|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
|
|
from diffusers.models.attention import GEGLU, AdaLayerNorm, ApproximateGELU |
|
from diffusers.models.embeddings import get_timestep_embedding |
|
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, Upsample2D |
|
from diffusers.models.transformers.transformer_2d import Transformer2DModel |
|
from diffusers.utils.testing_utils import ( |
|
backend_manual_seed, |
|
require_torch_accelerator_with_fp64, |
|
torch_device, |
|
) |
|
|
|
|
|
class EmbeddingsTests(unittest.TestCase): |
|
def test_timestep_embeddings(self): |
|
embedding_dim = 256 |
|
timesteps = torch.arange(16) |
|
|
|
t1 = get_timestep_embedding(timesteps, embedding_dim) |
|
|
|
|
|
assert (t1[0, : embedding_dim // 2] - 0).abs().sum() < 1e-5 |
|
assert (t1[0, embedding_dim // 2 :] - 1).abs().sum() < 1e-5 |
|
|
|
|
|
assert (t1[:, -1] - 1).abs().sum() < 1e-5 |
|
|
|
|
|
|
|
|
|
grad_mean = np.abs(np.gradient(t1, axis=-1)).mean(axis=1) |
|
|
|
prev_grad = 0.0 |
|
for grad in grad_mean: |
|
assert grad > prev_grad |
|
prev_grad = grad |
|
|
|
def test_timestep_defaults(self): |
|
embedding_dim = 16 |
|
timesteps = torch.arange(10) |
|
|
|
t1 = get_timestep_embedding(timesteps, embedding_dim) |
|
t2 = get_timestep_embedding( |
|
timesteps, embedding_dim, flip_sin_to_cos=False, downscale_freq_shift=1, max_period=10_000 |
|
) |
|
|
|
assert torch.allclose(t1.cpu(), t2.cpu(), 1e-3) |
|
|
|
def test_timestep_flip_sin_cos(self): |
|
embedding_dim = 16 |
|
timesteps = torch.arange(10) |
|
|
|
t1 = get_timestep_embedding(timesteps, embedding_dim, flip_sin_to_cos=True) |
|
t1 = torch.cat([t1[:, embedding_dim // 2 :], t1[:, : embedding_dim // 2]], dim=-1) |
|
|
|
t2 = get_timestep_embedding(timesteps, embedding_dim, flip_sin_to_cos=False) |
|
|
|
assert torch.allclose(t1.cpu(), t2.cpu(), 1e-3) |
|
|
|
def test_timestep_downscale_freq_shift(self): |
|
embedding_dim = 16 |
|
timesteps = torch.arange(10) |
|
|
|
t1 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=0) |
|
t2 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=1) |
|
|
|
|
|
cosine_half = (t1 - t2)[:, embedding_dim // 2 :] |
|
|
|
|
|
assert (np.abs((cosine_half <= 0).numpy()) - 1).sum() < 1e-5 |
|
|
|
def test_sinoid_embeddings_hardcoded(self): |
|
embedding_dim = 64 |
|
timesteps = torch.arange(128) |
|
|
|
|
|
t1 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=1, flip_sin_to_cos=False) |
|
|
|
t2 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=0, flip_sin_to_cos=True) |
|
|
|
t3 = get_timestep_embedding(timesteps, embedding_dim, scale=1000) |
|
|
|
assert torch.allclose( |
|
t1[23:26, 47:50].flatten().cpu(), |
|
torch.tensor([0.9646, 0.9804, 0.9892, 0.9615, 0.9787, 0.9882, 0.9582, 0.9769, 0.9872]), |
|
1e-3, |
|
) |
|
assert torch.allclose( |
|
t2[23:26, 47:50].flatten().cpu(), |
|
torch.tensor([0.3019, 0.2280, 0.1716, 0.3146, 0.2377, 0.1790, 0.3272, 0.2474, 0.1864]), |
|
1e-3, |
|
) |
|
assert torch.allclose( |
|
t3[23:26, 47:50].flatten().cpu(), |
|
torch.tensor([-0.9801, -0.9464, -0.9349, -0.3952, 0.8887, -0.9709, 0.5299, -0.2853, -0.9927]), |
|
1e-3, |
|
) |
|
|
|
|
|
class Upsample2DBlockTests(unittest.TestCase): |
|
def test_upsample_default(self): |
