Upload folder using huggingface_hub
Browse files- 1_Pooling/config.json +10 -0
- README.md +841 -0
- config.json +25 -0
- config_sentence_transformers.json +14 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 384,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,841 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- setfit
|
| 4 |
+
- sentence-transformers
|
| 5 |
+
- text-classification
|
| 6 |
+
- generated_from_setfit_trainer
|
| 7 |
+
widget:
|
| 8 |
+
- text: '@link FSNamesystem#readLock() | FSPermissionChecker.java'
|
| 9 |
+
- text: previous^checkpoint li | TestSaveNamespace.java
|
| 10 |
+
- text: // the file doesn't have anything | TaskLog.java
|
| 11 |
+
- text: " @param file the file the include directives point to\n\t * @param depth\
|
| 12 |
+
\ depth to which includes are followed, should be one of\n\t * {@link #DEPTH_ZERO}\
|
| 13 |
+
\ or {@link #DEPTH_INFINITE}\n\t * @return an array of include relations\n\t *\
|
| 14 |
+
\ @throws CoreException | IIndex.java"
|
| 15 |
+
- text: // quotes are removed | ScannerUtility.java
|
| 16 |
+
metrics:
|
| 17 |
+
- accuracy
|
| 18 |
+
pipeline_tag: text-classification
|
| 19 |
+
library_name: setfit
|
| 20 |
+
inference: false
|
| 21 |
+
---
|
| 22 |
+
|
| 23 |
+
# SetFit
|
| 24 |
+
|
| 25 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A MultiOutputClassifier instance is used for classification.
|
| 26 |
+
|
| 27 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
| 28 |
+
|
| 29 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
| 30 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
| 31 |
+
|
| 32 |
+
## Model Details
|
| 33 |
+
|
| 34 |
+
### Model Description
|
| 35 |
+
- **Model Type:** SetFit
|
| 36 |
+
<!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
|
| 37 |
+
- **Classification head:** a MultiOutputClassifier instance
|
| 38 |
+
- **Maximum Sequence Length:** 128 tokens
|
| 39 |
+
<!-- - **Number of Classes:** Unknown -->
|
| 40 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
| 41 |
+
<!-- - **Language:** Unknown -->
|
| 42 |
+
<!-- - **License:** Unknown -->
|
| 43 |
+
|
| 44 |
+
### Model Sources
|
| 45 |
+
|
| 46 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
| 47 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
| 48 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
| 49 |
+
|
| 50 |
+
## Uses
|
| 51 |
+
|
| 52 |
+
### Direct Use for Inference
|
| 53 |
+
|
| 54 |
+
First install the SetFit library:
|
| 55 |
+
|
| 56 |
+
```bash
|
| 57 |
+
pip install setfit
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
Then you can load this model and run inference.
|
| 61 |
+
|
| 62 |
+
```python
|
| 63 |
+
from setfit import SetFitModel
|
| 64 |
+
|
| 65 |
+
# Download from the 🤗 Hub
|
| 66 |
+
model = SetFitModel.from_pretrained("setfit_model_id")
|
| 67 |
+
# Run inference
|
| 68 |
+
preds = model("// quotes are removed | ScannerUtility.java")
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
<!--
|
| 72 |
+
### Downstream Use
|
| 73 |
+
|
| 74 |
+
*List how someone could finetune this model on their own dataset.*
|
| 75 |
+
-->
|
| 76 |
+
|
| 77 |
+
<!--
|
| 78 |
+
### Out-of-Scope Use
|
| 79 |
+
|
| 80 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 81 |
+
-->
|
| 82 |
+
|
| 83 |
+
<!--
|
| 84 |
+
## Bias, Risks and Limitations
|
| 85 |
+
|
| 86 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 87 |
+
-->
|
| 88 |
+
|
| 89 |
+
<!--
|
| 90 |
+
### Recommendations
|
| 91 |
+
|
| 92 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 93 |
+
-->
|
| 94 |
+
|
| 95 |
+
## Training Details
|
| 96 |
+
|
| 97 |
+
### Training Set Metrics
|
| 98 |
+
| Training set | Min | Median | Max |
|
| 99 |
+
|:-------------|:----|:--------|:----|
|
| 100 |
+
| Word count | 3 | 15.5217 | 299 |
|
| 101 |
+
|
| 102 |
+
### Training Hyperparameters
|
| 103 |
+
- batch_size: (32, 32)
|
| 104 |
+
- num_epochs: (5, 5)
|
| 105 |
+
- max_steps: -1
|
| 106 |
+
- sampling_strategy: oversampling
|
| 107 |
+
- num_iterations: 20
|
| 108 |
+
- body_learning_rate: (2e-05, 1e-05)
|
| 109 |
+
- head_learning_rate: 0.01
|
| 110 |
+
- loss: CosineSimilarityLoss
|
| 111 |
+
- distance_metric: cosine_distance
|
| 112 |
+
- margin: 0.25
|
| 113 |
+
- end_to_end: False
|
| 114 |
+
- use_amp: False
|
| 115 |
+
- warmup_proportion: 0.1
|
| 116 |
+
- l2_weight: 0.01
|
| 117 |
+
- seed: 42
|
| 118 |
+
- eval_max_steps: -1
|
| 119 |
+
- load_best_model_at_end: False
|
| 120 |
+
|
| 121 |
+
### Training Results
|
| 122 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
| 123 |
+
|:------:|:-----:|:-------------:|:---------------:|
|
| 124 |
+
| 0.0001 | 1 | 0.3106 | - |
|
| 125 |
+
| 0.0074 | 50 | 0.3017 | - |
