update model card README.md
Browse files
README.md
CHANGED
@@ -14,8 +14,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss:
|
18 |
-
- Wer: 0.
|
19 |
|
20 |
## Model description
|
21 |
|
@@ -43,63 +43,80 @@ The following hyperparameters were used during training:
|
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
- lr_scheduler_warmup_steps: 500
|
46 |
-
- num_epochs:
|
47 |
- mixed_precision_training: Native AMP
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
52 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
53 |
-
|
|
54 |
-
| 4.
|
55 |
-
| 4.
|
56 |
-
| 4.
|
57 |
-
| 4.
|
58 |
-
|
|
59 |
-
|
|
60 |
-
|
|
61 |
-
| 2.
|
62 |
-
| 2.
|
63 |
-
|
|
64 |
-
|
|
65 |
-
|
|
66 |
-
| 1.
|
67 |
-
| 1.
|
68 |
-
| 1.
|
69 |
-
| 1.
|
70 |
-
| 1.
|
71 |
-
| 1.
|
72 |
-
| 1.
|
73 |
-
| 1.
|
74 |
-
| 1.
|
75 |
-
| 1.
|
76 |
-
| 1.
|
77 |
-
| 1.
|
78 |
-
| 1.
|
79 |
-
| 1.
|
80 |
-
| 1.
|
81 |
-
| 1.
|
82 |
-
| 1.
|
83 |
-
|
|
84 |
-
|
|
85 |
-
|
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
|
105 |
### Framework versions
|
|
|
14 |
|
15 |
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 1.0566
|
18 |
+
- Wer: 0.5224
|
19 |
|
20 |
## Model description
|
21 |
|
|
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
- lr_scheduler_warmup_steps: 500
|
46 |
+
- num_epochs: 20
|
47 |
- mixed_precision_training: Native AMP
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
52 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
53 |
+
| 31.2541 | 0.3 | 400 | 5.4002 | 1.0 |
|
54 |
+
| 4.9419 | 0.59 | 800 | 5.3336 | 1.0 |
|
55 |
+
| 4.8926 | 0.89 | 1200 | 5.0531 | 1.0 |
|
56 |
+
| 4.7218 | 1.19 | 1600 | 4.5172 | 1.0 |
|
57 |
+
| 4.0218 | 1.49 | 2000 | 3.1418 | 0.9518 |
|
58 |
+
| 3.0654 | 1.78 | 2400 | 2.4376 | 0.9041 |
|
59 |
+
| 2.6226 | 2.08 | 2800 | 2.0151 | 0.8643 |
|
60 |
+
| 2.2944 | 2.38 | 3200 | 1.8025 | 0.8290 |
|
61 |
+
| 2.1872 | 2.67 | 3600 | 1.6469 | 0.7962 |
|
62 |
+
| 2.0747 | 2.97 | 4000 | 1.5165 | 0.7714 |
|
63 |
+
| 1.8479 | 3.27 | 4400 | 1.4281 | 0.7694 |
|
64 |
+
| 1.8288 | 3.57 | 4800 | 1.3791 | 0.7326 |
|
65 |
+
| 1.801 | 3.86 | 5200 | 1.3328 | 0.7177 |
|
66 |
+
| 1.6723 | 4.16 | 5600 | 1.2954 | 0.7192 |
|
67 |
+
| 1.5925 | 4.46 | 6000 | 1.3137 | 0.6953 |
|
68 |
+
| 1.5709 | 4.75 | 6400 | 1.2086 | 0.6973 |
|
69 |
+
| 1.5294 | 5.05 | 6800 | 1.1811 | 0.6730 |
|
70 |
+
| 1.3844 | 5.35 | 7200 | 1.2053 | 0.6769 |
|
71 |
+
| 1.3906 | 5.65 | 7600 | 1.1287 | 0.6556 |
|
72 |
+
| 1.4088 | 5.94 | 8000 | 1.1251 | 0.6466 |
|
73 |
+
| 1.2989 | 6.24 | 8400 | 1.1577 | 0.6546 |