|
torch.manual_seed(0) |
|
sample = torch.randn(1, 32, 32, 32) |
|
upsample = Upsample2D(channels=32, use_conv=False) |
|
with torch.no_grad(): |
|
upsampled = upsample(sample) |
|
|
|
assert upsampled.shape == (1, 32, 64, 64) |
|
output_slice = upsampled[0, -1, -3:, -3:] |
|
expected_slice = torch.tensor([-0.2173, -1.2079, -1.2079, 0.2952, 1.1254, 1.1254, 0.2952, 1.1254, 1.1254]) |
|
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) |
|
|
|
def test_upsample_with_conv(self): |
|
torch.manual_seed(0) |
|
sample = torch.randn(1, 32, 32, 32) |
|
upsample = Upsample2D(channels=32, use_conv=True) |
|
with torch.no_grad(): |
|
upsampled = upsample(sample) |
|
|
|
assert upsampled.shape == (1, 32, 64, 64) |
|
output_slice = upsampled[0, -1, -3:, -3:] |
|
expected_slice = torch.tensor([0.7145, 1.3773, 0.3492, 0.8448, 1.0839, -0.3341, 0.5956, 0.1250, -0.4841]) |
|
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) |
|
|
|
def test_upsample_with_conv_out_dim(self): |
|
torch.manual_seed(0) |
|
sample = torch.randn(1, 32, 32, 32) |
|
upsample = Upsample2D(channels=32, use_conv=True, out_channels=64) |
|
with torch.no_grad(): |
|
upsampled = upsample(sample) |
|
|
|
assert upsampled.shape == (1, 64, 64, 64) |
|
output_slice = upsampled[0, -1, -3:, -3:] |
|
expected_slice = torch.tensor([0.2703, 0.1656, -0.2538, -0.0553, -0.2984, 0.1044, 0.1155, 0.2579, 0.7755]) |
|
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) |
|
|
|
def test_upsample_with_transpose(self): |
|
torch.manual_seed(0) |
|
sample = torch.randn(1, 32, 32, 32) |
|
upsample = Upsample2D(channels=32, use_conv=False, use_conv_transpose=True) |
|
with torch.no_grad(): |
|
upsampled = upsample(sample) |
|
|
|
assert upsampled.shape == (1, 32, 64, 64) |
|
output_slice = upsampled[0, -1, -3:, -3:] |
|
expected_slice = torch.tensor([-0.3028, -0.1582, 0.0071, 0.0350, -0.4799, -0.1139, 0.1056, -0.1153, -0.1046]) |
|
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) |
|
|
|
|
|
class Downsample2DBlockTests(unittest.TestCase): |
|
def test_downsample_default(self): |
|
torch.manual_seed(0) |
|
sample = torch.randn(1, 32, 64, 64) |
|
downsample = Downsample2D(channels=32, use_conv=False) |
|
with torch.no_grad(): |
|
downsampled = downsample(sample) |
|
|
|
assert downsampled.shape == (1, 32, 32, 32) |
|
output_slice = downsampled[0, -1, -3:, -3:] |
|
expected_slice = torch.tensor([-0.0513, -0.3889, 0.0640, 0.0836, -0.5460, -0.0341, -0.0169, -0.6967, 0.1179]) |
|
max_diff = (output_slice.flatten() - expected_slice).abs().sum().item() |
|
assert max_diff <= 1e-3 |
|
|
|
|
|
def test_downsample_with_conv(self): |
|
torch.manual_seed(0) |
|
sample = torch.randn(1, 32, 64, 64) |
|
downsample = Downsample2D(channels=32, use_conv=True) |
|
with torch.no_grad(): |
|
downsampled = downsample(sample) |
|
|
|
assert downsampled.shape == (1, 32, 32, 32) |
|
output_slice = downsampled[0, -1, -3:, -3:] |
|
|
|
expected_slice = torch.tensor( |
|
[0.9267, 0.5878, 0.3337, 1.2321, -0.1191, -0.3984, -0.7532, -0.0715, -0.3913], |
|
) |
|
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) |
|
|
|
def test_downsample_with_conv_pad1(self): |
|
torch.manual_seed(0) |
|
sample = torch.randn(1, 32, 64, 64) |