|
| 126 |
+
| 0.0148 | 100 | 0.2776 | - |
|
| 127 |
+
| 0.0222 | 150 | 0.2638 | - |
|
| 128 |
+
| 0.0297 | 200 | 0.2522 | - |
|
| 129 |
+
| 0.0371 | 250 | 0.2441 | - |
|
| 130 |
+
| 0.0445 | 300 | 0.2316 | - |
|
| 131 |
+
| 0.0519 | 350 | 0.2212 | - |
|
| 132 |
+
| 0.0593 | 400 | 0.205 | - |
|
| 133 |
+
| 0.0667 | 450 | 0.1928 | - |
|
| 134 |
+
| 0.0742 | 500 | 0.1815 | - |
|
| 135 |
+
| 0.0816 | 550 | 0.1649 | - |
|
| 136 |
+
| 0.0890 | 600 | 0.1579 | - |
|
| 137 |
+
| 0.0964 | 650 | 0.1499 | - |
|
| 138 |
+
| 0.1038 | 700 | 0.1426 | - |
|
| 139 |
+
| 0.1112 | 750 | 0.1467 | - |
|
| 140 |
+
| 0.1186 | 800 | 0.1393 | - |
|
| 141 |
+
| 0.1261 | 850 | 0.1273 | - |
|
| 142 |
+
| 0.1335 | 900 | 0.1201 | - |
|
| 143 |
+
| 0.1409 | 950 | 0.1202 | - |
|
| 144 |
+
| 0.1483 | 1000 | 0.1144 | - |
|
| 145 |
+
| 0.1557 | 1050 | 0.112 | - |
|
| 146 |
+
| 0.1631 | 1100 | 0.1067 | - |
|
| 147 |
+
| 0.1705 | 1150 | 0.0966 | - |
|
| 148 |
+
| 0.1780 | 1200 | 0.1005 | - |
|
| 149 |
+
| 0.1854 | 1250 | 0.1001 | - |
|
| 150 |
+
| 0.1928 | 1300 | 0.0972 | - |
|
| 151 |
+
| 0.2002 | 1350 | 0.0866 | - |
|
| 152 |
+
| 0.2076 | 1400 | 0.0794 | - |
|
| 153 |
+
| 0.2150 | 1450 | 0.0863 | - |
|
| 154 |
+
| 0.2225 | 1500 | 0.0831 | - |
|
| 155 |
+
| 0.2299 | 1550 | 0.082 | - |
|
| 156 |
+
| 0.2373 | 1600 | 0.0856 | - |
|
| 157 |
+
| 0.2447 | 1650 | 0.0808 | - |
|
| 158 |
+
| 0.2521 | 1700 | 0.0741 | - |
|
| 159 |
+
| 0.2595 | 1750 | 0.0768 | - |
|
| 160 |
+
| 0.2669 | 1800 | 0.0743 | - |
|
| 161 |
+
| 0.2744 | 1850 | 0.0692 | - |
|
| 162 |
+
| 0.2818 | 1900 | 0.07 | - |
|
| 163 |
+
| 0.2892 | 1950 | 0.0651 | - |
|
| 164 |
+
| 0.2966 | 2000 | 0.0701 | - |
|
| 165 |
+
| 0.3040 | 2050 | 0.0655 | - |
|
| 166 |
+
| 0.3114 | 2100 | 0.0592 | - |
|
| 167 |
+
| 0.3188 | 2150 | 0.0613 | - |
|
| 168 |
+
| 0.3263 | 2200 | 0.0597 | - |
|
| 169 |
+
| 0.3337 | 2250 | 0.0579 | - |
|
| 170 |
+
| 0.3411 | 2300 | 0.0535 | - |
|
| 171 |
+
| 0.3485 | 2350 | 0.0491 | - |
|
| 172 |
+
| 0.3559 | 2400 | 0.0506 | - |
|
| 173 |
+
| 0.3633 | 2450 | 0.055 | - |
|
| 174 |
+
| 0.3708 | 2500 | 0.0512 | - |
|
| 175 |
+
| 0.3782 | 2550 | 0.0553 | - |
|
| 176 |
+
| 0.3856 | 2600 | 0.0525 | - |
|
| 177 |
+
| 0.3930 | 2650 | 0.0478 | - |
|
| 178 |
+
| 0.4004 | 2700 | 0.0401 | - |
|
| 179 |
+
| 0.4078 | 2750 | 0.0479 | - |
|
| 180 |
+
| 0.4152 | 2800 | 0.0421 | - |
|
| 181 |
+
| 0.4227 | 2850 | 0.0369 | - |
|
| 182 |
+
| 0.4301 | 2900 | 0.0418 | - |
|
| 183 |
+
| 0.4375 | 2950 | 0.0424 | - |
|
| 184 |
+
| 0.4449 | 3000 | 0.0378 | - |
|
| 185 |
+
| 0.4523 | 3050 | 0.0406 | - |
|
| 186 |
+
| 0.4597 | 3100 | 0.0346 | - |
|
| 187 |
+
| 0.4672 | 3150 | 0.042 | - |
|
| 188 |
+
| 0.4746 | 3200 | 0.0331 | - |
|
| 189 |
+
| 0.4820 | 3250 | 0.0345 | - |
|
| 190 |
+
| 0.4894 | 3300 | 0.0388 | - |
|
| 191 |
+
| 0.4968 | 3350 | 0.0357 | - |
|
| 192 |
+
| 0.5042 | 3400 | 0.0269 | - |
|
| 193 |
+
| 0.5116 | 3450 | 0.0367 | - |
|
| 194 |
+
| 0.5191 | 3500 | 0.033 | - |
|
| 195 |
+
| 0.5265 | 3550 | 0.0298 | - |
|
| 196 |
+
| 0.5339 | 3600 | 0.0264 | - |
|
| 197 |
+
| 0.5413 | 3650 | 0.0347 | - |
|
| 198 |
+
| 0.5487 | 3700 | 0.032 | - |
|
| 199 |
+
| 0.5561 | 3750 | 0.0287 | - |
|
| 200 |
+
| 0.5635 | 3800 | 0.0276 | - |
|
| 201 |
+
| 0.5710 | 3850 | 0.0299 | - |
|
| 202 |
+
| 0.5784 | 3900 | 0.0286 | - |
|
| 203 |
+
| 0.5858 | 3950 | 0.027 | - |
|
| 204 |
+
| 0.5932 | 4000 | 0.0257 | - |
|
| 205 |
+
| 0.6006 | 4050 | 0.023 | - |
|
| 206 |
+
| 0.6080 | 4100 | 0.0249 | - |
|
| 207 |
+
| 0.6155 | 4150 | 0.0217 | - |
|
| 208 |
+
| 0.6229 | 4200 | 0.0234 | - |
|
| 209 |
+
| 0.6303 | 4250 | 0.0271 | - |
|
| 210 |
+
| 0.6377 | 4300 | 0.0211 | - |
|
| 211 |
+
| 0.6451 | 4350 | 0.0254 | - |
|
| 212 |
+
| 0.6525 | 4400 | 0.0189 | - |
|
| 213 |
+
| 0.6599 | 4450 | 0.0196 | - |
|
| 214 |
+
| 0.6674 | 4500 | 0.0222 | - |
|
| 215 |
+
| 0.6748 | 4550 | 0.0225 | - |
|
| 216 |
+
| 0.6822 | 4600 | 0.0175 | - |
|
| 217 |
+
| 0.6896 | 4650 | 0.0205 | - |
|
| 218 |
+
| 0.6970 | 4700 | 0.0191 | - |
|
| 219 |
+
| 0.7044 | 4750 | 0.0154 | - |
|
| 220 |
+
| 0.7118 | 4800 | 0.022 | - |
|
| 221 |
+
| 0.7193 | 4850 | 0.0149 | - |
|
| 222 |
+
| 0.7267 | 4900 | 0.0173 | - |
|
| 223 |
+
| 0.7341 | 4950 | 0.0181 | - |
|
| 224 |
+
| 0.7415 | 5000 | 0.0189 | - |
|
| 225 |
+
| 0.7489 | 5050 | 0.0195 | - |
|
| 226 |
+
| 0.7563 | 5100 | 0.0138 | - |
|
| 227 |
+
| 0.7638 | 5150 | 0.0169 | - |
|
| 228 |
+
| 0.7712 | 5200 | 0.0147 | - |
|
| 229 |
+
| 0.7786 | 5250 | 0.02 | - |
|
| 230 |
+
| 0.7860 | 5300 | 0.0156 | - |
|
| 231 |
+
| 0.7934 | 5350 | 0.0159 | - |
|
| 232 |
+
| 0.8008 | 5400 | 0.0151 | - |
|
| 233 |
+
| 0.8082 | 5450 | 0.0145 | - |
|
| 234 |
+
| 0.8157 | 5500 | 0.013 | - |
|
| 235 |
+
