mmock commited on
Commit
187120b
·
verified ·
1 Parent(s): f9d0168

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,841 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: '@link FSNamesystem#readLock() | FSPermissionChecker.java'
9
+ - text: previous^checkpoint li | TestSaveNamespace.java
10
+ - text: // the file doesn't have anything | TaskLog.java
11
+ - text: " @param file the file the include directives point to\n\t * @param depth\
12
+ \ depth to which includes are followed, should be one of\n\t * {@link #DEPTH_ZERO}\
13
+ \ or {@link #DEPTH_INFINITE}\n\t * @return an array of include relations\n\t *\
14
+ \ @throws CoreException | IIndex.java"
15
+ - text: // quotes are removed | ScannerUtility.java
16
+ metrics:
17
+ - accuracy
18
+ pipeline_tag: text-classification
19
+ library_name: setfit
20
+ inference: false
21
+ ---
22
+
23
+ # SetFit
24
+
25
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A MultiOutputClassifier instance is used for classification.
26
+
27
+ The model has been trained using an efficient few-shot learning technique that involves:
28
+
29
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
30
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
31
+
32
+ ## Model Details
33
+
34
+ ### Model Description
35
+ - **Model Type:** SetFit
36
+ <!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
37
+ - **Classification head:** a MultiOutputClassifier instance
38
+ - **Maximum Sequence Length:** 128 tokens
39
+ <!-- - **Number of Classes:** Unknown -->
40
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
41
+ <!-- - **Language:** Unknown -->
42
+ <!-- - **License:** Unknown -->
43
+
44
+ ### Model Sources
45
+
46
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
47
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
48
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
49
+
50
+ ## Uses
51
+
52
+ ### Direct Use for Inference
53
+
54
+ First install the SetFit library:
55
+
56
+ ```bash
57
+ pip install setfit
58
+ ```
59
+
60
+ Then you can load this model and run inference.
61
+
62
+ ```python
63
+ from setfit import SetFitModel
64
+
65
+ # Download from the 🤗 Hub
66
+ model = SetFitModel.from_pretrained("setfit_model_id")
67
+ # Run inference
68
+ preds = model("// quotes are removed | ScannerUtility.java")
69
+ ```
70
+
71
+ <!--
72
+ ### Downstream Use
73
+
74
+ *List how someone could finetune this model on their own dataset.*
75
+ -->
76
+
77
+ <!--
78
+ ### Out-of-Scope Use
79
+
80
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
81
+ -->
82
+
83
+ <!--
84
+ ## Bias, Risks and Limitations
85
+
86
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
87
+ -->
88
+
89
+ <!--
90
+ ### Recommendations
91
+
92
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
93
+ -->
94
+
95
+ ## Training Details
96
+
97
+ ### Training Set Metrics
98
+ | Training set | Min | Median | Max |
99
+ |:-------------|:----|:--------|:----|
100
+ | Word count | 3 | 15.5217 | 299 |
101
+
102
+ ### Training Hyperparameters
103
+ - batch_size: (32, 32)
104
+ - num_epochs: (5, 5)
105
+ - max_steps: -1
106
+ - sampling_strategy: oversampling
107
+ - num_iterations: 20
108
+ - body_learning_rate: (2e-05, 1e-05)
109
+ - head_learning_rate: 0.01
110
+ - loss: CosineSimilarityLoss
111
+ - distance_metric: cosine_distance
112
+ - margin: 0.25
113
+ - end_to_end: False
114
+ - use_amp: False
115
+ - warmup_proportion: 0.1
116
+ - l2_weight: 0.01
117
+ - seed: 42
118
+ - eval_max_steps: -1
119
+ - load_best_model_at_end: False
120
+
121
+ ### Training Results
122
+ | Epoch | Step | Training Loss | Validation Loss |
123
+ |:------:|:-----:|:-------------:|:---------------:|
124
+ | 0.0001 | 1 | 0.3106 | - |
125
+ | 0.0074 | 50 | 0.3017 | - |
126
+ | 0.0148 | 100 | 0.2776 | - |
127
+ | 0.0222 | 150 | 0.2638 | - |
128
+ | 0.0297 | 200 | 0.2522 | - |
129