|
downsample = Downsample2D(channels=32, use_conv=True, padding=1) |
|
with torch.no_grad(): |
|
downsampled = downsample(sample) |
|
|
|
assert downsampled.shape == (1, 32, 32, 32) |
|
output_slice = downsampled[0, -1, -3:, -3:] |
|
expected_slice = torch.tensor([0.9267, 0.5878, 0.3337, 1.2321, -0.1191, -0.3984, -0.7532, -0.0715, -0.3913]) |
|
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) |
|
|
|
def test_downsample_with_conv_out_dim(self): |
|
torch.manual_seed(0) |
|
sample = torch.randn(1, 32, 64, 64) |
|
downsample = Downsample2D(channels=32, use_conv=True, out_channels=16) |
|
with torch.no_grad(): |
|
downsampled = downsample(sample) |
|
|
|
assert downsampled.shape == (1, 16, 32, 32) |
|
output_slice = downsampled[0, -1, -3:, -3:] |
|
expected_slice = torch.tensor([-0.6586, 0.5985, 0.0721, 0.1256, -0.1492, 0.4436, -0.2544, 0.5021, 1.1522]) |
|
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) |
|
|
|
|
|
class ResnetBlock2DTests(unittest.TestCase): |
|
def test_resnet_default(self): |
|
torch.manual_seed(0) |
|
sample = torch.randn(1, 32, 64, 64).to(torch_device) |
|
temb = torch.randn(1, 128).to(torch_device) |
|
resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128).to(torch_device) |
|
with torch.no_grad(): |
|
output_tensor = resnet_block(sample, temb) |
|
|
|
assert output_tensor.shape == (1, 32, 64, 64) |
|
output_slice = output_tensor[0, -1, -3:, -3:] |
|
expected_slice = torch.tensor( |
|
[-1.9010, -0.2974, -0.8245, -1.3533, 0.8742, -0.9645, -2.0584, 1.3387, -0.4746], device=torch_device |
|
) |
|
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) |
|
|
|
def test_restnet_with_use_in_shortcut(self): |
|
torch.manual_seed(0) |
|
sample = torch.randn(1, 32, 64, 64).to(torch_device) |
|
temb = torch.randn(1, 128).to(torch_device) |
|
resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, use_in_shortcut=True).to(torch_device) |
|
with torch.no_grad(): |
|
output_tensor = resnet_block(sample, temb) |
|
|
|
assert output_tensor.shape == (1, 32, 64, 64) |
|
output_slice = output_tensor[0, -1, -3:, -3:] |
|
expected_slice = torch.tensor( |
|
[0.2226, -1.0791, -0.1629, 0.3659, -0.2889, -1.2376, 0.0582, 0.9206, 0.0044], device=torch_device |
|
) |
|
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) |
|
|
|
def test_resnet_up(self): |
|
torch.manual_seed(0) |
|
sample = torch.randn(1, 32, 64, 64).to(torch_device) |
|
temb = torch.randn(1, 128).to(torch_device) |
|
resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, up=True).to(torch_device) |
|
with torch.no_grad(): |
|
output_tensor = resnet_block(sample, temb) |
|
|
|
assert output_tensor.shape == (1, 32, 128, 128) |
|
output_slice = output_tensor[0, -1, -3:, -3:] |
|
expected_slice = torch.tensor( |
|
[1.2130, -0.8753, -0.9027, 1.5783, -0.5362, -0.5001, 1.0726, -0.7732, -0.4182], device=torch_device |
|
) |
|
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) |
|
|
|
def test_resnet_down(self): |
|
torch.manual_seed(0) |
|
sample = torch.randn(1, 32, 64, 64).to(torch_device) |
|
temb = torch.randn(1, 128).to(torch_device) |
|
resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, down=True).to(torch_device) |
|