| 0.8231 | 5550 | 0.0139 | - |
|
| 236 |
+
| 0.8305 | 5600 | 0.0124 | - |
|
| 237 |
+
| 0.8379 | 5650 | 0.0165 | - |
|
| 238 |
+
| 0.8453 | 5700 | 0.0083 | - |
|
| 239 |
+
| 0.8527 | 5750 | 0.0105 | - |
|
| 240 |
+
| 0.8602 | 5800 | 0.01 | - |
|
| 241 |
+
| 0.8676 | 5850 | 0.0143 | - |
|
| 242 |
+
| 0.8750 | 5900 | 0.0155 | - |
|
| 243 |
+
| 0.8824 | 5950 | 0.0158 | - |
|
| 244 |
+
| 0.8898 | 6000 | 0.012 | - |
|
| 245 |
+
| 0.8972 | 6050 | 0.0166 | - |
|
| 246 |
+
| 0.9046 | 6100 | 0.0149 | - |
|
| 247 |
+
| 0.9121 | 6150 | 0.017 | - |
|
| 248 |
+
| 0.9195 | 6200 | 0.0183 | - |
|
| 249 |
+
| 0.9269 | 6250 | 0.0126 | - |
|
| 250 |
+
| 0.9343 | 6300 | 0.018 | - |
|
| 251 |
+
| 0.9417 | 6350 | 0.013 | - |
|
| 252 |
+
| 0.9491 | 6400 | 0.0165 | - |
|
| 253 |
+
| 0.9565 | 6450 | 0.0097 | - |
|
| 254 |
+
| 0.9640 | 6500 | 0.0088 | - |
|
| 255 |
+
| 0.9714 | 6550 | 0.0124 | - |
|
| 256 |
+
| 0.9788 | 6600 | 0.0139 | - |
|
| 257 |
+
| 0.9862 | 6650 | 0.0116 | - |
|
| 258 |
+
| 0.9936 | 6700 | 0.0124 | - |
|
| 259 |
+
| 1.0010 | 6750 | 0.0089 | - |
|
| 260 |
+
| 1.0085 | 6800 | 0.0099 | - |
|
| 261 |
+
| 1.0159 | 6850 | 0.0108 | - |
|
| 262 |
+
| 1.0233 | 6900 | 0.0123 | - |
|
| 263 |
+
| 1.0307 | 6950 | 0.0123 | - |
|
| 264 |
+
| 1.0381 | 7000 | 0.0138 | - |
|
| 265 |
+
| 1.0455 | 7050 | 0.0092 | - |
|
| 266 |
+
| 1.0529 | 7100 | 0.0111 | - |
|
| 267 |
+
| 1.0604 | 7150 | 0.0103 | - |
|
| 268 |
+
| 1.0678 | 7200 | 0.0102 | - |
|
| 269 |
+
| 1.0752 | 7250 | 0.0091 | - |
|
| 270 |
+
| 1.0826 | 7300 | 0.0143 | - |
|
| 271 |
+
| 1.0900 | 7350 | 0.0117 | - |
|
| 272 |
+
| 1.0974 | 7400 | 0.011 | - |
|
| 273 |
+
| 1.1048 | 7450 | 0.0116 | - |
|
| 274 |
+
| 1.1123 | 7500 | 0.0132 | - |
|
| 275 |
+
| 1.1197 | 7550 | 0.0125 | - |
|
| 276 |
+
| 1.1271 | 7600 | 0.0122 | - |
|
| 277 |
+
| 1.1345 | 7650 | 0.0081 | - |
|
| 278 |
+
| 1.1419 | 7700 | 0.012 | - |
|
| 279 |
+
| 1.1493 | 7750 | 0.0098 | - |
|
| 280 |
+
| 1.1568 | 7800 | 0.0118 | - |
|
| 281 |
+
| 1.1642 | 7850 | 0.0153 | - |
|
| 282 |
+
| 1.1716 | 7900 | 0.0125 | - |
|
| 283 |
+
| 1.1790 | 7950 | 0.01 | - |
|
| 284 |
+
| 1.1864 | 8000 | 0.0089 | - |
|
| 285 |
+
| 1.1938 | 8050 | 0.0103 | - |
|
| 286 |
+
| 1.2012 | 8100 | 0.0102 | - |
|
| 287 |
+
| 1.2087 | 8150 | 0.0124 | - |
|
| 288 |
+
| 1.2161 | 8200 | 0.0116 | - |
|
| 289 |
+
| 1.2235 | 8250 | 0.0072 | - |
|
| 290 |
+
| 1.2309 | 8300 | 0.0106 | - |
|
| 291 |
+
| 1.2383 | 8350 | 0.0085 | - |
|
| 292 |
+
| 1.2457 | 8400 | 0.009 | - |
|
| 293 |
+
| 1.2532 | 8450 | 0.0074 | - |
|
| 294 |
+
| 1.2606 | 8500 | 0.0109 | - |
|
| 295 |
+
| 1.2680 | 8550 | 0.0087 | - |
|
| 296 |
+
| 1.2754 | 8600 | 0.0112 | - |
|
| 297 |
+
| 1.2828 | 8650 | 0.0098 | - |
|
| 298 |
+
| 1.2902 | 8700 | 0.0092 | - |
|
| 299 |
+
| 1.2976 | 8750 | 0.0073 | - |
|
| 300 |
+
| 1.3051 | 8800 | 0.0113 | - |
|
| 301 |
+
| 1.3125 | 8850 | 0.01 | - |
|
| 302 |
+
| 1.3199 | 8900 | 0.0083 | - |
|
| 303 |
+
| 1.3273 | 8950 | 0.0119 | - |
|
| 304 |
+
| 1.3347 | 9000 | 0.0084 | - |
|
| 305 |
+
| 1.3421 | 9050 | 0.0116 | - |
|
| 306 |
+
| 1.3495 | 9100 | 0.0083 | - |
|
| 307 |
+
| 1.3570 | 9150 | 0.0111 | - |
|
| 308 |
+
| 1.3644 | 9200 | 0.0084 | - |
|
| 309 |
+
| 1.3718 | 9250 | 0.0107 | - |
|
| 310 |
+
| 1.3792 | 9300 | 0.0107 | - |
|
| 311 |
+
| 1.3866 | 9350 | 0.0124 | - |
|
| 312 |
+
| 1.3940 | 9400 | 0.0069 | - |
|
| 313 |
+
| 1.4015 | 9450 | 0.0066 | - |
|
| 314 |
+
| 1.4089 | 9500 | 0.0069 | - |
|
| 315 |
+
| 1.4163 | 9550 | 0.0088 | - |
|
| 316 |
+
| 1.4237 | 9600 | 0.008 | - |
|
| 317 |
+
| 1.4311 | 9650 | 0.0076 | - |
|
| 318 |
+
| 1.4385 | 9700 | 0.0106 | - |
|
| 319 |
+
| 1.4459 | 9750 | 0.0087 | - |
|
| 320 |
+
| 1.4534 | 9800 | 0.0062 | - |
|
| 321 |
+
| 1.4608 | 9850 | 0.0072 | - |
|
| 322 |
+
| 1.4682 | 9900 | 0.0093 | - |
|
| 323 |
+
| 1.4756 | 9950 | 0.0054 | - |
|
| 324 |
+
| 1.4830 | 10000 | 0.0112 | - |
|
| 325 |
+
| 1.4904 | 10050 | 0.0087 | - |
|
| 326 |
+
| 1.4978 | 10100 | 0.0069 | - |
|
| 327 |
+
| 1.5053 | 10150 | 0.0086 | - |
|
| 328 |
+
| 1.5127 | 10200 | 0.0089 | - |
|
| 329 |
+
| 1.5201 | 10250 | 0.0089 | - |
|
| 330 |
+
| 1.5275 | 10300 | 0.0081 | - |
|
| 331 |
+
| 1.5349 | 10350 | 0.0109 | - |
|
| 332 |
+
| 1.5423 | 10400 | 0.0098 | - |
|
| 333 |
+
| 1.5498 | 10450 | 0.0078 | - |
|
| 334 |
+
| 1.5572 | 10500 | 0.0086 | - |
|
| 335 |
+
| 1.5646 | 10550 | 0.0085 | - |
|
| 336 |
+
| 1.5720 | 10600 | 0.0083 | - |
|
| 337 |
+
| 1.5794 | 10650 | 0.0087 | - |
|
| 338 |
+
| 1.5868 | 10700 | 0.0089 | - |
|
| 339 |
+
| 1.5942 | 10750 | 0.0081 | - |
|
| 340 |
+
| 1.6017 | 10800 | 0.0067 | - |
|
| 341 |
+
| 1.6091 | 10850 | 0.0054 | - |
|
| 342 |
+
| 1.6165 | 10900 | 0.0096 | - |
|
| 343 |
+
| 1.6239 | 10950 | 0.0074 | - |
|
| 344 |