+ | 0.0371 | 250 | 0.2441 | - |
130
+ | 0.0445 | 300 | 0.2316 | - |
131
+ | 0.0519 | 350 | 0.2212 | - |
132
+ | 0.0593 | 400 | 0.205 | - |
133
+ | 0.0667 | 450 | 0.1928 | - |
134
+ | 0.0742 | 500 | 0.1815 | - |
135
+ | 0.0816 | 550 | 0.1649 | - |
136
+ | 0.0890 | 600 | 0.1579 | - |
137
+ | 0.0964 | 650 | 0.1499 | - |
138
+ | 0.1038 | 700 | 0.1426 | - |
139
+ | 0.1112 | 750 | 0.1467 | - |
140
+ | 0.1186 | 800 | 0.1393 | - |
141
+ | 0.1261 | 850 | 0.1273 | - |
142
+ | 0.1335 | 900 | 0.1201 | - |
143
+ | 0.1409 | 950 | 0.1202 | - |
144
+ | 0.1483 | 1000 | 0.1144 | - |
145
+ | 0.1557 | 1050 | 0.112 | - |
146
+ | 0.1631 | 1100 | 0.1067 | - |
147
+ | 0.1705 | 1150 | 0.0966 | - |
148
+ | 0.1780 | 1200 | 0.1005 | - |
149
+ | 0.1854 | 1250 | 0.1001 | - |
150
+ | 0.1928 | 1300 | 0.0972 | - |
151
+ | 0.2002 | 1350 | 0.0866 | - |
152
+ | 0.2076 | 1400 | 0.0794 | - |
153
+ | 0.2150 | 1450 | 0.0863 | - |
154
+ | 0.2225 | 1500 | 0.0831 | - |
155
+ | 0.2299 | 1550 | 0.082 | - |
156
+ | 0.2373 | 1600 | 0.0856 | - |
157
+ | 0.2447 | 1650 | 0.0808 | - |
158
+ | 0.2521 | 1700 | 0.0741 | - |
159
+ | 0.2595 | 1750 | 0.0768 | - |
160
+ | 0.2669 | 1800 | 0.0743 | - |
161
+ | 0.2744 | 1850 | 0.0692 | - |
162
+ | 0.2818 | 1900 | 0.07 | - |
163
+ | 0.2892 | 1950 | 0.0651 | - |
164
+ | 0.2966 | 2000 | 0.0701 | - |
165
+ | 0.3040 | 2050 | 0.0655 | - |
166
+ | 0.3114 | 2100 | 0.0592 | - |
167
+ | 0.3188 | 2150 | 0.0613 | - |
168
+ | 0.3263 | 2200 | 0.0597 | - |
169
+ | 0.3337 | 2250 | 0.0579 | - |
170
+ | 0.3411 | 2300 | 0.0535 | - |
171
+ | 0.3485 | 2350 | 0.0491 | - |
172
+ | 0.3559 | 2400 | 0.0506 | - |
173
+ | 0.3633 | 2450 | 0.055 | - |
174
+ | 0.3708 | 2500 | 0.0512 | - |
175
+ | 0.3782 | 2550 | 0.0553 | - |
176
+ | 0.3856 | 2600 | 0.0525 | - |
177
+ | 0.3930 | 2650 | 0.0478 | - |
178
+ | 0.4004 | 2700 | 0.0401 | - |
179
+ | 0.4078 | 2750 | 0.0479 | - |
180
+ | 0.4152 | 2800 | 0.0421 | - |
181
+ | 0.4227 | 2850 | 0.0369 | - |
182
+ | 0.4301 | 2900 | 0.0418 | - |
183
+ | 0.4375 | 2950 | 0.0424 | - |
184
+ | 0.4449 | 3000 | 0.0378 | - |
185
+ | 0.4523 | 3050 | 0.0406 | - |
186
+ | 0.4597 | 3100 | 0.0346 | - |
187
+ | 0.4672 | 3150 | 0.042 | - |
188
+ | 0.4746 | 3200 | 0.0331 | - |
189
+ | 0.4820 | 3250 | 0.0345 | - |
190
+ | 0.4894 | 3300 | 0.0388 | - |
191
+ | 0.4968 | 3350 | 0.0357 | - |
192
+ | 0.5042 | 3400 | 0.0269 | - |
193
+ | 0.5116 | 3450 | 0.0367 | - |
194
+ | 0.5191 | 3500 | 0.033 | - |
195
+ | 0.5265 | 3550 | 0.0298 | - |
196
+ | 0.5339 | 3600 | 0.0264 | - |
197
+ | 0.5413 | 3650 | 0.0347 | - |
198
+ | 0.5487 | 3700 | 0.032 | - |
199
+ | 0.5561 | 3750 | 0.0287 | - |
200
+ | 0.5635 | 3800 | 0.0276 | - |
201
+ | 0.5710 | 3850 | 0.0299 | - |
202
+ | 0.5784 | 3900 | 0.0286 | - |
203
+ | 0.5858 | 3950 | 0.027 | - |
204
+ | 0.5932 | 4000 | 0.0257 | - |
205
+ | 0.6006 | 4050 | 0.023 | - |
206
+ | 0.6080 | 4100 | 0.0249 | - |
207
+ | 0.6155 | 4150 | 0.0217 | - |
208
+ | 0.6229 | 4200 | 0.0234 | - |
209
+ | 0.6303 | 4250 | 0.0271 | - |
210
+ | 0.6377 | 4300 | 0.0211 | - |
211
+ | 0.6451 | 4350 | 0.0254 | - |
212
+ | 0.6525 | 4400 | 0.0189 | - |
213
+ | 0.6599 | 4450 | 0.0196 | - |
214
+ | 0.6674 | 4500 | 0.0222 | - |
215
+ | 0.6748 | 4550 | 0.0225 | - |
216
+ | 0.6822 | 4600 | 0.0175 | - |
217
+ | 0.6896 | 4650 | 0.0205 | - |
218
+ | 0.6970 | 4700 | 0.0191 | - |
219
+ | 0.7044 | 4750 | 0.0154 | - |
220
+ | 0.7118 | 4800 | 0.022 | - |
221
+ | 0.7193 | 4850 | 0.0149 | - |
222
+ | 0.7267 | 4900 | 0.0173 | - |
223
+ | 0.7341 | 4950 | 0.0181 | - |
224
+ | 0.7415 | 5000 | 0.0189 | - |
225
+ | 0.7489 | 5050 | 0.0195 | - |
226
+ | 0.7563 | 5100 | 0.0138 | - |
227
+ | 0.7638 | 5150 | 0.0169 | - |
228
+ | 0.7712 | 5200 | 0.0147 | - |
229
+ | 0.7786 | 5250 | 0.02 | - |
230
+ | 0.7860 | 5300 | 0.0156 | - |
231
+ | 0.7934 | 5350 | 0.0159 | - |
232
+ | 0.8008 | 5400 | 0.0151 | - |
233
+ | 0.8082 | 5450 | 0.0145 | - |