with torch.no_grad(): |
|
output_tensor = resnet_block(sample, temb) |
|
|
|
assert output_tensor.shape == (1, 32, 32, 32) |
|
output_slice = output_tensor[0, -1, -3:, -3:] |
|
expected_slice = torch.tensor( |
|
[-0.3002, -0.7135, 0.1359, 0.0561, -0.7935, 0.0113, -0.1766, -0.6714, -0.0436], device=torch_device |
|
) |
|
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) |
|
|
|
def test_restnet_with_kernel_fir(self): |
|
torch.manual_seed(0) |
|
sample = torch.randn(1, 32, 64, 64).to(torch_device) |
|
temb = torch.randn(1, 128).to(torch_device) |
|
resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, kernel="fir", down=True).to(torch_device) |
|
with torch.no_grad(): |
|
output_tensor = resnet_block(sample, temb) |
|
|
|
assert output_tensor.shape == (1, 32, 32, 32) |
|
output_slice = output_tensor[0, -1, -3:, -3:] |
|
expected_slice = torch.tensor( |
|
[-0.0934, -0.5729, 0.0909, -0.2710, -0.5044, 0.0243, -0.0665, -0.5267, -0.3136], device=torch_device |
|
) |
|
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) |
|
|
|
def test_restnet_with_kernel_sde_vp(self): |
|
torch.manual_seed(0) |
|
sample = torch.randn(1, 32, 64, 64).to(torch_device) |
|
temb = torch.randn(1, 128).to(torch_device) |
|
resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, kernel="sde_vp", down=True).to(torch_device) |
|
with torch.no_grad(): |
|
output_tensor = resnet_block(sample, temb) |
|
|
|
assert output_tensor.shape == (1, 32, 32, 32) |
|
output_slice = output_tensor[0, -1, -3:, -3:] |
|
expected_slice = torch.tensor( |
|
[-0.3002, -0.7135, 0.1359, 0.0561, -0.7935, 0.0113, -0.1766, -0.6714, -0.0436], device=torch_device |
|
) |
|
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) |
|
|
|
|
|
class Transformer2DModelTests(unittest.TestCase): |
|
def test_spatial_transformer_default(self): |
|
torch.manual_seed(0) |
|
backend_manual_seed(torch_device, 0) |
|
|
|
sample = torch.randn(1, 32, 64, 64).to(torch_device) |
|
spatial_transformer_block = Transformer2DModel( |
|
in_channels=32, |
|
num_attention_heads=1, |
|
attention_head_dim=32, |
|
dropout=0.0, |
|
cross_attention_dim=None, |
|
).to(torch_device) |
|
with torch.no_grad(): |
|
attention_scores = spatial_transformer_block(sample).sample |
|
|
|
assert attention_scores.shape == (1, 32, 64, 64) |
|
output_slice = attention_scores[0, -1, -3:, -3:] |
|
|
|
expected_slice = torch.tensor( |
|
[-1.9455, -0.0066, -1.3933, -1.5878, 0.5325, -0.6486, -1.8648, 0.7515, -0.9689], device=torch_device |
|
) |
|
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) |
|
|
|
def test_spatial_transformer_cross_attention_dim(self): |
|
torch.manual_seed(0) |
|
backend_manual_seed(torch_device, 0) |
|
|
|
sample = torch.randn(1, 64, 64, 64).to(torch_device) |
|
spatial_transformer_block = Transformer2DModel( |
|
in_channels=64, |
|
num_attention_heads=2, |
|
attention_head_dim=32, |
|
dropout=0.0, |
|
cross_attention_dim=64, |
|
).to(torch_device) |
|
with torch.no_grad(): |
|
context = torch.randn(1, 4, 64).to(torch_device) |
|
attention_scores = spatial_transformer_block(sample, context).sample |
|
|
|
assert attention_scores.shape == (1, 64, 64, 64) |
|
output_slice = attention_scores[0, -1, -3:, -3:] |
|