+
| 1.6313 | 11000 | 0.0069 | - |
|
| 345 |
+
| 1.6387 | 11050 | 0.0089 | - |
|
| 346 |
+
| 1.6462 | 11100 | 0.0103 | - |
|
| 347 |
+
| 1.6536 | 11150 | 0.008 | - |
|
| 348 |
+
| 1.6610 | 11200 | 0.0084 | - |
|
| 349 |
+
| 1.6684 | 11250 | 0.0081 | - |
|
| 350 |
+
| 1.6758 | 11300 | 0.0063 | - |
|
| 351 |
+
| 1.6832 | 11350 | 0.0073 | - |
|
| 352 |
+
| 1.6906 | 11400 | 0.0066 | - |
|
| 353 |
+
| 1.6981 | 11450 | 0.0088 | - |
|
| 354 |
+
| 1.7055 | 11500 | 0.0069 | - |
|
| 355 |
+
| 1.7129 | 11550 | 0.0085 | - |
|
| 356 |
+
| 1.7203 | 11600 | 0.0096 | - |
|
| 357 |
+
| 1.7277 | 11650 | 0.0063 | - |
|
| 358 |
+
| 1.7351 | 11700 | 0.0093 | - |
|
| 359 |
+
| 1.7425 | 11750 | 0.0068 | - |
|
| 360 |
+
| 1.7500 | 11800 | 0.0079 | - |
|
| 361 |
+
| 1.7574 | 11850 | 0.0073 | - |
|
| 362 |
+
| 1.7648 | 11900 | 0.0068 | - |
|
| 363 |
+
| 1.7722 | 11950 | 0.0099 | - |
|
| 364 |
+
| 1.7796 | 12000 | 0.0069 | - |
|
| 365 |
+
| 1.7870 | 12050 | 0.0061 | - |
|
| 366 |
+
| 1.7945 | 12100 | 0.0096 | - |
|
| 367 |
+
| 1.8019 | 12150 | 0.0065 | - |
|
| 368 |
+
| 1.8093 | 12200 | 0.0119 | - |
|
| 369 |
+
| 1.8167 | 12250 | 0.0067 | - |
|
| 370 |
+
| 1.8241 | 12300 | 0.0084 | - |
|
| 371 |
+
| 1.8315 | 12350 | 0.0053 | - |
|
| 372 |
+
| 1.8389 | 12400 | 0.0074 | - |
|
| 373 |
+
| 1.8464 | 12450 | 0.0067 | - |
|
| 374 |
+
| 1.8538 | 12500 | 0.0061 | - |
|
| 375 |
+
| 1.8612 | 12550 | 0.0056 | - |
|
| 376 |
+
| 1.8686 | 12600 | 0.0051 | - |
|
| 377 |
+
| 1.8760 | 12650 | 0.0043 | - |
|
| 378 |
+
| 1.8834 | 12700 | 0.0066 | - |
|
| 379 |
+
| 1.8908 | 12750 | 0.0065 | - |
|
| 380 |
+
| 1.8983 | 12800 | 0.0048 | - |
|
| 381 |
+
| 1.9057 | 12850 | 0.0047 | - |
|
| 382 |
+
| 1.9131 | 12900 | 0.0065 | - |
|
| 383 |
+
| 1.9205 | 12950 | 0.0064 | - |
|
| 384 |
+
| 1.9279 | 13000 | 0.0056 | - |
|
| 385 |
+
| 1.9353 | 13050 | 0.0088 | - |
|
| 386 |
+
| 1.9428 | 13100 | 0.009 | - |
|
| 387 |
+
| 1.9502 | 13150 | 0.0086 | - |
|
| 388 |
+
| 1.9576 | 13200 | 0.0097 | - |
|
| 389 |
+
| 1.9650 | 13250 | 0.0062 | - |
|
| 390 |
+
| 1.9724 | 13300 | 0.0079 | - |
|
| 391 |
+
| 1.9798 | 13350 | 0.0094 | - |
|
| 392 |
+
| 1.9872 | 13400 | 0.0056 | - |
|
| 393 |
+
| 1.9947 | 13450 | 0.0041 | - |
|
| 394 |
+
| 2.0021 | 13500 | 0.0062 | - |
|
| 395 |
+
| 2.0095 | 13550 | 0.0063 | - |
|
| 396 |
+
| 2.0169 | 13600 | 0.0056 | - |
|
| 397 |
+
| 2.0243 | 13650 | 0.0056 | - |
|
| 398 |
+
| 2.0317 | 13700 | 0.0063 | - |
|
| 399 |
+
| 2.0392 | 13750 | 0.0052 | - |
|
| 400 |
+
| 2.0466 | 13800 | 0.0058 | - |
|
| 401 |
+
| 2.0540 | 13850 | 0.006 | - |
|
| 402 |
+
| 2.0614 | 13900 | 0.0071 | - |
|
| 403 |
+
| 2.0688 | 13950 | 0.0095 | - |
|
| 404 |
+
| 2.0762 | 14000 | 0.0063 | - |
|
| 405 |
+
| 2.0836 | 14050 | 0.0056 | - |
|
| 406 |
+
| 2.0911 | 14100 | 0.0044 | - |
|
| 407 |
+
| 2.0985 | 14150 | 0.0051 | - |
|
| 408 |
+
| 2.1059 | 14200 | 0.0075 | - |
|
| 409 |
+
| 2.1133 | 14250 | 0.0055 | - |
|
| 410 |
+
| 2.1207 | 14300 | 0.0048 | - |
|
| 411 |
+
| 2.1281 | 14350 | 0.0052 | - |
|
| 412 |
+
| 2.1355 | 14400 | 0.0094 | - |
|
| 413 |
+
| 2.1430 | 14450 | 0.0068 | - |
|
| 414 |
+
| 2.1504 | 14500 | 0.004 | - |
|
| 415 |
+
| 2.1578 | 14550 | 0.004 | - |
|
| 416 |
+
| 2.1652 | 14600 | 0.0046 | - |
|
| 417 |
+
| 2.1726 | 14650 | 0.006 | - |
|
| 418 |
+
| 2.1800 | 14700 | 0.0075 | - |
|
| 419 |
+
| 2.1875 | 14750 | 0.0055 | - |
|
| 420 |
+
| 2.1949 | 14800 | 0.0038 | - |
|
| 421 |
+
| 2.2023 | 14850 | 0.0073 | - |
|
| 422 |
+
| 2.2097 | 14900 | 0.0067 | - |
|
| 423 |
+
| 2.2171 | 14950 | 0.0066 | - |
|
| 424 |
+
| 2.2245 | 15000 | 0.007 | - |
|
| 425 |
+
| 2.2319 | 15050 | 0.0047 | - |
|
| 426 |
+
| 2.2394 | 15100 | 0.0057 | - |
|
| 427 |
+
| 2.2468 | 15150 | 0.0041 | - |
|
| 428 |
+
| 2.2542 | 15200 | 0.0058 | - |
|
| 429 |
+
| 2.2616 | 15250 | 0.0082 | - |
|
| 430 |
+
| 2.2690 | 15300 | 0.0049 | - |
|
| 431 |
+
| 2.2764 | 15350 | 0.0053 | - |
|
| 432 |
+
| 2.2838 | 15400 | 0.0055 | - |
|
| 433 |
+
| 2.2913 | 15450 | 0.0056 | - |
|
| 434 |
+
| 2.2987 | 15500 | 0.004 | - |
|
| 435 |
+
| 2.3061 | 15550 | 0.0055 | - |
|
| 436 |
+
| 2.3135 | 15600 | 0.0076 | - |
|
| 437 |
+
| 2.3209 | 15650 | 0.0089 | - |
|
| 438 |
+
| 2.3283 | 15700 | 0.0058 | - |
|
| 439 |
+
| 2.3358 | 15750 | 0.0055 | - |
|
| 440 |
+
| 2.3432 | 15800 | 0.0047 | - |
|
| 441 |
+
| 2.3506 | 15850 | 0.0052 | - |
|
| 442 |
+
| 2.3580 | 15900 | 0.005 | - |
|
| 443 |
+
| 2.3654 | 15950 | 0.0044 | - |
|
| 444 |
+
| 2.3728 | 16000 | 0.0086 | - |
|
| 445 |
+
| 2.3802 | 16050 | 0.0046 | - |
|
| 446 |
+
| 2.3877 | 16100 | 0.0036 | - |
|
| 447 |
+
| 2.3951 | 16150 | 0.0061 | - |
|
| 448 |
+
| 2.4025 | 16200 | 0.0054 | - |
|
| 449 |
+
| 2.4099 | 16250 | 0.0062 | - |
|
| 450 |
+
| 2.4173 | 16300 | 0.0055 | - |