234
+ | 0.8157 | 5500 | 0.013 | - |
235
+ | 0.8231 | 5550 | 0.0139 | - |
236
+ | 0.8305 | 5600 | 0.0124 | - |
237
+ | 0.8379 | 5650 | 0.0165 | - |
238
+ | 0.8453 | 5700 | 0.0083 | - |
239
+ | 0.8527 | 5750 | 0.0105 | - |
240
+ | 0.8602 | 5800 | 0.01 | - |
241
+ | 0.8676 | 5850 | 0.0143 | - |
242
+ | 0.8750 | 5900 | 0.0155 | - |
243
+ | 0.8824 | 5950 | 0.0158 | - |
244
+ | 0.8898 | 6000 | 0.012 | - |
245
+ | 0.8972 | 6050 | 0.0166 | - |
246
+ | 0.9046 | 6100 | 0.0149 | - |
247
+ | 0.9121 | 6150 | 0.017 | - |
248
+ | 0.9195 | 6200 | 0.0183 | - |
249
+ | 0.9269 | 6250 | 0.0126 | - |
250
+ | 0.9343 | 6300 | 0.018 | - |
251
+ | 0.9417 | 6350 | 0.013 | - |
252
+ | 0.9491 | 6400 | 0.0165 | - |
253
+ | 0.9565 | 6450 | 0.0097 | - |
254
+ | 0.9640 | 6500 | 0.0088 | - |
255
+ | 0.9714 | 6550 | 0.0124 | - |
256
+ | 0.9788 | 6600 | 0.0139 | - |
257
+ | 0.9862 | 6650 | 0.0116 | - |
258
+ | 0.9936 | 6700 | 0.0124 | - |
259
+ | 1.0010 | 6750 | 0.0089 | - |
260
+ | 1.0085 | 6800 | 0.0099 | - |
261
+ | 1.0159 | 6850 | 0.0108 | - |
262
+ | 1.0233 | 6900 | 0.0123 | - |
263
+ | 1.0307 | 6950 | 0.0123 | - |
264
+ | 1.0381 | 7000 | 0.0138 | - |
265
+ | 1.0455 | 7050 | 0.0092 | - |
266
+ | 1.0529 | 7100 | 0.0111 | - |
267
+ | 1.0604 | 7150 | 0.0103 | - |
268
+ | 1.0678 | 7200 | 0.0102 | - |
269
+ | 1.0752 | 7250 | 0.0091 | - |
270
+ | 1.0826 | 7300 | 0.0143 | - |
271
+ | 1.0900 | 7350 | 0.0117 | - |
272
+ | 1.0974 | 7400 | 0.011 | - |
273
+ | 1.1048 | 7450 | 0.0116 | - |
274
+ | 1.1123 | 7500 | 0.0132 | - |
275
+ | 1.1197 | 7550 | 0.0125 | - |
276
+ | 1.1271 | 7600 | 0.0122 | - |
277
+ | 1.1345 | 7650 | 0.0081 | - |
278
+ | 1.1419 | 7700 | 0.012 | - |
279
+ | 1.1493 | 7750 | 0.0098 | - |
280
+ | 1.1568 | 7800 | 0.0118 | - |
281
+ | 1.1642 | 7850 | 0.0153 | - |
282
+ | 1.1716 | 7900 | 0.0125 | - |
283
+ | 1.1790 | 7950 | 0.01 | - |
284
+ | 1.1864 | 8000 | 0.0089 | - |
285
+ | 1.1938 | 8050 | 0.0103 | - |
286
+ | 1.2012 | 8100 | 0.0102 | - |
287
+ | 1.2087 | 8150 | 0.0124 | - |
288
+ | 1.2161 | 8200 | 0.0116 | - |
289
+ | 1.2235 | 8250 | 0.0072 | - |
290
+ | 1.2309 | 8300 | 0.0106 | - |
291
+ | 1.2383 | 8350 | 0.0085 | - |
292
+ | 1.2457 | 8400 | 0.009 | - |
293
+ | 1.2532 | 8450 | 0.0074 | - |
294
+ | 1.2606 | 8500 | 0.0109 | - |
295
+ | 1.2680 | 8550 | 0.0087 | - |
296
+ | 1.2754 | 8600 | 0.0112 | - |
297
+ | 1.2828 | 8650 | 0.0098 | - |
298
+ | 1.2902 | 8700 | 0.0092 | - |
299
+ | 1.2976 | 8750 | 0.0073 | - |
300
+ | 1.3051 | 8800 | 0.0113 | - |
301
+ | 1.3125 | 8850 | 0.01 | - |
302
+ | 1.3199 | 8900 | 0.0083 | - |
303
+ | 1.3273 | 8950 | 0.0119 | - |
304
+ | 1.3347 | 9000 | 0.0084 | - |
305
+ | 1.3421 | 9050 | 0.0116 | - |
306
+ | 1.3495 | 9100 | 0.0083 | - |
307
+ | 1.3570 | 9150 | 0.0111 | - |
308
+ | 1.3644 | 9200 | 0.0084 | - |
309
+ | 1.3718 | 9250 | 0.0107 | - |
310
+ | 1.3792 | 9300 | 0.0107 | - |
311
+ | 1.3866 | 9350 | 0.0124 | - |
312
+ | 1.3940 | 9400 | 0.0069 | - |
313
+ | 1.4015 | 9450 | 0.0066 | - |
314
+ | 1.4089 | 9500 | 0.0069 | - |
315
+ | 1.4163 | 9550 | 0.0088 | - |
316
+ | 1.4237 | 9600 | 0.008 | - |
317
+ | 1.4311 | 9650 | 0.0076 | - |
318
+ | 1.4385 | 9700 | 0.0106 | - |
319
+ | 1.4459 | 9750 | 0.0087 | - |
320
+ | 1.4534 | 9800 | 0.0062 | - |
321
+ | 1.4608 | 9850 | 0.0072 | - |
322
+ | 1.4682 | 9900 | 0.0093 | - |
323
+ | 1.4756 | 9950 | 0.0054 | - |
324
+ | 1.4830 | 10000 | 0.0112 | - |
325
+ | 1.4904 | 10050 | 0.0087 | - |
326
+ | 1.4978 | 10100 | 0.0069 | - |
327
+ | 1.5053 | 10150 | 0.0086 | - |
328
+ | 1.5127 | 10200 | 0.0089 | - |
329
+ | 1.5201 | 10250 | 0.0089 | - |
330
+ | 1.5275 | 10300 | 0.0081 | - |
331
+ | 1.5349 | 10350 | 0.0109 | - |
332
+ | 1.5423 | 10400 | 0.0098 | - |
333
+ | 1.5498 | 10450 | 0.0078 | - |
334
+ | 1.5572 | 10500 | 0.0086 | - |
335
+ | 1.5646 | 10550 | 0.0085 | - |
336
+ | 1.5720 | 10600 | 0.0083 | - |
337
+ | 1.5794 | 10650 | 0.0087 | - |
338
