Omartificial-Intelligence-Space commited on
Commit
497f5cd
1 Parent(s): 76e6288

Update readme.md

Browse files
Files changed (1) hide show
  1. README.md +114 -3
README.md CHANGED
@@ -1,3 +1,114 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - ar
5
+ pipeline_tag: text-classification
6
+ tags:
7
+ - transformers
8
+ - sentence-transformers
9
+ - text-embeddings-inference
10
+ ---
11
+
12
+ # Introducing ARM-V1 | Arabic Reranker Model (Version 1)
13
+
14
+ **For more info please refer to this blog: [ARM | Arabic Reranker Model](www.omarai.me).**
15
+
16
+ ✨ This model is designed specifically for Arabic language reranking tasks, optimized to handle queries and passages with precision.
17
+
18
+ ✨ Unlike embedding models, which generate vector representations, this reranker directly evaluates the similarity between a question and a document, outputting a relevance score.
19
+
20
+ ✨ Trained on a combination of positive and hard negative query-passage pairs, it excels in identifying the most relevant results.
21
+
22
+ ✨ The output score can be transformed into a [0, 1] range using a sigmoid function, providing a clear and interpretable measure of relevance.
23
+
24
+ ## Arabic RAG Pipeline
25
+
26
+
27
+ ![Arabic RAG Pipeline](https://i.ibb.co/z4Fc3Kd/Screenshot-2024-11-28-at-10-17-39-AM.png)
28
+
29
+
30
+
31
+ ## Usage
32
+ ### Using sentence-transformers
33
+
34
+ ```
35
+ pip install sentence-transformers
36
+ ```
37
+ ```python
38
+ from sentence_transformers import CrossEncoder
39
+
40
+ # Load the cross-encoder model
41
+
42
+ # Define a query and a set of candidates with varying degrees of relevance
43
+ query = "تطبيقات الذكاء الاصطناعي تُستخدم في مختلف المجالات لتحسين الكفاءة."
44
+
45
+ # Candidates with varying relevance to the query
46
+ candidates = [
47
+ "الذكاء الاصطناعي يساهم في تحسين الإنتاجية في الصناعات المختلفة.", # Highly relevant
48
+ "نماذج التعلم الآلي يمكنها التعرف على الأنماط في مجموعات البيانات الكبيرة.", # Moderately relevant
49
+ "الذكاء الاصطناعي يساعد الأطباء في تحليل الصور الطبية بشكل أفضل.", # Somewhat relevant
50
+ "تستخدم الحيوانات التمويه كوسيلة للهروب من الحيوانات المفترسة.", # Irrelevant
51
+ ]
52
+
53
+ # Create pairs of (query, candidate) for each candidate
54
+ query_candidate_pairs = [(query, candidate) for candidate in candidates]
55
+
56
+ # Get relevance scores from the model
57
+ scores = model.predict(query_candidate_pairs)
58
+
59
+ # Combine candidates with their scores and sort them by score in descending order (higher score = higher relevance)
60
+ ranked_candidates = sorted(zip(candidates, scores), key=lambda x: x[1], reverse=True)
61
+
62
+ # Output the ranked candidates with their scores
63
+ print("Ranked candidates based on relevance to the query:")
64
+ for i, (candidate, score) in enumerate(ranked_candidates, 1):
65
+ print(f"Rank {i}:")
66
+ print(f"Candidate: {candidate}")
67
+ print(f"Score: {score}\n")
68
+ ```
69
+ ## Evaluation
70
+ ### Dataset
71
+
72
+ Size: 3000 samples.
73
+
74
+ ### Structure:
75
+ 🔸 Query: A string representing the user's question.
76
+
77
+ 🔸 Candidate Document: A candidate passage to answer the query.
78
+
79
+ 🔸 Relevance Label: Binary label (1 for relevant, 0 for irrelevant).
80
+
81
+ ### Evaluation Process
82
+
83
+ 🔸 Query Grouping: Queries are grouped to evaluate the model's ability to rank candidate documents correctly for each query.
84
+
85
+ 🔸 Model Prediction: Each model predicts relevance scores for all candidate documents corresponding to a query.
86
+
87
+ 🔸 Metrics Calculation: Metrics are computed to measure how well the model ranks relevant documents higher than irrelevant ones.
88
+
89
+ | Model | MRR | MAP | nDCG@10 |
90
+ |-------------------------------------------|------------------|------------------|------------------|
91
+ | cross-encoder/ms-marco-MiniLM-L-6-v2 | 0.631 | 0.6313| 0.725 |
92
+ | cross-encoder/ms-marco-MiniLM-L-12-v2 | 0.664 | 0.664 | 0.750 |
93
+ | BAAI/bge-reranker-v2-m3 | 0.902 | 0.902 | 0.927 |
94
+ | Omartificial-Intelligence-Space/ARA-Reranker-V1 | **0.934** | **0.9335** | **0.951** |
95
+
96
+
97
+
98
+ ## <span style="color:blue">Acknowledgments</span>
99
+
100
+ The author would like to thank Prince Sultan University for their invaluable support in this project. Their contributions and resources have been instrumental in the development and fine-tuning of these models.
101
+
102
+
103
+ ```markdown
104
+ ## Citation
105
+
106
+ If you use the GATE, please cite it as follows:
107
+
108
+ @misc{nacar2025ARM,
109
+ title={ARM, Arabic Reranker Model},
110
+ author={Omer Nacar},
111
+ year={2025},
112
+ url={https://huggingface.co/Omartificial-Intelligence-Space/ARA-Reranker-V1},
113
+ }
114
+