temp / DV-AGENT /agent_chain.py
NEXAS's picture
Upload 22 files
182219d verified
raw
history blame
2.08 kB
from langchain.agents import AgentExecutor, create_react_agent
from langchain.prompts import PromptTemplate
from memory import memory
from tools import zeroshot_tools
import pandas as pd
import os
import streamlit as st
#from langchain_community.llms import HuggingFaceHub
from typing import List
from langchain_groq import ChatGroq
from dotenv import load_dotenv
load_dotenv()
groq_api_key = os.getenv("GROQ_API_KEY")
llm1 = ChatGroq(temperature=0, model_name="mixtral-8x7b-32768")
def read_first_3_rows():
dataset_path = "dataset.csv"
try:
df = pd.read_csv(dataset_path)
first_3_rows = df.head(3).to_string(index=False)
except FileNotFoundError:
first_3_rows = "Error: Dataset file not found."
return first_3_rows
def get_agent_chain():
dataset_first_3_rows = read_first_3_rows()
prompt = PromptTemplate(
input_variables = ['agent_scratchpad', 'chat_history', 'input', 'tool_names', 'tools'],
template = ( f"""
You are a helpful assistant that can help users explore a dataset.
First 3 rows of the dataset:
{dataset_first_3_rows}
===="""
"""
TOOLS:
------
You has access to the following tools:
{tools}
To use a tool, please use the following format:
Thought: Do I need to use a tool? Yes
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:
Thought: Do I need to use a tool? No
Final Answer: [your response here]
Begin!
New input: {input}
{agent_scratchpad}"""
)
)
conversational_agent_llm = llm1
#conversational_agent_llm = ChatOpenAI(model="gpt-3.5-turbo-16k", temperature=temperature, streaming=True)
conversational_agent = create_react_agent(conversational_agent_llm, zeroshot_tools, prompt)
room_selection_chain = AgentExecutor(agent=conversational_agent, tools=zeroshot_tools, verbose=True, memory=memory, handle_parsing_errors=True, max_iterations=4)
return room_selection_chain