+ | 1.5868 | 10700 | 0.0089 | - |
339
+ | 1.5942 | 10750 | 0.0081 | - |
340
+ | 1.6017 | 10800 | 0.0067 | - |
341
+ | 1.6091 | 10850 | 0.0054 | - |
342
+ | 1.6165 | 10900 | 0.0096 | - |
343
+ | 1.6239 | 10950 | 0.0074 | - |
344
+ | 1.6313 | 11000 | 0.0069 | - |
345
+ | 1.6387 | 11050 | 0.0089 | - |
346
+ | 1.6462 | 11100 | 0.0103 | - |
347
+ | 1.6536 | 11150 | 0.008 | - |
348
+ | 1.6610 | 11200 | 0.0084 | - |
349
+ | 1.6684 | 11250 | 0.0081 | - |
350
+ | 1.6758 | 11300 | 0.0063 | - |
351
+ | 1.6832 | 11350 | 0.0073 | - |
352
+ | 1.6906 | 11400 | 0.0066 | - |
353
+ | 1.6981 | 11450 | 0.0088 | - |
354
+ | 1.7055 | 11500 | 0.0069 | - |
355
+ | 1.7129 | 11550 | 0.0085 | - |
356
+ | 1.7203 | 11600 | 0.0096 | - |
357
+ | 1.7277 | 11650 | 0.0063 | - |
358
+ | 1.7351 | 11700 | 0.0093 | - |
359
+ | 1.7425 | 11750 | 0.0068 | - |
360
+ | 1.7500 | 11800 | 0.0079 | - |
361
+ | 1.7574 | 11850 | 0.0073 | - |
362
+ | 1.7648 | 11900 | 0.0068 | - |
363
+ | 1.7722 | 11950 | 0.0099 | - |
364
+ | 1.7796 | 12000 | 0.0069 | - |
365
+ | 1.7870 | 12050 | 0.0061 | - |
366
+ | 1.7945 | 12100 | 0.0096 | - |
367
+ | 1.8019 | 12150 | 0.0065 | - |
368
+ | 1.8093 | 12200 | 0.0119 | - |
369
+ | 1.8167 | 12250 | 0.0067 | - |
370
+ | 1.8241 | 12300 | 0.0084 | - |
371
+ | 1.8315 | 12350 | 0.0053 | - |
372
+ | 1.8389 | 12400 | 0.0074 | - |
373
+ | 1.8464 | 12450 | 0.0067 | - |
374
+ | 1.8538 | 12500 | 0.0061 | - |
375
+ | 1.8612 | 12550 | 0.0056 | - |
376
+ | 1.8686 | 12600 | 0.0051 | - |
377
+ | 1.8760 | 12650 | 0.0043 | - |
378
+ | 1.8834 | 12700 | 0.0066 | - |
379
+ | 1.8908 | 12750 | 0.0065 | - |
380
+ | 1.8983 | 12800 | 0.0048 | - |
381
+ | 1.9057 | 12850 | 0.0047 | - |
382
+ | 1.9131 | 12900 | 0.0065 | - |
383
+ | 1.9205 | 12950 | 0.0064 | - |
384
+ | 1.9279 | 13000 | 0.0056 | - |
385
+ | 1.9353 | 13050 | 0.0088 | - |
386
+ | 1.9428 | 13100 | 0.009 | - |
387
+ | 1.9502 | 13150 | 0.0086 | - |
388
+ | 1.9576 | 13200 | 0.0097 | - |
389
+ | 1.9650 | 13250 | 0.0062 | - |
390
+ | 1.9724 | 13300 | 0.0079 | - |
391
+ | 1.9798 | 13350 | 0.0094 | - |
392
+ | 1.9872 | 13400 | 0.0056 | - |
393
+ | 1.9947 | 13450 | 0.0041 | - |
394
+ | 2.0021 | 13500 | 0.0062 | - |
395
+ | 2.0095 | 13550 | 0.0063 | - |
396
+ | 2.0169 | 13600 | 0.0056 | - |
397
+ | 2.0243 | 13650 | 0.0056 | - |
398
+ | 2.0317 | 13700 | 0.0063 | - |
399
+ | 2.0392 | 13750 | 0.0052 | - |
400
+ | 2.0466 | 13800 | 0.0058 | - |
401
+ | 2.0540 | 13850 | 0.006 | - |
402
+ | 2.0614 | 13900 | 0.0071 | - |
403
+ | 2.0688 | 13950 | 0.0095 | - |
404
+ | 2.0762 | 14000 | 0.0063 | - |
405
+ | 2.0836 | 14050 | 0.0056 | - |
406
+ | 2.0911 | 14100 | 0.0044 | - |
407
+ | 2.0985 | 14150 | 0.0051 | - |
408
+ | 2.1059 | 14200 | 0.0075 | - |
409
+ | 2.1133 | 14250 | 0.0055 | - |
410
+ | 2.1207 | 14300 | 0.0048 | - |
411
+ | 2.1281 | 14350 | 0.0052 | - |
412
+ | 2.1355 | 14400 | 0.0094 | - |
413
+ | 2.1430 | 14450 | 0.0068 | - |
414
+ | 2.1504 | 14500 | 0.004 | - |
415
+ | 2.1578 | 14550 | 0.004 | - |
416
+ | 2.1652 | 14600 | 0.0046 | - |
417
+ | 2.1726 | 14650 | 0.006 | - |
418
+ | 2.1800 | 14700 | 0.0075 | - |
419
+ | 2.1875 | 14750 | 0.0055 | - |
420
+ | 2.1949 | 14800 | 0.0038 | - |
421
+ | 2.2023 | 14850 | 0.0073 | - |
422
+ | 2.2097 | 14900 | 0.0067 | - |
423
+ | 2.2171 | 14950 | 0.0066 | - |
424
+ | 2.2245 | 15000 | 0.007 | - |
425
+ | 2.2319 | 15050 | 0.0047 | - |
426
+ | 2.2394 | 15100 | 0.0057 | - |
427
+ | 2.2468 | 15150 | 0.0041 | - |
428
+ | 2.2542 | 15200 | 0.0058 | - |
429
+ | 2.2616 | 15250 | 0.0082 | - |
430
+ | 2.2690 | 15300 | 0.0049 | - |
431
+ | 2.2764 | 15350 | 0.0053 | - |
432
+ | 2.2838 | 15400 | 0.0055 | - |
433
+ | 2.2913 | 15450 | 0.0056 | - |
434
+ | 2.2987 | 15500 | 0.004 | - |
435
+ | 2.3061 | 15550 | 0.0055 | - |
436
+ | 2.3135 | 15600 | 0.0076 | - |
437
+ | 2.3209 | 15650 | 0.0089 | - |
438
+ | 2.3283 | 15700 | 0.0058 | - |
439
+ | 2.3358 | 15750 | 0.0055 | - |