expected_slice = torch.tensor( |
|
[0.0143, -0.6909, -2.1547, -1.8893, 1.4097, 0.1359, -0.2521, -1.3359, 0.2598], device=torch_device |
|
) |
|
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) |
|
|
|
def test_spatial_transformer_timestep(self): |
|
torch.manual_seed(0) |
|
backend_manual_seed(torch_device, 0) |
|
|
|
num_embeds_ada_norm = 5 |
|
|
|
sample = torch.randn(1, 64, 64, 64).to(torch_device) |
|
spatial_transformer_block = Transformer2DModel( |
|
in_channels=64, |
|
num_attention_heads=2, |
|
attention_head_dim=32, |
|
dropout=0.0, |
|
cross_attention_dim=64, |
|
num_embeds_ada_norm=num_embeds_ada_norm, |
|
).to(torch_device) |
|
with torch.no_grad(): |
|
timestep_1 = torch.tensor(1, dtype=torch.long).to(torch_device) |
|
timestep_2 = torch.tensor(2, dtype=torch.long).to(torch_device) |
|
attention_scores_1 = spatial_transformer_block(sample, timestep=timestep_1).sample |
|
attention_scores_2 = spatial_transformer_block(sample, timestep=timestep_2).sample |
|
|
|
assert attention_scores_1.shape == (1, 64, 64, 64) |
|
assert attention_scores_2.shape == (1, 64, 64, 64) |
|
|
|
output_slice_1 = attention_scores_1[0, -1, -3:, -3:] |
|
output_slice_2 = attention_scores_2[0, -1, -3:, -3:] |
|
|
|
expected_slice = torch.tensor( |
|
[-0.3923, -1.0923, -1.7144, -1.5570, 1.4154, 0.1738, -0.1157, -1.2998, -0.1703], device=torch_device |
|
) |
|
expected_slice_2 = torch.tensor( |
|
[-0.4311, -1.1376, -1.7732, -1.5997, 1.3450, 0.0964, -0.1569, -1.3590, -0.2348], device=torch_device |
|
) |
|
|
|
assert torch.allclose(output_slice_1.flatten(), expected_slice, atol=1e-3) |
|
assert torch.allclose(output_slice_2.flatten(), expected_slice_2, atol=1e-3) |
|
|
|
def test_spatial_transformer_dropout(self): |
|
torch.manual_seed(0) |
|
backend_manual_seed(torch_device, 0) |
|
|
|
sample = torch.randn(1, 32, 64, 64).to(torch_device) |
|
spatial_transformer_block = ( |
|
Transformer2DModel( |
|
in_channels=32, |
|
num_attention_heads=2, |
|
attention_head_dim=16, |
|
dropout=0.3, |
|
cross_attention_dim=None, |
|
) |
|
.to(torch_device) |
|
.eval() |
|
) |
|
with torch.no_grad(): |
|
attention_scores = spatial_transformer_block(sample).sample |
|
|
|
assert attention_scores.shape == (1, 32, 64, 64) |
|
output_slice = attention_scores[0, -1, -3:, -3:] |
|
|
|
expected_slice = torch.tensor( |
|
[-1.9380, -0.0083, -1.3771, -1.5819, 0.5209, -0.6441, -1.8545, 0.7563, -0.9615], device=torch_device |
|
) |
|
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) |
|
|
|
@require_torch_accelerator_with_fp64 |
|
def test_spatial_transformer_discrete(self): |
|
torch.manual_seed(0) |
|
backend_manual_seed(torch_device, 0) |
|
|
|
num_embed = 5 |
|
|
|
sample = torch.randint(0, num_embed, (1, 32)).to(torch_device) |
|
spatial_transformer_block = ( |
|
Transformer2DModel( |
|
num_attention_heads=1, |
|
attention_head_dim=32, |
|
num_vector_embeds=num_embed, |
|
sample_size=16, |
|
) |
|
.to(torch_device) |
|
.eval() |
|
) |
|
|
|
with torch.no_grad(): |
|
attention_scores = spatial_transformer_block(sample).sample |
|
|
|
assert attention_scores.shape == (1, num_embed - 1, 32) |
|
|
|
output_slice = attention_scores[0, -2:, -3:] |
|
|
|