|
| 451 |
+
| 2.4247 | 16350 | 0.0042 | - |
|
| 452 |
+
| 2.4322 | 16400 | 0.0058 | - |
|
| 453 |
+
| 2.4396 | 16450 | 0.0064 | - |
|
| 454 |
+
| 2.4470 | 16500 | 0.0042 | - |
|
| 455 |
+
| 2.4544 | 16550 | 0.0047 | - |
|
| 456 |
+
| 2.4618 | 16600 | 0.0062 | - |
|
| 457 |
+
| 2.4692 | 16650 | 0.0057 | - |
|
| 458 |
+
| 2.4766 | 16700 | 0.0048 | - |
|
| 459 |
+
| 2.4841 | 16750 | 0.0054 | - |
|
| 460 |
+
| 2.4915 | 16800 | 0.0061 | - |
|
| 461 |
+
| 2.4989 | 16850 | 0.0059 | - |
|
| 462 |
+
| 2.5063 | 16900 | 0.0041 | - |
|
| 463 |
+
| 2.5137 | 16950 | 0.0056 | - |
|
| 464 |
+
| 2.5211 | 17000 | 0.0058 | - |
|
| 465 |
+
| 2.5285 | 17050 | 0.0037 | - |
|
| 466 |
+
| 2.5360 | 17100 | 0.0064 | - |
|
| 467 |
+
| 2.5434 | 17150 | 0.0058 | - |
|
| 468 |
+
| 2.5508 | 17200 | 0.006 | - |
|
| 469 |
+
| 2.5582 | 17250 | 0.0089 | - |
|
| 470 |
+
| 2.5656 | 17300 | 0.0045 | - |
|
| 471 |
+
| 2.5730 | 17350 | 0.0046 | - |
|
| 472 |
+
| 2.5805 | 17400 | 0.0047 | - |
|
| 473 |
+
| 2.5879 | 17450 | 0.0029 | - |
|
| 474 |
+
| 2.5953 | 17500 | 0.0068 | - |
|
| 475 |
+
| 2.6027 | 17550 | 0.0036 | - |
|
| 476 |
+
| 2.6101 | 17600 | 0.0037 | - |
|
| 477 |
+
| 2.6175 | 17650 | 0.0042 | - |
|
| 478 |
+
| 2.6249 | 17700 | 0.0056 | - |
|
| 479 |
+
| 2.6324 | 17750 | 0.0084 | - |
|
| 480 |
+
| 2.6398 | 17800 | 0.0045 | - |
|
| 481 |
+
| 2.6472 | 17850 | 0.0065 | - |
|
| 482 |
+
| 2.6546 | 17900 | 0.0038 | - |
|
| 483 |
+
| 2.6620 | 17950 | 0.0051 | - |
|
| 484 |
+
| 2.6694 | 18000 | 0.0057 | - |
|
| 485 |
+
| 2.6769 | 18050 | 0.0037 | - |
|
| 486 |
+
| 2.6843 | 18100 | 0.0042 | - |
|
| 487 |
+
| 2.6917 | 18150 | 0.0052 | - |
|
| 488 |
+
| 2.6991 | 18200 | 0.0053 | - |
|
| 489 |
+
| 2.7065 | 18250 | 0.0054 | - |
|
| 490 |
+
| 2.7139 | 18300 | 0.0025 | - |
|
| 491 |
+
| 2.7213 | 18350 | 0.0045 | - |
|
| 492 |
+
| 2.7288 | 18400 | 0.0039 | - |
|
| 493 |
+
| 2.7362 | 18450 | 0.0064 | - |
|
| 494 |
+
| 2.7436 | 18500 | 0.0031 | - |
|
| 495 |
+
| 2.7510 | 18550 | 0.0057 | - |
|
| 496 |
+
| 2.7584 | 18600 | 0.0052 | - |
|
| 497 |
+
| 2.7658 | 18650 | 0.0049 | - |
|
| 498 |
+
| 2.7732 | 18700 | 0.0062 | - |
|
| 499 |
+
| 2.7807 | 18750 | 0.0041 | - |
|
| 500 |
+
| 2.7881 | 18800 | 0.0062 | - |
|
| 501 |
+
| 2.7955 | 18850 | 0.005 | - |
|
| 502 |
+
| 2.8029 | 18900 | 0.0057 | - |
|
| 503 |
+
| 2.8103 | 18950 | 0.0051 | - |
|
| 504 |
+
| 2.8177 | 19000 | 0.0035 | - |
|
| 505 |
+
| 2.8252 | 19050 | 0.0045 | - |
|
| 506 |
+
| 2.8326 | 19100 | 0.0048 | - |
|
| 507 |
+
| 2.8400 | 19150 | 0.002 | - |
|
| 508 |
+
| 2.8474 | 19200 | 0.0058 | - |
|
| 509 |
+
| 2.8548 | 19250 | 0.0041 | - |
|
| 510 |
+
| 2.8622 | 19300 | 0.0044 | - |
|
| 511 |
+
| 2.8696 | 19350 | 0.0062 | - |
|
| 512 |
+
| 2.8771 | 19400 | 0.0042 | - |
|
| 513 |
+
| 2.8845 | 19450 | 0.0036 | - |
|
| 514 |
+
| 2.8919 | 19500 | 0.005 | - |
|
| 515 |
+
| 2.8993 | 19550 | 0.0056 | - |
|
| 516 |
+
| 2.9067 | 19600 | 0.0056 | - |
|
| 517 |
+
| 2.9141 | 19650 | 0.0039 | - |
|
| 518 |
+
| 2.9215 | 19700 | 0.0058 | - |
|
| 519 |
+
| 2.9290 | 19750 | 0.0053 | - |
|
| 520 |
+
| 2.9364 | 19800 | 0.0058 | - |
|
| 521 |
+
| 2.9438 | 19850 | 0.0044 | - |
|
| 522 |
+
| 2.9512 | 19900 | 0.0028 | - |
|
| 523 |
+
| 2.9586 | 19950 | 0.0046 | - |
|
| 524 |
+
| 2.9660 | 20000 | 0.0059 | - |
|
| 525 |
+
| 2.9735 | 20050 | 0.0049 | - |
|
| 526 |
+
| 2.9809 | 20100 | 0.0048 | - |
|
| 527 |
+
| 2.9883 | 20150 | 0.0039 | - |
|
| 528 |
+
| 2.9957 | 20200 | 0.0062 | - |
|
| 529 |
+
| 3.0031 | 20250 | 0.0034 | - |
|
| 530 |
+
| 3.0105 | 20300 | 0.0048 | - |
|
| 531 |
+
| 3.0179 | 20350 | 0.0035 | - |
|
| 532 |
+
| 3.0254 | 20400 | 0.0048 | - |
|
| 533 |
+
| 3.0328 | 20450 | 0.0063 | - |
|
| 534 |
+
| 3.0402 | 20500 | 0.0047 | - |
|
| 535 |
+
| 3.0476 | 20550 | 0.0041 | - |
|
| 536 |
+
| 3.0550 | 20600 | 0.0046 | - |
|
| 537 |
+
| 3.0624 | 20650 | 0.0041 | - |
|
| 538 |
+
| 3.0699 | 20700 | 0.0052 | - |
|
| 539 |
+
| 3.0773 | 20750 | 0.0031 | - |
|
| 540 |
+
| 3.0847 | 20800 | 0.0042 | - |
|
| 541 |
+
| 3.0921 | 20850 | 0.0045 | - |
|
| 542 |
+
| 3.0995 | 20900 | 0.0049 | - |
|
| 543 |
+
| 3.1069 | 20950 | 0.0033 | - |
|
| 544 |
+
| 3.1143 | 21000 | 0.0064 | - |
|
| 545 |
+
| 3.1218 | 21050 | 0.0039 | - |
|
| 546 |
+
| 3.1292 | 21100 | 0.0058 | - |
|
| 547 |
+
| 3.1366 | 21150 | 0.004 | - |
|
| 548 |
+
| 3.1440 | 21200 | 0.0031 | - |
|
| 549 |
+
| 3.1514 | 21250 | 0.0028 | - |
|
| 550 |
+
| 3.1588 | 21300 | 0.0038 | - |
|
| 551 |
+
| 3.1662 | 21350 | 0.0048 | - |
|
| 552 |
+
| 3.1737 | 21400 | 0.0047 | - |
|
| 553 |
+
| 3.1811 | 21450 | 0.0057 | - |
|
| 554 |
+
| 3.1885 | 21500 | 0.0037 | - |
|
| 555 |
+
| 3.1959 | 21550 | 0.0039 | - |
|
| 556 |
+
| 3.2033 | 21600 | 0.0045 | - |
|
| 557 |