440
+ | 2.3432 | 15800 | 0.0047 | - |
441
+ | 2.3506 | 15850 | 0.0052 | - |
442
+ | 2.3580 | 15900 | 0.005 | - |
443
+ | 2.3654 | 15950 | 0.0044 | - |
444
+ | 2.3728 | 16000 | 0.0086 | - |
445
+ | 2.3802 | 16050 | 0.0046 | - |
446
+ | 2.3877 | 16100 | 0.0036 | - |
447
+ | 2.3951 | 16150 | 0.0061 | - |
448
+ | 2.4025 | 16200 | 0.0054 | - |
449
+ | 2.4099 | 16250 | 0.0062 | - |
450
+ | 2.4173 | 16300 | 0.0055 | - |
451
+ | 2.4247 | 16350 | 0.0042 | - |
452
+ | 2.4322 | 16400 | 0.0058 | - |
453
+ | 2.4396 | 16450 | 0.0064 | - |
454
+ | 2.4470 | 16500 | 0.0042 | - |
455
+ | 2.4544 | 16550 | 0.0047 | - |
456
+ | 2.4618 | 16600 | 0.0062 | - |
457
+ | 2.4692 | 16650 | 0.0057 | - |
458
+ | 2.4766 | 16700 | 0.0048 | - |
459
+ | 2.4841 | 16750 | 0.0054 | - |
460
+ | 2.4915 | 16800 | 0.0061 | - |
461
+ | 2.4989 | 16850 | 0.0059 | - |
462
+ | 2.5063 | 16900 | 0.0041 | - |
463
+ | 2.5137 | 16950 | 0.0056 | - |
464
+ | 2.5211 | 17000 | 0.0058 | - |
465
+ | 2.5285 | 17050 | 0.0037 | - |
466
+ | 2.5360 | 17100 | 0.0064 | - |
467
+ | 2.5434 | 17150 | 0.0058 | - |
468
+ | 2.5508 | 17200 | 0.006 | - |
469
+ | 2.5582 | 17250 | 0.0089 | - |
470
+ | 2.5656 | 17300 | 0.0045 | - |
471
+ | 2.5730 | 17350 | 0.0046 | - |
472
+ | 2.5805 | 17400 | 0.0047 | - |
473
+ | 2.5879 | 17450 | 0.0029 | - |
474
+ | 2.5953 | 17500 | 0.0068 | - |
475
+ | 2.6027 | 17550 | 0.0036 | - |
476
+ | 2.6101 | 17600 | 0.0037 | - |
477
+ | 2.6175 | 17650 | 0.0042 | - |
478
+ | 2.6249 | 17700 | 0.0056 | - |
479
+ | 2.6324 | 17750 | 0.0084 | - |
480
+ | 2.6398 | 17800 | 0.0045 | - |
481
+ | 2.6472 | 17850 | 0.0065 | - |
482
+ | 2.6546 | 17900 | 0.0038 | - |
483
+ | 2.6620 | 17950 | 0.0051 | - |
484
+ | 2.6694 | 18000 | 0.0057 | - |
485
+ | 2.6769 | 18050 | 0.0037 | - |
486
+ | 2.6843 | 18100 | 0.0042 | - |
487
+ | 2.6917 | 18150 | 0.0052 | - |
488
+ | 2.6991 | 18200 | 0.0053 | - |
489
+ | 2.7065 | 18250 | 0.0054 | - |
490
+ | 2.7139 | 18300 | 0.0025 | - |
491
+ | 2.7213 | 18350 | 0.0045 | - |
492
+ | 2.7288 | 18400 | 0.0039 | - |
493
+ | 2.7362 | 18450 | 0.0064 | - |
494
+ | 2.7436 | 18500 | 0.0031 | - |
495
+ | 2.7510 | 18550 | 0.0057 | - |
496
+ | 2.7584 | 18600 | 0.0052 | - |
497
+ | 2.7658 | 18650 | 0.0049 | - |
498
+ | 2.7732 | 18700 | 0.0062 | - |
499
+ | 2.7807 | 18750 | 0.0041 | - |
500
+ | 2.7881 | 18800 | 0.0062 | - |
501
+ | 2.7955 | 18850 | 0.005 | - |
502
+ | 2.8029 | 18900 | 0.0057 | - |
503
+ | 2.8103 | 18950 | 0.0051 | - |
504
+ | 2.8177 | 19000 | 0.0035 | - |
505
+ | 2.8252 | 19050 | 0.0045 | - |
506
+ | 2.8326 | 19100 | 0.0048 | - |
507
+ | 2.8400 | 19150 | 0.002 | - |
508
+ | 2.8474 | 19200 | 0.0058 | - |
509
+ | 2.8548 | 19250 | 0.0041 | - |
510
+ | 2.8622 | 19300 | 0.0044 | - |
511
+ | 2.8696 | 19350 | 0.0062 | - |
512
+ | 2.8771 | 19400 | 0.0042 | - |
513
+ | 2.8845 | 19450 | 0.0036 | - |
514
+ | 2.8919 | 19500 | 0.005 | - |
515
+ | 2.8993 | 19550 | 0.0056 | - |
516
+ | 2.9067 | 19600 | 0.0056 | - |
517
+ | 2.9141 | 19650 | 0.0039 | - |
518
+ | 2.9215 | 19700 | 0.0058 | - |
519
+ | 2.9290 | 19750 | 0.0053 | - |
520
+ | 2.9364 | 19800 | 0.0058 | - |
521
+ | 2.9438 | 19850 | 0.0044 | - |
522
+ | 2.9512 | 19900 | 0.0028 | - |
523
+ | 2.9586 | 19950 | 0.0046 | - |
524
+ | 2.9660 | 20000 | 0.0059 | - |
525
+ | 2.9735 | 20050 | 0.0049 | - |
526
+ | 2.9809 | 20100 | 0.0048 | - |
527
+ | 2.9883 | 20150 | 0.0039 | - |
528
+ | 2.9957 | 20200 | 0.0062 | - |
529
+ | 3.0031 | 20250 | 0.0034 | - |
530
+ | 3.0105 | 20300 | 0.0048 | - |
531
+ | 3.0179 | 20350 | 0.0035 | - |
532
+ | 3.0254 | 20400 | 0.0048 | - |
533
+ | 3.0328 | 20450 | 0.0063 | - |
534
+ | 3.0402 | 20500 | 0.0047 | - |
535
+ | 3.0476 | 20550 | 0.0041 | - |
536
+ | 3.0550 | 20600 | 0.0046 | - |
537
+ | 3.0624 | 20650 | 0.0041 | - |
538
+ | 3.0699 | 20700 | 0.0052 | - |
539
+ | 3.0773 | 20750 | 0.0031 | - |
540
+ | 3.0847 | 20800 | 0.0042 | - |
541