expected_slice = torch.tensor([-1.7648, -1.0241, -2.0985, -1.8035, -1.6404, -1.2098], device=torch_device) |
|
assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) |
|
|
|
def test_spatial_transformer_default_norm_layers(self): |
|
spatial_transformer_block = Transformer2DModel(num_attention_heads=1, attention_head_dim=32, in_channels=32) |
|
|
|
assert spatial_transformer_block.transformer_blocks[0].norm1.__class__ == nn.LayerNorm |
|
assert spatial_transformer_block.transformer_blocks[0].norm3.__class__ == nn.LayerNorm |
|
|
|
def test_spatial_transformer_ada_norm_layers(self): |
|
spatial_transformer_block = Transformer2DModel( |
|
num_attention_heads=1, |
|
attention_head_dim=32, |
|
in_channels=32, |
|
num_embeds_ada_norm=5, |
|
) |
|
|
|
assert spatial_transformer_block.transformer_blocks[0].norm1.__class__ == AdaLayerNorm |
|
assert spatial_transformer_block.transformer_blocks[0].norm3.__class__ == nn.LayerNorm |
|
|
|
def test_spatial_transformer_default_ff_layers(self): |
|
spatial_transformer_block = Transformer2DModel( |
|
num_attention_heads=1, |
|
attention_head_dim=32, |
|
in_channels=32, |
|
) |
|
|
|
assert spatial_transformer_block.transformer_blocks[0].ff.net[0].__class__ == GEGLU |
|
assert spatial_transformer_block.transformer_blocks[0].ff.net[1].__class__ == nn.Dropout |
|
assert spatial_transformer_block.transformer_blocks[0].ff.net[2].__class__ == nn.Linear |
|
|
|
dim = 32 |
|
inner_dim = 128 |
|
|
|
|
|
assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.in_features == dim |
|
|
|
assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.out_features == inner_dim * 2 |
|
|
|
|
|
assert spatial_transformer_block.transformer_blocks[0].ff.net[2].in_features == inner_dim |
|
assert spatial_transformer_block.transformer_blocks[0].ff.net[2].out_features == dim |
|
|
|
def test_spatial_transformer_geglu_approx_ff_layers(self): |
|
spatial_transformer_block = Transformer2DModel( |
|
num_attention_heads=1, |
|
attention_head_dim=32, |
|
in_channels=32, |
|
activation_fn="geglu-approximate", |
|
) |
|
|
|
assert spatial_transformer_block.transformer_blocks[0].ff.net[0].__class__ == ApproximateGELU |
|
assert spatial_transformer_block.transformer_blocks[0].ff.net[1].__class__ == nn.Dropout |
|
assert spatial_transformer_block.transformer_blocks[0].ff.net[2].__class__ == nn.Linear |
|
|
|
dim = 32 |
|
inner_dim = 128 |
|
|
|
|
|
assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.in_features == dim |
|
assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.out_features == inner_dim |
|
|
|
|
|
assert spatial_transformer_block.transformer_blocks[0].ff.net[2].in_features == inner_dim |
|
assert spatial_transformer_block.transformer_blocks[0].ff.net[2].out_features == dim |
|
|
|
def test_spatial_transformer_attention_bias(self): |
|
spatial_transformer_block = Transformer2DModel( |
|
num_attention_heads=1, attention_head_dim=32, in_channels=32, attention_bias=True |
|
) |
|
|
|
assert spatial_transformer_block.transformer_blocks[0].attn1.to_q.bias is not None |
|
assert spatial_transformer_block.transformer_blocks[0].attn1.to_k.bias is not None |
|
assert spatial_transformer_block.transformer_blocks[0].attn1.to_v.bias is not None |
|
|