Update README.md
Browse files
README.md
CHANGED
@@ -80,7 +80,7 @@ tags:
|
|
80 |
<h3 style="font-size:24px; font-family: Arial, Helvetica, sans-serif; font-weight: bold; margin:20px 0; color: #222;">Technical Details</h3>
|
81 |
<h4 style="font-size:20px; font-family: Arial, Helvetica, sans-serif; font-weight: bold; margin:20px 0; color: #222;">Model Training</h4>
|
82 |
<p style="font-size: 18px; color: #666;">
|
83 |
-
MyneFactoryBase was trained using
|
84 |
</p>
|
85 |
<h4 style="font-size:20px; font-family: Arial, Helvetica, sans-serif; font-weight: bold; margin:20px 0; color: #222;">Text Encoder Training</h4>
|
86 |
<p style="font-size: 18px; color: #666;">
|
|
|
80 |
<h3 style="font-size:24px; font-family: Arial, Helvetica, sans-serif; font-weight: bold; margin:20px 0; color: #222;">Technical Details</h3>
|
81 |
<h4 style="font-size:20px; font-family: Arial, Helvetica, sans-serif; font-weight: bold; margin:20px 0; color: #222;">Model Training</h4>
|
82 |
<p style="font-size: 18px; color: #666;">
|
83 |
+
MyneFactoryBase was trained using ~18000 high scored samples from Yande.re and ~5000 high scored samples from Konachan. File captions were generated using 3 iterations of WD1.4 tagger to ensure maximum identification of objects within the training data. A second captioning run was done using one tagger with a reduced threshold to produce shorter captions for later use. The model was trained using the NAI model as the base, and the Adam optimizer was used with a manually set maximum learning rate and cosine decay. Training was done on an RTX 4090 with a batch size of 4, utilizing DDIM sample scheduler and DDPM noise scheduler with mix precision.
|
84 |
</p>
|
85 |
<h4 style="font-size:20px; font-family: Arial, Helvetica, sans-serif; font-weight: bold; margin:20px 0; color: #222;">Text Encoder Training</h4>
|
86 |
<p style="font-size: 18px; color: #666;">
|