+ | 3.0921 | 20850 | 0.0045 | - |
542
+ | 3.0995 | 20900 | 0.0049 | - |
543
+ | 3.1069 | 20950 | 0.0033 | - |
544
+ | 3.1143 | 21000 | 0.0064 | - |
545
+ | 3.1218 | 21050 | 0.0039 | - |
546
+ | 3.1292 | 21100 | 0.0058 | - |
547
+ | 3.1366 | 21150 | 0.004 | - |
548
+ | 3.1440 | 21200 | 0.0031 | - |
549
+ | 3.1514 | 21250 | 0.0028 | - |
550
+ | 3.1588 | 21300 | 0.0038 | - |
551
+ | 3.1662 | 21350 | 0.0048 | - |
552
+ | 3.1737 | 21400 | 0.0047 | - |
553
+ | 3.1811 | 21450 | 0.0057 | - |
554
+ | 3.1885 | 21500 | 0.0037 | - |
555
+ | 3.1959 | 21550 | 0.0039 | - |
556
+ | 3.2033 | 21600 | 0.0045 | - |
557
+ | 3.2107 | 21650 | 0.005 | - |
558
+ | 3.2182 | 21700 | 0.0034 | - |
559
+ | 3.2256 | 21750 | 0.0048 | - |
560
+ | 3.2330 | 21800 | 0.0034 | - |
561
+ | 3.2404 | 21850 | 0.0056 | - |
562
+ | 3.2478 | 21900 | 0.0041 | - |
563
+ | 3.2552 | 21950 | 0.0048 | - |
564
+ | 3.2626 | 22000 | 0.0066 | - |
565
+ | 3.2701 | 22050 | 0.0044 | - |
566
+ | 3.2775 | 22100 | 0.0046 | - |
567
+ | 3.2849 | 22150 | 0.0046 | - |
568
+ | 3.2923 | 22200 | 0.0038 | - |
569
+ | 3.2997 | 22250 | 0.0036 | - |
570
+ | 3.3071 | 22300 | 0.0023 | - |
571
+ | 3.3145 | 22350 | 0.0049 | - |
572
+ | 3.3220 | 22400 | 0.0041 | - |
573
+ | 3.3294 | 22450 | 0.0036 | - |
574
+ | 3.3368 | 22500 | 0.004 | - |
575
+ | 3.3442 | 22550 | 0.0054 | - |
576
+ | 3.3516 | 22600 | 0.0033 | - |
577
+ | 3.3590 | 22650 | 0.0054 | - |
578
+ | 3.3665 | 22700 | 0.0056 | - |
579
+ | 3.3739 | 22750 | 0.0051 | - |
580
+ | 3.3813 | 22800 | 0.0033 | - |
581
+ | 3.3887 | 22850 | 0.0046 | - |
582
+ | 3.3961 | 22900 | 0.0052 | - |
583
+ | 3.4035 | 22950 | 0.0043 | - |
584
+ | 3.4109 | 23000 | 0.0051 | - |
585
+ | 3.4184 | 23050 | 0.0036 | - |
586
+ | 3.4258 | 23100 | 0.0051 | - |
587
+ | 3.4332 | 23150 | 0.0061 | - |
588
+ | 3.4406 | 23200 | 0.004 | - |
589
+ | 3.4480 | 23250 | 0.0036 | - |
590
+ | 3.4554 | 23300 | 0.0035 | - |
591
+ | 3.4629 | 23350 | 0.0063 | - |
592
+ | 3.4703 | 23400 | 0.0051 | - |
593
+ | 3.4777 | 23450 | 0.0024 | - |
594
+ | 3.4851 | 23500 | 0.0033 | - |
595
+ | 3.4925 | 23550 | 0.0048 | - |
596
+ | 3.4999 | 23600 | 0.0035 | - |
597
+ | 3.5073 | 23650 | 0.0041 | - |
598
+ | 3.5148 | 23700 | 0.0035 | - |
599
+ | 3.5222 | 23750 | 0.0031 | - |
600
+ | 3.5296 | 23800 | 0.0031 | - |
601
+ | 3.5370 | 23850 | 0.0042 | - |
602
+ | 3.5444 | 23900 | 0.0038 | - |
603
+ | 3.5518 | 23950 | 0.0042 | - |
604
+ | 3.5592 | 24000 | 0.0048 | - |
605
+ | 3.5667 | 24050 | 0.0018 | - |
606
+ | 3.5741 | 24100 | 0.005 | - |
607
+ | 3.5815 | 24150 | 0.0073 | - |
608
+ | 3.5889 | 24200 | 0.0056 | - |
609
+ | 3.5963 | 24250 | 0.0037 | - |
610
+ | 3.6037 | 24300 | 0.0065 | - |
611
+ | 3.6112 | 24350 | 0.005 | - |
612
+ | 3.6186 | 24400 | 0.0051 | - |
613
+ | 3.6260 | 24450 | 0.0039 | - |
614
+ | 3.6334 | 24500 | 0.0055 | - |
615
+ | 3.6408 | 24550 | 0.0035 | - |
616
+ | 3.6482 | 24600 | 0.0039 | - |
617
+ | 3.6556 | 24650 | 0.0044 | - |
618
+ | 3.6631 | 24700 | 0.0045 | - |
619
+ | 3.6705 | 24750 | 0.0029 | - |
620
+ | 3.6779 | 24800 | 0.0025 | - |
621
+ | 3.6853 | 24850 | 0.0032 | - |
622
+ | 3.6927 | 24900 | 0.0035 | - |
623
+ | 3.7001 | 24950 | 0.0045 | - |
624
+ | 3.7075 | 25000 | 0.0043 | - |
625
+ | 3.7150 | 25050 | 0.0035 | - |
626
+ | 3.7224 | 25100 | 0.0039 | - |
627
+ | 3.7298 | 25150 | 0.0036 | - |
628
+ | 3.7372 | 25200 | 0.0035 | - |
629
+ | 3.7446 | 25250 | 0.0043 | - |
630
+ | 3.7520 | 25300 | 0.0027 | - |
631
+ | 3.7595 | 25350 | 0.0034 | - |
632
+ | 3.7669 | 25400 | 0.0045 | - |
633
+ | 3.7743 | 25450 | 0.0031 | - |
634
+ | 3.7817 | 25500 | 0.0033 | - |
635
+ | 3.7891 | 25550 | 0.0045 | - |
636
+ | 3.7965 | 25600 | 0.0046 | - |
637
+ | 3.8039 | 25650 | 0.0026 | - |
638
+ | 3.8114 | 25700 | 0.0053 | - |
639
+ | 3.8188 | 25750 | 0.0033 | - |
640
+ | 3.8262 | 25800 | 0.0046 | - |
641
+ | 3.8336 | 25850 | 0.0035 | - |
642
+ | 3.8410 | 25900 | 0.0045 | - |
