/BoB0v4aAhHQKLkXoIOYpl1fZQoaAZHQHEYC/bj94xoB0vGaAhHQKLkxV7Qb+91fZQoaAZHQHD2BPsRg7ZoB0vqaAhHQKLkzKSxJNF1fZQoaAZHQHH9O0Xxe9loB01dAWgIR0Ci5YTYmLLqdX2UKGgGR0ByqmeEqUeNaAdL5GgIR0Ci5cqZUkv9dX2UKGgGR0Bz0ytT1kDqaAdL92gIR0Ci5f3974SIdX2UKGgGR0BwcBmYjSogaAdL5GgIR0Ci5f2zv7WNdX2UKGgGR0BxwAj2SMcZaAdNDwFoCEdAouYYtWdVenV9lChoBkdAct7h+fAbhmgHS91oCEdAouZEBGQSz3V9lChoBkdAbuCIP9UCJWgHS9VoCEdAouZZ5ooNNXV9lChoBkdAc2FgKneiz2gHS8loCEdAouZdYEGJN3V9lChoBkdAcdBVuJk5ImgHS8toCEdAouZavTw2EXV9lChoBkdAcnJArhBJI2gHS9toCEdAouZ09fTkQ3V9lChoBkdAStqLQ5WBBmgHS45oCEdAouZyFfzBh3V9lChoBkdAcNULApKBd2gHS81oCEdAouaEdo3713V9lChoBkdAc8WUHY6GQGgHS+toCEdAouacOVgQYnV9lChoBkdAcm2MdLg4wWgHS9poCEdAoubDUExIrnV9lChoBkdAcffzoEB8yGgHS/BoCEdAoubcvysjmnV9lChoBkdAcCVDO1OTJWgHS+FoCEdAoucuJvYOD3V9lChoBkdAcsrn2IwdsGgHS7VoCEdAoufZOi35OHV9lChoBkdAb2+FqSHM2WgHS+BoCEdAoufkfq5byHV9lChoBkdAb+Kl6Z6Uq2gHS9RoCEdAoug7teD3/XV9lChoBkdAcg0cH4XXRWgHS89oCEdAouhIXMyJsXV9lChoBkdAb3OP2f02+GgHS89oCEdAouiNycTakHV9lChoBkdAclxGnGbTdGgHS9BoCEdAoujEOPNmlXV9lChoBkdAcXLA3DNyHWgHS9hoCEdAoujGby6MBXV9lChoBkdAcDVUGmk30mgHS99oCEdAoujfHLida3V9lChoBkdAcqGLn9vS+mgHS/BoCEdAouj4NVinYXV9lChoBkdAcZ7VwxWT5mgHS/BoCEdAouj14VymynV9lChoBkdAcUMzcynDSGgHS/1oCEdAoukEb3oLX3V9lChoBkdAcXoBMzuWr2gHS+loCEdAoukp3Roh6nV9lChoBkdAcLiPXCj1w2gHS89oCEdAoukwf4h2XHV9lChoBkdAcsLiXIEKV2gHS+BoCEdAouk9aMaS93VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}