Update README.md
Browse files
README.md
CHANGED
@@ -23,15 +23,15 @@ model-index:
|
|
23 |
metrics:
|
24 |
- name: Test WER
|
25 |
type: wer
|
26 |
-
value: 81.
|
27 |
- name: Test CER
|
28 |
type: cer
|
29 |
-
value:
|
30 |
---
|
31 |
-
# Wav2Vec2-Large-
|
32 |
-
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese using the [Common Voice](https://huggingface.co/datasets/common_voice), [CSS10](https://github.com/Kyubyong/css10) and [JSUT](https://sites.google.com/site/shinnosuketakamichi/publication/jsut)
|
33 |
When using this model, make sure that your speech input is sampled at 16kHz.
|
34 |
-
|
35 |
## Usage
|
36 |
The model can be used directly (without a language model) as follows:
|
37 |
```python
|
@@ -40,7 +40,7 @@ import librosa
|
|
40 |
from datasets import load_dataset
|
41 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
42 |
LANG_ID = "ja"
|
43 |
-
MODEL_ID = "
|
44 |
SAMPLES = 10
|
45 |
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
|
46 |
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
|
|
23 |
metrics:
|
24 |
- name: Test WER
|
25 |
type: wer
|
26 |
+
value: 81.3
|
27 |
- name: Test CER
|
28 |
type: cer
|
29 |
+
value: 21.9
|
30 |
---
|
31 |
+
# Wav2Vec2-Large-Japanese
|
32 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese using the [Common Voice](https://huggingface.co/datasets/common_voice), [CSS10](https://github.com/Kyubyong/css10) and [JSUT](https://sites.google.com/site/shinnosuketakamichi/publication/jsut) and [CSJ]
|
33 |
When using this model, make sure that your speech input is sampled at 16kHz.
|
34 |
+
|
35 |
## Usage
|
36 |
The model can be used directly (without a language model) as follows:
|
37 |
```python
|
|
|
40 |
from datasets import load_dataset
|
41 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
42 |
LANG_ID = "ja"
|
43 |
+
MODEL_ID = "NTQAI/wav2vec2-large-japanese"
|
44 |
SAMPLES = 10
|
45 |
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
|
46 |
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|