643
+ | 3.8484 | 25950 | 0.0036 | - |
644
+ | 3.8559 | 26000 | 0.0035 | - |
645
+ | 3.8633 | 26050 | 0.0037 | - |
646
+ | 3.8707 | 26100 | 0.0024 | - |
647
+ | 3.8781 | 26150 | 0.0049 | - |
648
+ | 3.8855 | 26200 | 0.0028 | - |
649
+ | 3.8929 | 26250 | 0.0055 | - |
650
+ | 3.9003 | 26300 | 0.0029 | - |
651
+ | 3.9078 | 26350 | 0.0052 | - |
652
+ | 3.9152 | 26400 | 0.0043 | - |
653
+ | 3.9226 | 26450 | 0.0042 | - |
654
+ | 3.9300 | 26500 | 0.0059 | - |
655
+ | 3.9374 | 26550 | 0.0038 | - |
656
+ | 3.9448 | 26600 | 0.0047 | - |
657
+ | 3.9522 | 26650 | 0.0043 | - |
658
+ | 3.9597 | 26700 | 0.0034 | - |
659
+ | 3.9671 | 26750 | 0.005 | - |
660
+ | 3.9745 | 26800 | 0.004 | - |
661
+ | 3.9819 | 26850 | 0.0053 | - |
662
+ | 3.9893 | 26900 | 0.0046 | - |
663
+ | 3.9967 | 26950 | 0.0053 | - |
664
+ | 4.0042 | 27000 | 0.0038 | - |
665
+ | 4.0116 | 27050 | 0.0038 | - |
666
+ | 4.0190 | 27100 | 0.0032 | - |
667
+ | 4.0264 | 27150 | 0.0038 | - |
668
+ | 4.0338 | 27200 | 0.0042 | - |
669
+ | 4.0412 | 27250 | 0.005 | - |
670
+ | 4.0486 | 27300 | 0.0031 | - |
671
+ | 4.0561 | 27350 | 0.0041 | - |
672
+ | 4.0635 | 27400 | 0.0033 | - |
673
+ | 4.0709 | 27450 | 0.0028 | - |
674
+ | 4.0783 | 27500 | 0.0054 | - |
675
+ | 4.0857 | 27550 | 0.0038 | - |
676
+ | 4.0931 | 27600 | 0.0037 | - |
677
+ | 4.1005 | 27650 | 0.0037 | - |
678
+ | 4.1080 | 27700 | 0.0033 | - |
679
+ | 4.1154 | 27750 | 0.0041 | - |
680
+ | 4.1228 | 27800 | 0.0038 | - |
681
+ | 4.1302 | 27850 | 0.0029 | - |
682
+ | 4.1376 | 27900 | 0.0047 | - |
683
+ | 4.1450 | 27950 | 0.0038 | - |
684
+ | 4.1525 | 28000 | 0.0041 | - |
685
+ | 4.1599 | 28050 | 0.0036 | - |
686
+ | 4.1673 | 28100 | 0.003 | - |
687
+ | 4.1747 | 28150 | 0.005 | - |
688
+ | 4.1821 | 28200 | 0.0039 | - |
689
+ | 4.1895 | 28250 | 0.005 | - |
690
+ | 4.1969 | 28300 | 0.0035 | - |
691
+ | 4.2044 | 28350 | 0.0036 | - |
692
+ | 4.2118 | 28400 | 0.0053 | - |
693
+ | 4.2192 | 28450 | 0.0041 | - |
694
+ | 4.2266 | 28500 | 0.0042 | - |
695
+ | 4.2340 | 28550 | 0.0058 | - |
696
+ | 4.2414 | 28600 | 0.0035 | - |
697
+ | 4.2489 | 28650 | 0.0036 | - |
698
+ | 4.2563 | 28700 | 0.0041 | - |
699
+ | 4.2637 | 28750 | 0.0046 | - |
700
+ | 4.2711 | 28800 | 0.0048 | - |
701
+ | 4.2785 | 28850 | 0.0035 | - |
702
+ | 4.2859 | 28900 | 0.0041 | - |
703
+ | 4.2933 | 28950 | 0.0034 | - |
704
+ | 4.3008 | 29000 | 0.0022 | - |
705
+ | 4.3082 | 29050 | 0.005 | - |
706
+ | 4.3156 | 29100 | 0.0042 | - |
707
+ | 4.3230 | 29150 | 0.0031 | - |
708
+ | 4.3304 | 29200 | 0.0052 | - |
709
+ | 4.3378 | 29250 | 0.0032 | - |
710
+ | 4.3452 | 29300 | 0.0027 | - |
711
+ | 4.3527 | 29350 | 0.0034 | - |
712
+ | 4.3601 | 29400 | 0.0045 | - |
713
+ | 4.3675 | 29450 | 0.0031 | - |
714
+ | 4.3749 | 29500 | 0.0036 | - |
715
+ | 4.3823 | 29550 | 0.0054 | - |
716
+ | 4.3897 | 29600 | 0.0036 | - |
717
+ | 4.3972 | 29650 | 0.0023 | - |
718
+ | 4.4046 | 29700 | 0.0043 | - |
719
+ | 4.4120 | 29750 | 0.0048 | - |
720
+ | 4.4194 | 29800 | 0.0027 | - |
721
+ | 4.4268 | 29850 | 0.0027 | - |
722
+ | 4.4342 | 29900 | 0.0026 | - |
723
+ | 4.4416 | 29950 | 0.0038 | - |
724
+ | 4.4491 | 30000 | 0.0033 | - |
725
+ | 4.4565 | 30050 | 0.0025 | - |
726
+ | 4.4639 | 30100 | 0.003 | - |
727
+ | 4.4713 | 30150 | 0.0051 | - |
728
+ | 4.4787 | 30200 | 0.0043 | - |
729
+ | 4.4861 | 30250 | 0.0047 | - |
730
+ | 4.4935 | 30300 | 0.0056 | - |
731
+ | 4.5010 | 30350 | 0.0043 | - |
732
+ | 4.5084 | 30400 | 0.0033 | - |
733
+ | 4.5158 | 30450 | 0.0028 | - |
734
+ | 4.5232 | 30500 | 0.0039 | - |
735
+ | 4.5306 | 30550 | 0.0031 | - |
736
+ | 4.5380 | 30600 | 0.0033 | - |
737
+ | 4.5455 | 30650 | 0.0045 | - |
738
+ | 4.5529 | 30700 | 0.0047 | - |
739
+ | 4.5603 | 30750 | 0.0035 | - |
740
+ | 4.5677 | 30800 | 0.0041 | - |
741
+ | 4.5751 | 30850 | 0.0044 | - |
742
+ | 4.5825 | 30900 | 0.0031 | - |
743
+ | 4.5899 | 30950 | 0.0034 | - |
744
