|
import torch |
|
|
|
from diffusers import UnCLIPScheduler |
|
|
|
from .test_schedulers import SchedulerCommonTest |
|
|
|
|
|
|
|
class UnCLIPSchedulerTest(SchedulerCommonTest): |
|
scheduler_classes = (UnCLIPScheduler,) |
|
|
|
def get_scheduler_config(self, **kwargs): |
|
config = { |
|
"num_train_timesteps": 1000, |
|
"variance_type": "fixed_small_log", |
|
"clip_sample": True, |
|
"clip_sample_range": 1.0, |
|
"prediction_type": "epsilon", |
|
} |
|
|
|
config.update(**kwargs) |
|
return config |
|
|
|
def test_timesteps(self): |
|
for timesteps in [1, 5, 100, 1000]: |
|
self.check_over_configs(num_train_timesteps=timesteps) |
|
|
|
def test_variance_type(self): |
|
for variance in ["fixed_small_log", "learned_range"]: |
|
self.check_over_configs(variance_type=variance) |
|
|
|
def test_clip_sample(self): |
|
for clip_sample in [True, False]: |
|
self.check_over_configs(clip_sample=clip_sample) |
|
|
|
def test_clip_sample_range(self): |
|
for clip_sample_range in [1, 5, 10, 20]: |
|
self.check_over_configs(clip_sample_range=clip_sample_range) |
|
|
|
def test_prediction_type(self): |
|
for prediction_type in ["epsilon", "sample"]: |
|
self.check_over_configs(prediction_type=prediction_type) |
|
|
|
def test_time_indices(self): |
|
for time_step in [0, 500, 999]: |
|
for prev_timestep in [None, 5, 100, 250, 500, 750]: |
|
if prev_timestep is not None and prev_timestep >= time_step: |
|
continue |
|
|
|
self.check_over_forward(time_step=time_step, prev_timestep=prev_timestep) |
|
|
|
def test_variance_fixed_small_log(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config(variance_type="fixed_small_log") |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
assert torch.sum(torch.abs(scheduler._get_variance(0) - 1.0000e-10)) < 1e-5 |
|
assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0549625)) < 1e-5 |
|
assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.9994987)) < 1e-5 |
|
|
|
def test_variance_learned_range(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config(variance_type="learned_range") |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
predicted_variance = 0.5 |
|
|
|
assert scheduler._get_variance(1, predicted_variance=predicted_variance) - -10.1712790 < 1e-5 |
|
assert scheduler._get_variance(487, predicted_variance=predicted_variance) - -5.7998052 < 1e-5 |
|
assert scheduler._get_variance(999, predicted_variance=predicted_variance) - -0.0010011 < 1e-5 |
|
|
|
def test_full_loop(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
timesteps = scheduler.timesteps |
|
|
|
model = self.dummy_model() |
|
sample = self.dummy_sample_deter |
|
generator = torch.manual_seed(0) |
|
|
|
for i, t in enumerate(timesteps): |
|
|
|
residual = model(sample, t) |
|
|
|
|
|
pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample |
|
|
|
sample = pred_prev_sample |
|
|
|
result_sum = torch.sum(torch.abs(sample)) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_sum.item() - 252.2682495) < 1e-2 |
|
assert abs(result_mean.item() - 0.3284743) < 1e-3 |
|
|
|
def test_full_loop_skip_timesteps(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
scheduler.set_timesteps(25) |
|
|
|
timesteps = scheduler.timesteps |
|
|
|
model = self.dummy_model() |
|
sample = self.dummy_sample_deter |
|
generator = torch.manual_seed(0) |
|
|
|
for i, t in enumerate(timesteps): |
|
|
|
residual = model(sample, t) |
|
|
|
if i + 1 == timesteps.shape[0]: |
|
prev_timestep = None |
|
else: |
|
prev_timestep = timesteps[i + 1] |
|
|
|
|
|
pred_prev_sample = scheduler.step( |
|
residual, t, sample, prev_timestep=prev_timestep, generator=generator |
|
).prev_sample |
|
|
|
sample = pred_prev_sample |
|
|
|
result_sum = torch.sum(torch.abs(sample)) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_sum.item() - 258.2044983) < 1e-2 |
|
assert abs(result_mean.item() - 0.3362038) < 1e-3 |
|
|
|
def test_trained_betas(self): |
|
pass |
|
|
|
def test_add_noise_device(self): |
|
pass |
|
|