|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import tempfile |
|
import unittest |
|
|
|
import torch |
|
|
|
from diffusers import UNet2DConditionModel |
|
from diffusers.training_utils import EMAModel |
|
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps, torch_device |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class EMAModelTests(unittest.TestCase): |
|
model_id = "hf-internal-testing/tiny-stable-diffusion-pipe" |
|
batch_size = 1 |
|
prompt_length = 77 |
|
text_encoder_hidden_dim = 32 |
|
num_in_channels = 4 |
|
latent_height = latent_width = 64 |
|
generator = torch.manual_seed(0) |
|
|
|
def get_models(self, decay=0.9999): |
|
unet = UNet2DConditionModel.from_pretrained(self.model_id, subfolder="unet") |
|
unet = unet.to(torch_device) |
|
ema_unet = EMAModel(unet.parameters(), decay=decay, model_cls=UNet2DConditionModel, model_config=unet.config) |
|
return unet, ema_unet |
|
|
|
def get_dummy_inputs(self): |
|
noisy_latents = torch.randn( |
|
self.batch_size, self.num_in_channels, self.latent_height, self.latent_width, generator=self.generator |
|
).to(torch_device) |
|
timesteps = torch.randint(0, 1000, size=(self.batch_size,), generator=self.generator).to(torch_device) |
|
encoder_hidden_states = torch.randn( |
|
self.batch_size, self.prompt_length, self.text_encoder_hidden_dim, generator=self.generator |
|
).to(torch_device) |
|
return noisy_latents, timesteps, encoder_hidden_states |
|
|
|
def simulate_backprop(self, unet): |
|
updated_state_dict = {} |
|
for k, param in unet.state_dict().items(): |
|
updated_param = torch.randn_like(param) + (param * torch.randn_like(param)) |
|
updated_state_dict.update({k: updated_param}) |
|
unet.load_state_dict(updated_state_dict) |
|
return unet |
|
|
|
def test_optimization_steps_updated(self): |
|
unet, ema_unet = self.get_models() |
|
|
|
ema_unet.step(unet.parameters()) |
|
assert ema_unet.optimization_step == 1 |
|
|
|
|
|
for _ in range(2): |
|
ema_unet.step(unet.parameters()) |
|
assert ema_unet.optimization_step == 3 |
|
|
|
def test_shadow_params_not_updated(self): |
|
unet, ema_unet = self.get_models() |
|
|
|
|
|
|
|
ema_unet.step(unet.parameters()) |
|
orig_params = list(unet.parameters()) |
|
for s_param, param in zip(ema_unet.shadow_params, orig_params): |
|
assert torch.allclose(s_param, param) |
|
|
|
|
|
|
|
for _ in range(4): |
|
ema_unet.step(unet.parameters()) |
|
for s_param, param in zip(ema_unet.shadow_params, orig_params): |
|
assert torch.allclose(s_param, param) |
|
|
|
def test_shadow_params_updated(self): |
|
unet, ema_unet = self.get_models() |
|
|
|
|
|
|
|
unet_pseudo_updated_step_one = self.simulate_backprop(unet) |
|
|
|
|
|
ema_unet.step(unet_pseudo_updated_step_one.parameters()) |
|
|
|
|
|
orig_params = list(unet_pseudo_updated_step_one.parameters()) |
|
for s_param, param in zip(ema_unet.shadow_params, orig_params): |
|
assert ~torch.allclose(s_param, param) |
|
|
|
|
|
for _ in range(4): |
|
ema_unet.step(unet.parameters()) |
|
for s_param, param in zip(ema_unet.shadow_params, orig_params): |
|
assert ~torch.allclose(s_param, param) |
|
|
|
def test_consecutive_shadow_params_updated(self): |
|
|
|
|
|
unet, ema_unet = self.get_models() |
|
|
|
|
|
unet_step_one = self.simulate_backprop(unet) |
|
ema_unet.step(unet_step_one.parameters()) |
|
step_one_shadow_params = ema_unet.shadow_params |
|
|
|
|
|
unet_step_two = self.simulate_backprop(unet_step_one) |
|
ema_unet.step(unet_step_two.parameters()) |
|
step_two_shadow_params = ema_unet.shadow_params |
|
|
|
for step_one, step_two in zip(step_one_shadow_params, step_two_shadow_params): |
|
assert ~torch.allclose(step_one, step_two) |
|
|
|
def test_zero_decay(self): |
|
|
|
|
|
|
|
unet, ema_unet = self.get_models(decay=0.0) |
|
unet_step_one = self.simulate_backprop(unet) |
|
ema_unet.step(unet_step_one.parameters()) |
|
step_one_shadow_params = ema_unet.shadow_params |
|
|
|
unet_step_two = self.simulate_backprop(unet_step_one) |
|
ema_unet.step(unet_step_two.parameters()) |
|
step_two_shadow_params = ema_unet.shadow_params |
|
|
|
for step_one, step_two in zip(step_one_shadow_params, step_two_shadow_params): |
|
assert torch.allclose(step_one, step_two) |
|
|
|
@skip_mps |
|
def test_serialization(self): |
|
unet, ema_unet = self.get_models() |
|
noisy_latents, timesteps, encoder_hidden_states = self.get_dummy_inputs() |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
ema_unet.save_pretrained(tmpdir) |
|
loaded_unet = UNet2DConditionModel.from_pretrained(tmpdir, model_cls=UNet2DConditionModel) |
|
loaded_unet = loaded_unet.to(unet.device) |
|
|
|
|
|
output = unet(noisy_latents, timesteps, encoder_hidden_states).sample |
|