+ | 4.5974 | 31000 | 0.0026 | - |
745
+ | 4.6048 | 31050 | 0.0037 | - |
746
+ | 4.6122 | 31100 | 0.0052 | - |
747
+ | 4.6196 | 31150 | 0.0039 | - |
748
+ | 4.6270 | 31200 | 0.0049 | - |
749
+ | 4.6344 | 31250 | 0.0032 | - |
750
+ | 4.6419 | 31300 | 0.0026 | - |
751
+ | 4.6493 | 31350 | 0.0028 | - |
752
+ | 4.6567 | 31400 | 0.0038 | - |
753
+ | 4.6641 | 31450 | 0.0048 | - |
754
+ | 4.6715 | 31500 | 0.0039 | - |
755
+ | 4.6789 | 31550 | 0.0036 | - |
756
+ | 4.6863 | 31600 | 0.0029 | - |
757
+ | 4.6938 | 31650 | 0.0039 | - |
758
+ | 4.7012 | 31700 | 0.0041 | - |
759
+ | 4.7086 | 31750 | 0.0044 | - |
760
+ | 4.7160 | 31800 | 0.0037 | - |
761
+ | 4.7234 | 31850 | 0.0049 | - |
762
+ | 4.7308 | 31900 | 0.004 | - |
763
+ | 4.7382 | 31950 | 0.005 | - |
764
+ | 4.7457 | 32000 | 0.0029 | - |
765
+ | 4.7531 | 32050 | 0.0047 | - |
766
+ | 4.7605 | 32100 | 0.0017 | - |
767
+ | 4.7679 | 32150 | 0.0041 | - |
768
+ | 4.7753 | 32200 | 0.0039 | - |
769
+ | 4.7827 | 32250 | 0.0044 | - |
770
+ | 4.7902 | 32300 | 0.0053 | - |
771
+ | 4.7976 | 32350 | 0.0037 | - |
772
+ | 4.8050 | 32400 | 0.0042 | - |
773
+ | 4.8124 | 32450 | 0.005 | - |
774
+ | 4.8198 | 32500 | 0.0022 | - |
775
+ | 4.8272 | 32550 | 0.0043 | - |
776
+ | 4.8346 | 32600 | 0.0026 | - |
777
+ | 4.8421 | 32650 | 0.0053 | - |
778
+ | 4.8495 | 32700 | 0.0024 | - |
779
+ | 4.8569 | 32750 | 0.0029 | - |
780
+ | 4.8643 | 32800 | 0.0067 | - |
781
+ | 4.8717 | 32850 | 0.0041 | - |
782
+ | 4.8791 | 32900 | 0.0019 | - |
783
+ | 4.8865 | 32950 | 0.0054 | - |
784
+ | 4.8940 | 33000 | 0.0042 | - |
785
+ | 4.9014 | 33050 | 0.0038 | - |
786
+ | 4.9088 | 33100 | 0.0033 | - |
787
+ | 4.9162 | 33150 | 0.0043 | - |
788
+ | 4.9236 | 33200 | 0.0031 | - |
789
+ | 4.9310 | 33250 | 0.0043 | - |
790
+ | 4.9385 | 33300 | 0.0038 | - |
791
+ | 4.9459 | 33350 | 0.0041 | - |
792
+ | 4.9533 | 33400 | 0.0047 | - |
793
+ | 4.9607 | 33450 | 0.0042 | - |
794
+ | 4.9681 | 33500 | 0.0041 | - |
795
+ | 4.9755 | 33550 | 0.0029 | - |
796
+ | 4.9829 | 33600 | 0.0038 | - |
797
+ | 4.9904 | 33650 | 0.0054 | - |
798
+ | 4.9978 | 33700 | 0.004 | - |
799
+
800
+ ### Framework Versions
801
+ - Python: 3.10.8
802
+ - SetFit: 1.1.2
803
+ - Sentence Transformers: 5.0.0
804
+ - Transformers: 4.54.1
805
+ - PyTorch: 2.7.1+cu126
806
+ - Datasets: 3.6.0
807
+ - Tokenizers: 0.21.4
808
+
809
+ ## Citation
810
+
811
+ ### BibTeX
812
+ ```bibtex
813
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
814
+ doi = {10.48550/ARXIV.2209.11055},
815
+ url = {https://arxiv.org/abs/2209.11055},
816
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
817
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
818
+ title = {Efficient Few-Shot Learning Without Prompts},
819
+ publisher = {arXiv},
820
+ year = {2022},
821
+ copyright = {Creative Commons Attribution 4.0 International}
822
+ }
823
+ ```
824
+
825
+ <!--
826
+ ## Glossary
827
+
828
+ *Clearly define terms in order to be accessible across audiences.*
829
+ -->
830
+
831
+ <!--
832
+ ## Model Card Authors
833
+
834
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
835
+ -->
836
+
837
+ <!--
838
+ ## Model Card Contact
839
+
840
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
841
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 6,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.54.1",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "5.0.0",
4
+ "transformers": "4.54.1",
5
+ "pytorch": "2.7.1+cu126"
6
+ },
7
+ "model_type": "SentenceTransformer",
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:616f6e62759ee1b786d49f886680c582b3c47a60befe7786152a68f9befbcf90
3
+ size 90864192
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ed7e5ea1afcb1b63e8aa6e3adbf6a888804c312b1a9394e6e3645fafe7a02e8
3
+ size 24929
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 128,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff