|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
|
from diffusers import DDPMParallelScheduler |
|
|
|
from .test_schedulers import SchedulerCommonTest |
|
|
|
|
|
class DDPMParallelSchedulerTest(SchedulerCommonTest): |
|
scheduler_classes = (DDPMParallelScheduler,) |
|
|
|
def get_scheduler_config(self, **kwargs): |
|
config = { |
|
"num_train_timesteps": 1000, |
|
"beta_start": 0.0001, |
|
"beta_end": 0.02, |
|
"beta_schedule": "linear", |
|
"variance_type": "fixed_small", |
|
"clip_sample": True, |
|
} |
|
|
|
config.update(**kwargs) |
|
return config |
|
|
|
def test_timesteps(self): |
|
for timesteps in [1, 5, 100, 1000]: |
|
self.check_over_configs(num_train_timesteps=timesteps) |
|
|
|
def test_betas(self): |
|
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]): |
|
self.check_over_configs(beta_start=beta_start, beta_end=beta_end) |
|
|
|
def test_schedules(self): |
|
for schedule in ["linear", "squaredcos_cap_v2"]: |
|
self.check_over_configs(beta_schedule=schedule) |
|
|
|
def test_variance_type(self): |
|
for variance in ["fixed_small", "fixed_large", "other"]: |
|
self.check_over_configs(variance_type=variance) |
|
|
|
def test_clip_sample(self): |
|
for clip_sample in [True, False]: |
|
self.check_over_configs(clip_sample=clip_sample) |
|
|
|
def test_thresholding(self): |
|
self.check_over_configs(thresholding=False) |
|
for threshold in [0.5, 1.0, 2.0]: |
|
for prediction_type in ["epsilon", "sample", "v_prediction"]: |
|
self.check_over_configs( |
|
thresholding=True, |
|
prediction_type=prediction_type, |
|
sample_max_value=threshold, |
|
) |
|
|
|
def test_prediction_type(self): |
|
for prediction_type in ["epsilon", "sample", "v_prediction"]: |
|
self.check_over_configs(prediction_type=prediction_type) |
|
|
|
def test_time_indices(self): |
|
for t in [0, 500, 999]: |
|
self.check_over_forward(time_step=t) |
|
|
|
def test_variance(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5 |
|
assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.00979)) < 1e-5 |
|
assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1e-5 |
|
|
|
def test_rescale_betas_zero_snr(self): |
|
for rescale_betas_zero_snr in [True, False]: |
|
self.check_over_configs(rescale_betas_zero_snr=rescale_betas_zero_snr) |
|
|
|
def test_batch_step_no_noise(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
num_trained_timesteps = len(scheduler) |
|
|
|
model = self.dummy_model() |
|
sample1 = self.dummy_sample_deter |
|
sample2 = self.dummy_sample_deter + 0.1 |
|
sample3 = self.dummy_sample_deter - 0.1 |
|
|
|
per_sample_batch = sample1.shape[0] |
|
samples = torch.stack([sample1, sample2, sample3], dim=0) |
|
timesteps = torch.arange(num_trained_timesteps)[0:3, None].repeat(1, per_sample_batch) |
|
|
|
residual = model(samples.flatten(0, 1), timesteps.flatten(0, 1)) |
|
pred_prev_sample = scheduler.batch_step_no_noise(residual, timesteps.flatten(0, 1), samples.flatten(0, 1)) |
|
|
|
result_sum = torch.sum(torch.abs(pred_prev_sample)) |
|
result_mean = torch.mean(torch.abs(pred_prev_sample)) |
|
|
|
assert abs(result_sum.item() - 1153.1833) < 1e-2 |
|
assert abs(result_mean.item() - 0.5005) < 1e-3 |
|
|
|
def test_full_loop_no_noise(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
num_trained_timesteps = len(scheduler) |
|
|
|
model = self.dummy_model() |
|
sample = self.dummy_sample_deter |
|
generator = torch.manual_seed(0) |
|
|
|
for t in reversed(range(num_trained_timesteps)): |
|
|
|
residual = model(sample, t) |
|
|
|
|
|
pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample |
|
|
|
sample = pred_prev_sample |
|
|
|
result_sum = torch.sum(torch.abs(sample)) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_sum.item() - 258.9606) < 1e-2 |
|
assert abs(result_mean.item() - 0.3372) < 1e-3 |
|
|
|
def test_full_loop_with_v_prediction(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config(prediction_type="v_prediction") |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
num_trained_timesteps = len(scheduler) |
|
|
|
model = self.dummy_model() |
|
sample = self.dummy_sample_deter |
|
generator = torch.manual_seed(0) |
|
|
|
for t in reversed(range(num_trained_timesteps)): |
|
|
|
residual = model(sample, t) |
|
|
|
|
|
pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample |
|
|
|
sample = pred_prev_sample |
|
|
|
result_sum = torch.sum(torch.abs(sample)) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_sum.item() - 202.0296) < 1e-2 |
|
assert abs(result_mean.item() - 0.2631) < 1e-3 |
|
|
|
def test_custom_timesteps(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
timesteps = [100, 87, 50, 1, 0] |
|
|
|
scheduler.set_timesteps(timesteps=timesteps) |
|
|
|
scheduler_timesteps = scheduler.timesteps |
|
|
|
for i, timestep in enumerate(scheduler_timesteps): |
|
if i == len(timesteps) - 1: |
|
expected_prev_t = -1 |
|
else: |
|
expected_prev_t = timesteps[i + 1] |
|
|
|
prev_t = scheduler.previous_timestep(timestep) |
|
prev_t = prev_t.item() |
|
|
|
self.assertEqual(prev_t, expected_prev_t) |
|
|
|
def test_custom_timesteps_increasing_order(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
timesteps = [100, 87, 50, 51, 0] |
|
|
|
with self.assertRaises(ValueError, msg="`custom_timesteps` must be in descending order."): |
|
scheduler.set_timesteps(timesteps=timesteps) |
|
|
|
def test_custom_timesteps_passing_both_num_inference_steps_and_timesteps(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
timesteps = [100, 87, 50, 1, 0] |
|
num_inference_steps = len(timesteps) |
|
|
|
with self.assertRaises(ValueError, msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."): |
|
scheduler.set_timesteps(num_inference_steps=num_inference_steps, timesteps=timesteps) |
|
|
|
def test_custom_timesteps_too_large(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
timesteps = [scheduler.config.num_train_timesteps] |
|
|
|
with self.assertRaises( |
|
ValueError, |
|
msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}", |
|
): |
|
scheduler.set_timesteps(timesteps=timesteps) |
|
|
|
def test_full_loop_with_noise(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
num_trained_timesteps = len(scheduler) |
|
t_start = num_trained_timesteps - 2 |
|
|
|
model = self.dummy_model() |
|
sample = self.dummy_sample_deter |
|
generator = torch.manual_seed(0) |
|
|
|
|
|
noise = self.dummy_noise_deter |
|
timesteps = scheduler.timesteps[t_start * scheduler.order :] |
|
sample = scheduler.add_noise(sample, noise, timesteps[:1]) |
|
|
|
for t in timesteps: |
|
|
|
residual = model(sample, t) |
|
|
|
|
|
pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample |
|
sample = pred_prev_sample |
|
|
|
result_sum = torch.sum(torch.abs(sample)) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_sum.item() - 387.9466) < 1e-2, f" expected result sum 387.9466, but get {result_sum}" |
|
assert abs(result_mean.item() - 0.5051) < 1e-3, f" expected result mean 0.5051, but get {result_mean}" |
|
|