+
| 3.2107 | 21650 | 0.005 | - |
|
| 558 |
+
| 3.2182 | 21700 | 0.0034 | - |
|
| 559 |
+
| 3.2256 | 21750 | 0.0048 | - |
|
| 560 |
+
| 3.2330 | 21800 | 0.0034 | - |
|
| 561 |
+
| 3.2404 | 21850 | 0.0056 | - |
|
| 562 |
+
| 3.2478 | 21900 | 0.0041 | - |
|
| 563 |
+
| 3.2552 | 21950 | 0.0048 | - |
|
| 564 |
+
| 3.2626 | 22000 | 0.0066 | - |
|
| 565 |
+
| 3.2701 | 22050 | 0.0044 | - |
|
| 566 |
+
| 3.2775 | 22100 | 0.0046 | - |
|
| 567 |
+
| 3.2849 | 22150 | 0.0046 | - |
|
| 568 |
+
| 3.2923 | 22200 | 0.0038 | - |
|
| 569 |
+
| 3.2997 | 22250 | 0.0036 | - |
|
| 570 |
+
| 3.3071 | 22300 | 0.0023 | - |
|
| 571 |
+
| 3.3145 | 22350 | 0.0049 | - |
|
| 572 |
+
| 3.3220 | 22400 | 0.0041 | - |
|
| 573 |
+
| 3.3294 | 22450 | 0.0036 | - |
|
| 574 |
+
| 3.3368 | 22500 | 0.004 | - |
|
| 575 |
+
| 3.3442 | 22550 | 0.0054 | - |
|
| 576 |
+
| 3.3516 | 22600 | 0.0033 | - |
|
| 577 |
+
| 3.3590 | 22650 | 0.0054 | - |
|
| 578 |
+
| 3.3665 | 22700 | 0.0056 | - |
|
| 579 |
+
| 3.3739 | 22750 | 0.0051 | - |
|
| 580 |
+
| 3.3813 | 22800 | 0.0033 | - |
|
| 581 |
+
| 3.3887 | 22850 | 0.0046 | - |
|
| 582 |
+
| 3.3961 | 22900 | 0.0052 | - |
|
| 583 |
+
| 3.4035 | 22950 | 0.0043 | - |
|
| 584 |
+
| 3.4109 | 23000 | 0.0051 | - |
|
| 585 |
+
| 3.4184 | 23050 | 0.0036 | - |
|
| 586 |
+
| 3.4258 | 23100 | 0.0051 | - |
|
| 587 |
+
| 3.4332 | 23150 | 0.0061 | - |
|
| 588 |
+
| 3.4406 | 23200 | 0.004 | - |
|
| 589 |
+
| 3.4480 | 23250 | 0.0036 | - |
|
| 590 |
+
| 3.4554 | 23300 | 0.0035 | - |
|
| 591 |
+
| 3.4629 | 23350 | 0.0063 | - |
|
| 592 |
+
| 3.4703 | 23400 | 0.0051 | - |
|
| 593 |
+
| 3.4777 | 23450 | 0.0024 | - |
|
| 594 |
+
| 3.4851 | 23500 | 0.0033 | - |
|
| 595 |
+
| 3.4925 | 23550 | 0.0048 | - |
|
| 596 |
+
| 3.4999 | 23600 | 0.0035 | - |
|
| 597 |
+
| 3.5073 | 23650 | 0.0041 | - |
|
| 598 |
+
| 3.5148 | 23700 | 0.0035 | - |
|
| 599 |
+
| 3.5222 | 23750 | 0.0031 | - |
|
| 600 |
+
| 3.5296 | 23800 | 0.0031 | - |
|
| 601 |
+
| 3.5370 | 23850 | 0.0042 | - |
|
| 602 |
+
| 3.5444 | 23900 | 0.0038 | - |
|
| 603 |
+
| 3.5518 | 23950 | 0.0042 | - |
|
| 604 |
+
| 3.5592 | 24000 | 0.0048 | - |
|
| 605 |
+
| 3.5667 | 24050 | 0.0018 | - |
|
| 606 |
+
| 3.5741 | 24100 | 0.005 | - |
|
| 607 |
+
| 3.5815 | 24150 | 0.0073 | - |
|
| 608 |
+
| 3.5889 | 24200 | 0.0056 | - |
|
| 609 |
+
| 3.5963 | 24250 | 0.0037 | - |
|
| 610 |
+
| 3.6037 | 24300 | 0.0065 | - |
|
| 611 |
+
| 3.6112 | 24350 | 0.005 | - |
|
| 612 |
+
| 3.6186 | 24400 | 0.0051 | - |
|
| 613 |
+
| 3.6260 | 24450 | 0.0039 | - |
|
| 614 |
+
| 3.6334 | 24500 | 0.0055 | - |
|
| 615 |
+
| 3.6408 | 24550 | 0.0035 | - |
|
| 616 |
+
| 3.6482 | 24600 | 0.0039 | - |
|
| 617 |
+
| 3.6556 | 24650 | 0.0044 | - |
|
| 618 |
+
| 3.6631 | 24700 | 0.0045 | - |
|
| 619 |
+
| 3.6705 | 24750 | 0.0029 | - |
|
| 620 |
+
| 3.6779 | 24800 | 0.0025 | - |
|
| 621 |
+
| 3.6853 | 24850 | 0.0032 | - |
|
| 622 |
+
| 3.6927 | 24900 | 0.0035 | - |
|
| 623 |
+
| 3.7001 | 24950 | 0.0045 | - |
|
| 624 |
+
| 3.7075 | 25000 | 0.0043 | - |
|
| 625 |
+
| 3.7150 | 25050 | 0.0035 | - |
|
| 626 |
+
| 3.7224 | 25100 | 0.0039 | - |
|
| 627 |
+
| 3.7298 | 25150 | 0.0036 | - |
|
| 628 |
+
| 3.7372 | 25200 | 0.0035 | - |
|
| 629 |
+
| 3.7446 | 25250 | 0.0043 | - |
|
| 630 |
+
| 3.7520 | 25300 | 0.0027 | - |
|
| 631 |
+
| 3.7595 | 25350 | 0.0034 | - |
|
| 632 |
+
| 3.7669 | 25400 | 0.0045 | - |
|
| 633 |
+
| 3.7743 | 25450 | 0.0031 | - |
|
| 634 |
+
| 3.7817 | 25500 | 0.0033 | - |
|
| 635 |
+
| 3.7891 | 25550 | 0.0045 | - |
|
| 636 |
+
| 3.7965 | 25600 | 0.0046 | - |
|
| 637 |
+
| 3.8039 | 25650 | 0.0026 | - |
|
| 638 |
+
| 3.8114 | 25700 | 0.0053 | - |
|
| 639 |
+
| 3.8188 | 25750 | 0.0033 | - |
|
| 640 |
+
| 3.8262 | 25800 | 0.0046 | - |
|
| 641 |
+
| 3.8336 | 25850 | 0.0035 | - |
|
| 642 |
+
| 3.8410 | 25900 | 0.0045 | - |
|
| 643 |
+
| 3.8484 | 25950 | 0.0036 | - |
|
| 644 |
+
| 3.8559 | 26000 | 0.0035 | - |
|
| 645 |
+
| 3.8633 | 26050 | 0.0037 | - |
|
| 646 |
+
| 3.8707 | 26100 | 0.0024 | - |
|
| 647 |
+
| 3.8781 | 26150 | 0.0049 | - |
|
| 648 |
+
| 3.8855 | 26200 | 0.0028 | - |
|
| 649 |
+
| 3.8929 | 26250 | 0.0055 | - |
|
| 650 |
+
| 3.9003 | 26300 | 0.0029 | - |
|
| 651 |
+
| 3.9078 | 26350 | 0.0052 | - |
|
| 652 |
+
| 3.9152 | 26400 | 0.0043 | - |
|
| 653 |
+
| 3.9226 | 26450 | 0.0042 | - |
|
| 654 |
+
| 3.9300 | 26500 | 0.0059 | - |
|
| 655 |
+
| 3.9374 | 26550 | 0.0038 | - |
|
| 656 |
+
| 3.9448 | 26600 | 0.0047 | - |
|
| 657 |
+
| 3.9522 | 26650 | 0.0043 | - |
|
| 658 |
+
| 3.9597 | 26700 | 0.0034 | - |
|
| 659 |
+
| 3.9671 | 26750 | 0.005 | - |
|
| 660 |
+
| 3.9745 | 26800 | 0.004 | - |
|
| 661 |
+
| 3.9819 | 26850 | 0.0053 | - |
|
| 662 |
+
| 3.9893 | 26900 | 0.0046 | - |
|
| 663 |
+
| 3.9967 | 26950 | 0.0053 | - |