output_loaded = loaded_unet(noisy_latents, timesteps, encoder_hidden_states).sample |
|
|
|
assert torch.allclose(output, output_loaded, atol=1e-4) |
|
|
|
|
|
class EMAModelTestsForeach(unittest.TestCase): |
|
model_id = "hf-internal-testing/tiny-stable-diffusion-pipe" |
|
batch_size = 1 |
|
prompt_length = 77 |
|
text_encoder_hidden_dim = 32 |
|
num_in_channels = 4 |
|
latent_height = latent_width = 64 |
|
generator = torch.manual_seed(0) |
|
|
|
def get_models(self, decay=0.9999): |
|
unet = UNet2DConditionModel.from_pretrained(self.model_id, subfolder="unet") |
|
unet = unet.to(torch_device) |
|
ema_unet = EMAModel( |
|
unet.parameters(), decay=decay, model_cls=UNet2DConditionModel, model_config=unet.config, foreach=True |
|
) |
|
return unet, ema_unet |
|
|
|
def get_dummy_inputs(self): |
|
noisy_latents = torch.randn( |
|
self.batch_size, self.num_in_channels, self.latent_height, self.latent_width, generator=self.generator |
|
).to(torch_device) |
|
timesteps = torch.randint(0, 1000, size=(self.batch_size,), generator=self.generator).to(torch_device) |
|
encoder_hidden_states = torch.randn( |
|
self.batch_size, self.prompt_length, self.text_encoder_hidden_dim, generator=self.generator |
|
).to(torch_device) |
|
return noisy_latents, timesteps, encoder_hidden_states |
|
|
|
def simulate_backprop(self, unet): |
|
updated_state_dict = {} |
|
for k, param in unet.state_dict().items(): |
|
updated_param = torch.randn_like(param) + (param * torch.randn_like(param)) |
|
updated_state_dict.update({k: updated_param}) |
|
unet.load_state_dict(updated_state_dict) |
|
return unet |
|
|
|
def test_optimization_steps_updated(self): |
|
unet, ema_unet = self.get_models() |
|
|
|
ema_unet.step(unet.parameters()) |
|
assert ema_unet.optimization_step == 1 |
|
|
|
|
|
for _ in range(2): |
|
ema_unet.step(unet.parameters()) |
|
assert ema_unet.optimization_step == 3 |
|
|
|
def test_shadow_params_not_updated(self): |
|
unet, ema_unet = self.get_models() |
|
|
|
|
|
|
|
ema_unet.step(unet.parameters()) |
|
orig_params = list(unet.parameters()) |
|
for s_param, param in zip(ema_unet.shadow_params, orig_params): |
|
assert torch.allclose(s_param, param) |
|
|
|
|
|
|
|
for _ in range(4): |
|
ema_unet.step(unet.parameters()) |
|
for s_param, param in zip(ema_unet.shadow_params, orig_params): |
|
assert torch.allclose(s_param, param) |
|
|
|
def test_shadow_params_updated(self): |
|
unet, ema_unet = self.get_models() |
|
|
|
|
|
|
|
unet_pseudo_updated_step_one = self.simulate_backprop(unet) |
|
|
|
|
|
ema_unet.step(unet_pseudo_updated_step_one.parameters()) |
|
|
|
|
|
orig_params = list(unet_pseudo_updated_step_one.parameters()) |
|
for s_param, param in zip(ema_unet.shadow_params, orig_params): |
|
assert ~torch.allclose(s_param, param) |
|
|
|
|
|
for _ in range(4): |
|
ema_unet.step(unet.parameters()) |
|
for s_param, param in zip(ema_unet.shadow_params, orig_params): |
|
assert ~torch.allclose(s_param, param) |
|
|
|
def test_consecutive_shadow_params_updated(self): |
|
|
|
|
|
unet, ema_unet = self.get_models() |
|
|
|
|
|
unet_step_one = self.simulate_backprop(unet) |
|
ema_unet.step(unet_step_one.parameters()) |
|
step_one_shadow_params = ema_unet.shadow_params |
|
|
|
|
|
unet_step_two = self.simulate_backprop(unet_step_one) |
|
ema_unet.step(unet_step_two.parameters()) |
|
step_two_shadow_params = ema_unet.shadow_params |
|
|
|
for step_one, step_two in zip(step_one_shadow_params, step_two_shadow_params): |
|
assert ~torch.allclose(step_one, step_two) |
|
|
|
def test_zero_decay(self): |
|
|
|
|
|
|
|
unet, ema_unet = self.get_models(decay=0.0) |
|
unet_step_one = self.simulate_backprop(unet) |
|
ema_unet.step(unet_step_one.parameters()) |
|
step_one_shadow_params = ema_unet.shadow_params |
|
|
|
unet_step_two = self.simulate_backprop(unet_step_one) |
|
ema_unet.step(unet_step_two.parameters()) |
|
step_two_shadow_params = ema_unet.shadow_params |
|
|
|
for step_one, step_two in zip(step_one_shadow_params, step_two_shadow_params): |
|
assert torch.allclose(step_one, step_two) |
|
|
|
@skip_mps |
|
def test_serialization(self): |
|
unet, ema_unet = self.get_models() |
|
noisy_latents, timesteps, encoder_hidden_states = self.get_dummy_inputs() |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
ema_unet.save_pretrained(tmpdir) |
|
loaded_unet = UNet2DConditionModel.from_pretrained(tmpdir, model_cls=UNet2DConditionModel) |
|
loaded_unet = loaded_unet.to(unet.device) |
|
|
|
|
|
output = unet(noisy_latents, timesteps, encoder_hidden_states).sample |
|
output_loaded = loaded_unet(noisy_latents, timesteps, encoder_hidden_states).sample |
|
|
|
assert torch.allclose(output, output_loaded, atol=1e-4) |
|
|