|
74 |
+
| 1.2523 | 6.54 | 8800 | 1.0643 | 0.6377 |
|
75 |
+
| 1.2651 | 6.84 | 9200 | 1.0865 | 0.6417 |
|
76 |
+
| 1.2209 | 7.13 | 9600 | 1.0981 | 0.6272 |
|
77 |
+
| 1.1435 | 7.43 | 10000 | 1.1195 | 0.6317 |
|
78 |
+
| 1.1616 | 7.73 | 10400 | 1.0672 | 0.6327 |
|
79 |
+
| 1.1272 | 8.02 | 10800 | 1.0413 | 0.6248 |
|
80 |
+
| 1.043 | 8.32 | 11200 | 1.0555 | 0.6233 |
|
81 |
+
| 1.0523 | 8.62 | 11600 | 1.0372 | 0.6178 |
|
82 |
+
| 1.0208 | 8.92 | 12000 | 1.0170 | 0.6128 |
|
83 |
+
| 0.9895 | 9.21 | 12400 | 1.0354 | 0.5934 |
|
84 |
+
| 0.95 | 9.51 | 12800 | 1.1019 | 0.6039 |
|
85 |
+
| 0.9705 | 9.81 | 13200 | 1.0229 | 0.5855 |
|
86 |
+
| 0.9202 | 10.1 | 13600 | 1.0364 | 0.5919 |
|
87 |
+
| 0.8644 | 10.4 | 14000 | 1.0721 | 0.5984 |
|
88 |
+
| 0.8641 | 10.7 | 14400 | 1.0383 | 0.5905 |
|
89 |
+
| 0.8924 | 11.0 | 14800 | 0.9947 | 0.5760 |
|
90 |
+
| 0.7914 | 11.29 | 15200 | 1.0270 | 0.5885 |
|
91 |
+
| 0.7882 | 11.59 | 15600 | 1.0271 | 0.5741 |
|
92 |
+
| 0.8116 | 11.89 | 16000 | 0.9937 | 0.5741 |
|
93 |
+
| 0.7584 | 12.18 | 16400 | 0.9924 | 0.5626 |
|
94 |
+
| 0.7051 | 12.48 | 16800 | 1.0023 | 0.5572 |
|
95 |
+
| 0.7232 | 12.78 | 17200 | 1.0479 | 0.5512 |
|
96 |
+
| 0.7149 | 13.08 | 17600 | 1.0475 | 0.5765 |
|
97 |
+
| 0.6579 | 13.37 | 18000 | 1.0218 | 0.5552 |
|
98 |
+
| 0.6615 | 13.67 | 18400 | 1.0339 | 0.5631 |
|
99 |
+
| 0.6629 | 13.97 | 18800 | 1.0239 | 0.5621 |
|
100 |
+
| 0.6221 | 14.26 | 19200 | 1.0331 | 0.5537 |
|
101 |
+
| 0.6159 | 14.56 | 19600 | 1.0640 | 0.5532 |
|
102 |
+
| 0.6032 | 14.86 | 20000 | 1.0192 | 0.5567 |
|
103 |
+
| 0.5748 | 15.16 | 20400 | 1.0093 | 0.5507 |
|
104 |
+
| 0.5614 | 15.45 | 20800 | 1.0458 | 0.5472 |
|
105 |
+
| 0.5626 | 15.75 | 21200 | 1.0318 | 0.5398 |
|
106 |
+
| 0.5429 | 16.05 | 21600 | 1.0112 | 0.5278 |
|
107 |
+
| 0.5407 | 16.34 | 22000 | 1.0120 | 0.5278 |
|
108 |
+
| 0.511 | 16.64 | 22400 | 1.0335 | 0.5249 |
|
109 |
+
| 0.5316 | 16.94 | 22800 | 1.0146 | 0.5348 |
|
110 |
+
| 0.4949 | 17.24 | 23200 | 1.0287 | 0.5388 |
|
111 |
+
| 0.496 | 17.53 | 23600 | 1.0229 | 0.5348 |
|
112 |
+
| 0.4986 | 17.83 | 24000 | 1.0094 | 0.5313 |
|
113 |
+
| 0.4787 | 18.13 | 24400 | 1.0620 | 0.5234 |
|
114 |
+
| 0.4508 | 18.42 | 24800 | 1.0401 | 0.5323 |
|
115 |
+
| 0.4754 | 18.72 | 25200 | 1.0543 | 0.5303 |
|
116 |
+
| 0.4584 | 19.02 | 25600 | 1.0433 | 0.5194 |
|
117 |
+
| 0.4431 | 19.32 | 26000 | 1.0597 | 0.5249 |
|
118 |
+
| 0.4448 | 19.61 | 26400 | 1.0548 | 0.5229 |
|
119 |
+
| 0.4475 | 19.91 | 26800 | 1.0566 | 0.5224 |
|
120 |
|
121 |
|
122 |
### Framework versions
|