|
| 664 |
+
| 4.0042 | 27000 | 0.0038 | - |
|
| 665 |
+
| 4.0116 | 27050 | 0.0038 | - |
|
| 666 |
+
| 4.0190 | 27100 | 0.0032 | - |
|
| 667 |
+
| 4.0264 | 27150 | 0.0038 | - |
|
| 668 |
+
| 4.0338 | 27200 | 0.0042 | - |
|
| 669 |
+
| 4.0412 | 27250 | 0.005 | - |
|
| 670 |
+
| 4.0486 | 27300 | 0.0031 | - |
|
| 671 |
+
| 4.0561 | 27350 | 0.0041 | - |
|
| 672 |
+
| 4.0635 | 27400 | 0.0033 | - |
|
| 673 |
+
| 4.0709 | 27450 | 0.0028 | - |
|
| 674 |
+
| 4.0783 | 27500 | 0.0054 | - |
|
| 675 |
+
| 4.0857 | 27550 | 0.0038 | - |
|
| 676 |
+
| 4.0931 | 27600 | 0.0037 | - |
|
| 677 |
+
| 4.1005 | 27650 | 0.0037 | - |
|
| 678 |
+
| 4.1080 | 27700 | 0.0033 | - |
|
| 679 |
+
| 4.1154 | 27750 | 0.0041 | - |
|
| 680 |
+
| 4.1228 | 27800 | 0.0038 | - |
|
| 681 |
+
| 4.1302 | 27850 | 0.0029 | - |
|
| 682 |
+
| 4.1376 | 27900 | 0.0047 | - |
|
| 683 |
+
| 4.1450 | 27950 | 0.0038 | - |
|
| 684 |
+
| 4.1525 | 28000 | 0.0041 | - |
|
| 685 |
+
| 4.1599 | 28050 | 0.0036 | - |
|
| 686 |
+
| 4.1673 | 28100 | 0.003 | - |
|
| 687 |
+
| 4.1747 | 28150 | 0.005 | - |
|
| 688 |
+
| 4.1821 | 28200 | 0.0039 | - |
|
| 689 |
+
| 4.1895 | 28250 | 0.005 | - |
|
| 690 |
+
| 4.1969 | 28300 | 0.0035 | - |
|
| 691 |
+
| 4.2044 | 28350 | 0.0036 | - |
|
| 692 |
+
| 4.2118 | 28400 | 0.0053 | - |
|
| 693 |
+
| 4.2192 | 28450 | 0.0041 | - |
|
| 694 |
+
| 4.2266 | 28500 | 0.0042 | - |
|
| 695 |
+
| 4.2340 | 28550 | 0.0058 | - |
|
| 696 |
+
| 4.2414 | 28600 | 0.0035 | - |
|
| 697 |
+
| 4.2489 | 28650 | 0.0036 | - |
|
| 698 |
+
| 4.2563 | 28700 | 0.0041 | - |
|
| 699 |
+
| 4.2637 | 28750 | 0.0046 | - |
|
| 700 |
+
| 4.2711 | 28800 | 0.0048 | - |
|
| 701 |
+
| 4.2785 | 28850 | 0.0035 | - |
|
| 702 |
+
| 4.2859 | 28900 | 0.0041 | - |
|
| 703 |
+
| 4.2933 | 28950 | 0.0034 | - |
|
| 704 |
+
| 4.3008 | 29000 | 0.0022 | - |
|
| 705 |
+
| 4.3082 | 29050 | 0.005 | - |
|
| 706 |
+
| 4.3156 | 29100 | 0.0042 | - |
|
| 707 |
+
| 4.3230 | 29150 | 0.0031 | - |
|
| 708 |
+
| 4.3304 | 29200 | 0.0052 | - |
|
| 709 |
+
| 4.3378 | 29250 | 0.0032 | - |
|
| 710 |
+
| 4.3452 | 29300 | 0.0027 | - |
|
| 711 |
+
| 4.3527 | 29350 | 0.0034 | - |
|
| 712 |
+
| 4.3601 | 29400 | 0.0045 | - |
|
| 713 |
+
| 4.3675 | 29450 | 0.0031 | - |
|
| 714 |
+
| 4.3749 | 29500 | 0.0036 | - |
|
| 715 |
+
| 4.3823 | 29550 | 0.0054 | - |
|
| 716 |
+
| 4.3897 | 29600 | 0.0036 | - |
|
| 717 |
+
| 4.3972 | 29650 | 0.0023 | - |
|
| 718 |
+
| 4.4046 | 29700 | 0.0043 | - |
|
| 719 |
+
| 4.4120 | 29750 | 0.0048 | - |
|
| 720 |
+
| 4.4194 | 29800 | 0.0027 | - |
|
| 721 |
+
| 4.4268 | 29850 | 0.0027 | - |
|
| 722 |
+
| 4.4342 | 29900 | 0.0026 | - |
|
| 723 |
+
| 4.4416 | 29950 | 0.0038 | - |
|
| 724 |
+
| 4.4491 | 30000 | 0.0033 | - |
|
| 725 |
+
| 4.4565 | 30050 | 0.0025 | - |
|
| 726 |
+
| 4.4639 | 30100 | 0.003 | - |
|
| 727 |
+
| 4.4713 | 30150 | 0.0051 | - |
|
| 728 |
+
| 4.4787 | 30200 | 0.0043 | - |
|
| 729 |
+
| 4.4861 | 30250 | 0.0047 | - |
|
| 730 |
+
| 4.4935 | 30300 | 0.0056 | - |
|
| 731 |
+
| 4.5010 | 30350 | 0.0043 | - |
|
| 732 |
+
| 4.5084 | 30400 | 0.0033 | - |
|
| 733 |
+
| 4.5158 | 30450 | 0.0028 | - |
|
| 734 |
+
| 4.5232 | 30500 | 0.0039 | - |
|
| 735 |
+
| 4.5306 | 30550 | 0.0031 | - |
|
| 736 |
+
| 4.5380 | 30600 | 0.0033 | - |
|
| 737 |
+
| 4.5455 | 30650 | 0.0045 | - |
|
| 738 |
+
| 4.5529 | 30700 | 0.0047 | - |
|
| 739 |
+
| 4.5603 | 30750 | 0.0035 | - |
|
| 740 |
+
| 4.5677 | 30800 | 0.0041 | - |
|
| 741 |
+
| 4.5751 | 30850 | 0.0044 | - |
|
| 742 |
+
| 4.5825 | 30900 | 0.0031 | - |
|
| 743 |
+
| 4.5899 | 30950 | 0.0034 | - |
|
| 744 |
+
| 4.5974 | 31000 | 0.0026 | - |
|
| 745 |
+
| 4.6048 | 31050 | 0.0037 | - |
|
| 746 |
+
| 4.6122 | 31100 | 0.0052 | - |
|
| 747 |
+
| 4.6196 | 31150 | 0.0039 | - |
|
| 748 |
+
| 4.6270 | 31200 | 0.0049 | - |
|
| 749 |
+
| 4.6344 | 31250 | 0.0032 | - |
|
| 750 |
+
| 4.6419 | 31300 | 0.0026 | - |
|
| 751 |
+
| 4.6493 | 31350 | 0.0028 | - |
|
| 752 |
+
| 4.6567 | 31400 | 0.0038 | - |
|
| 753 |
+
| 4.6641 | 31450 | 0.0048 | - |
|
| 754 |
+
| 4.6715 | 31500 | 0.0039 | - |
|
| 755 |
+
| 4.6789 | 31550 | 0.0036 | - |
|
| 756 |
+
| 4.6863 | 31600 | 0.0029 | - |
|
| 757 |
+
| 4.6938 | 31650 | 0.0039 | - |
|
| 758 |
+
| 4.7012 | 31700 | 0.0041 | - |
|
| 759 |
+
| 4.7086 | 31750 | 0.0044 | - |
|
| 760 |
+
| 4.7160 | 31800 | 0.0037 | - |
|
| 761 |
+
| 4.7234 | 31850 | 0.0049 | - |
|
| 762 |
+
| 4.7308 | 31900 | 0.004 | - |
|
| 763 |
+
| 4.7382 | 31950 | 0.005 | - |
|
| 764 |
+
| 4.7457 | 32000 | 0.0029 | - |
|
| 765 |
+
| 4.7531 | 32050 | 0.0047 | - |
|
| 766 |
+
| 4.7605 | 32100 | 0.0017 | - |
|
| 767 |
+
| 4.7679 | 32150 | 0.0041 | - |
|
| 768 |
+
| 4.7753 | 32200 | 0.0039 | - |
|
| 769 |
+
| 4.7827 | 32250 | 0.0044 | - |
|
| 770 |
+
| 4.7902 | 32300 | 0.0053 | - |
|
| 771 |
+
| 4.7976 | 32350 | 0.0037 | - |
|
| 772 |
+
| 4.8050 | 32400 | 0.0042 | - |
|
| 773 |
+
| 4.8124 | 32450 | 0.005 | - |
|
| 774 |
+
| 4.8198 | 32500 | 0.0022 | - |
|
| 775 |
+
| 4.8272 | 32550 | 0.0043 | - |
|
| 776 |
+
| 4.8346 | 32600 | 0.0026 | - |
|
| 777 |
+
| 4.8421 | 32650 | 0.0053 | - |
|
| 778 |
+
| 4.8495 | 32700 | 0.0024 | - |
|
| 779 |
+
| 4.8569 | 32750 | 0.0029 | - |
|
| 780 |
+
| 4.8643 | 32800 | 0.0067 | - |
|
| 781 |
+
| 4.8717 | 32850 | 0.0041 | - |
|
| 782 |
+
| 4.8791 | 32900 | 0.0019 | - |
|
| 783 |
+
| 4.8865 | 32950 | 0.0054 | - |
|
| 784 |
+
| 4.8940 | 33000 | 0.0042 | - |
|
| 785 |
+
| 4.9014 | 33050 | 0.0038 | - |
|
| 786 |
+
| 4.9088 | 33100 | 0.0033 | - |
|
| 787 |
+
| 4.9162 | 33150 | 0.0043 | - |
|
| 788 |
+
| 4.9236 | 33200 | 0.0031 | - |
|
| 789 |
+
| 4.9310 | 33250 | 0.0043 | - |
|
| 790 |
+
| 4.9385 | 33300 | 0.0038 | - |
|
| 791 |
+
| 4.9459 | 33350 | 0.0041 | - |
|
| 792 |
+
| 4.9533 | 33400 | 0.0047 | - |
|
| 793 |
+
| 4.9607 | 33450 | 0.0042 | - |
|
| 794 |
+
| 4.9681 | 33500 | 0.0041 | - |
|
| 795 |
+
| 4.9755 | 33550 | 0.0029 | - |
|
| 796 |
+
| 4.9829 | 33600 | 0.0038 | - |
|
| 797 |
+
| 4.9904 | 33650 | 0.0054 | - |
|
| 798 |
+
| 4.9978 | 33700 | 0.004 | - |
|
| 799 |
+
|
| 800 |
+
### Framework Versions
|
| 801 |
+
- Python: 3.10.8
|
| 802 |
+
- SetFit: 1.1.2
|
| 803 |
+
- Sentence Transformers: 5.0.0
|
| 804 |
+
- Transformers: 4.54.1
|
| 805 |
+
- PyTorch: 2.7.1+cu126
|
| 806 |
+
- Datasets: 3.6.0
|
| 807 |
+
- Tokenizers: 0.21.4
|
| 808 |
+
|
| 809 |
+
## Citation
|
| 810 |
+
|
| 811 |
+
### BibTeX
|
| 812 |
+
```bibtex
|
| 813 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
| 814 |
+
doi = {10.48550/ARXIV.2209.11055},
|
| 815 |
+
url = {https://arxiv.org/abs/2209.11055},
|
| 816 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
| 817 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
| 818 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
| 819 |
+
publisher = {arXiv},
|
| 820 |
+
year = {2022},
|
| 821 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
| 822 |
+
}
|
| 823 |
+
```
|
| 824 |
+
|
| 825 |
+
<!--
|
| 826 |
+
## Glossary
|
| 827 |
+
|
| 828 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 829 |
+
-->
|
| 830 |
+
|
| 831 |
+
<!--
|
| 832 |
+
## Model Card Authors
|
| 833 |
+
|
| 834 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 835 |
+
-->
|
| 836 |
+
|
| 837 |
+
<!--
|
| 838 |
+
## Model Card Contact
|
| 839 |
+
|
| 840 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 841 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BertModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"classifier_dropout": null,
|
| 7 |
+
"gradient_checkpointing": false,
|
| 8 |
+
"hidden_act": "gelu",
|
| 9 |
+
"hidden_dropout_prob": 0.1,
|
| 10 |
+
"hidden_size": 384,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 1536,
|
| 13 |
+
"layer_norm_eps": 1e-12,
|
| 14 |
+
"max_position_embeddings": 512,
|
| 15 |
+
"model_type": "bert",
|
| 16 |
+
"num_attention_heads": 12,
|
| 17 |
+
"num_hidden_layers": 6,
|
| 18 |
+
"pad_token_id": 0,
|
| 19 |
+
"position_embedding_type": "absolute",
|
| 20 |
+
"torch_dtype": "float32",
|
| 21 |
+
"transformers_version": "4.54.1",
|
| 22 |
+
"type_vocab_size": 2,
|
| 23 |
+
"use_cache": true,
|
| 24 |
+
"vocab_size": 30522
|
| 25 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "5.0.0",
|
| 4 |
+
"transformers": "4.54.1",
|
| 5 |
+
"pytorch": "2.7.1+cu126"
|
| 6 |
+
},
|
| 7 |
+
"model_type": "SentenceTransformer",
|
| 8 |
+
"prompts": {
|
| 9 |
+
"query": "",
|
| 10 |
+
"document": ""
|
| 11 |
+
},
|
| 12 |
+
"default_prompt_name": null,
|
| 13 |
+
"similarity_fn_name": "cosine"
|
| 14 |
+
}
|
config_setfit.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"labels": null,
|
| 3 |
+
"normalize_embeddings": false
|
| 4 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:616f6e62759ee1b786d49f886680c582b3c47a60befe7786152a68f9befbcf90
|
| 3 |
+
size 90864192
|
model_head.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2ed7e5ea1afcb1b63e8aa6e3adbf6a888804c312b1a9394e6e3645fafe7a02e8
|
| 3 |
+
size 24929
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 128,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": false,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "[MASK]",
|
| 50 |
+
"model_max_length": 128,
|
| 51 |
+
"never_split": null,
|
| 52 |
+
"pad_token": "[PAD]",
|
| 53 |
+
"sep_token": "[SEP]",
|
| 54 |
+
"strip_accents": null,
|
| 55 |
+
"tokenize_chinese_chars": true,
|
| 56 |
+
"tokenizer_class": "BertTokenizer",
|
| 57 |
+
"unk_token": "[UNK]"
|
| 58 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|