MykolaL commited on
Commit
e1aaa1a
1 Parent(s): df101c7

Upload EVPDepth

Browse files
Files changed (9) hide show
  1. attractor.py +208 -0
  2. config.json +4 -0
  3. dist_layers.py +121 -0
  4. evpconfig.py +16 -0
  5. layers.py +36 -0
  6. localbins_layers.py +169 -0
  7. miniViT.py +45 -0
  8. model.py +698 -0
  9. model.safetensors +1 -1
attractor.py ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MIT License
2
+
3
+ # Copyright (c) 2022 Intelligent Systems Lab Org
4
+
5
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ # of this software and associated documentation files (the "Software"), to deal
7
+ # in the Software without restriction, including without limitation the rights
8
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ # copies of the Software, and to permit persons to whom the Software is
10
+ # furnished to do so, subject to the following conditions:
11
+
12
+ # The above copyright notice and this permission notice shall be included in all
13
+ # copies or substantial portions of the Software.
14
+
15
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ # SOFTWARE.
22
+
23
+ # File author: Shariq Farooq Bhat
24
+
25
+ import torch
26
+ import torch.nn as nn
27
+
28
+
29
+ @torch.jit.script
30
+ def exp_attractor(dx, alpha: float = 300, gamma: int = 2):
31
+ """Exponential attractor: dc = exp(-alpha*|dx|^gamma) * dx , where dx = a - c, a = attractor point, c = bin center, dc = shift in bin centermmary for exp_attractor
32
+
33
+ Args:
34
+ dx (torch.Tensor): The difference tensor dx = Ai - Cj, where Ai is the attractor point and Cj is the bin center.
35
+ alpha (float, optional): Proportional Attractor strength. Determines the absolute strength. Lower alpha = greater attraction. Defaults to 300.
36
+ gamma (int, optional): Exponential Attractor strength. Determines the "region of influence" and indirectly number of bin centers affected. Lower gamma = farther reach. Defaults to 2.
37
+
38
+ Returns:
39
+ torch.Tensor : Delta shifts - dc; New bin centers = Old bin centers + dc
40
+ """
41
+ return torch.exp(-alpha*(torch.abs(dx)**gamma)) * (dx)
42
+
43
+
44
+ @torch.jit.script
45
+ def inv_attractor(dx, alpha: float = 300, gamma: int = 2):
46
+ """Inverse attractor: dc = dx / (1 + alpha*dx^gamma), where dx = a - c, a = attractor point, c = bin center, dc = shift in bin center
47
+ This is the default one according to the accompanying paper.
48
+
49
+ Args:
50
+ dx (torch.Tensor): The difference tensor dx = Ai - Cj, where Ai is the attractor point and Cj is the bin center.
51
+ alpha (float, optional): Proportional Attractor strength. Determines the absolute strength. Lower alpha = greater attraction. Defaults to 300.
52
+ gamma (int, optional): Exponential Attractor strength. Determines the "region of influence" and indirectly number of bin centers affected. Lower gamma = farther reach. Defaults to 2.
53
+
54
+ Returns:
55
+ torch.Tensor: Delta shifts - dc; New bin centers = Old bin centers + dc
56
+ """
57
+ return dx.div(1+alpha*dx.pow(gamma))
58
+
59
+
60
+ class AttractorLayer(nn.Module):
61
+ def __init__(self, in_features, n_bins, n_attractors=16, mlp_dim=128, min_depth=1e-3, max_depth=10,
62
+ alpha=300, gamma=2, kind='sum', attractor_type='exp', memory_efficient=False):
63
+ """
64
+ Attractor layer for bin centers. Bin centers are bounded on the interval (min_depth, max_depth)
65
+ """
66
+ super().__init__()
67
+
68
+ self.n_attractors = n_attractors
69
+ self.n_bins = n_bins
70
+ self.min_depth = min_depth
71
+ self.max_depth = max_depth
72
+ self.alpha = alpha
73
+ self.gamma = gamma
74
+ self.kind = kind
75
+ self.attractor_type = attractor_type
76
+ self.memory_efficient = memory_efficient
77
+
78
+ self._net = nn.Sequential(
79
+ nn.Conv2d(in_features, mlp_dim, 1, 1, 0),
80
+ nn.ReLU(inplace=True),
81
+ nn.Conv2d(mlp_dim, n_attractors*2, 1, 1, 0), # x2 for linear norm
82
+ nn.ReLU(inplace=True)
83
+ )
84
+
85
+ def forward(self, x, b_prev, prev_b_embedding=None, interpolate=True, is_for_query=False):
86
+ """
87
+ Args:
88
+ x (torch.Tensor) : feature block; shape - n, c, h, w
89
+ b_prev (torch.Tensor) : previous bin centers normed; shape - n, prev_nbins, h, w
90
+
91
+ Returns:
92
+ tuple(torch.Tensor,torch.Tensor) : new bin centers normed and scaled; shape - n, nbins, h, w
93
+ """
94
+ if prev_b_embedding is not None:
95
+ if interpolate:
96
+ prev_b_embedding = nn.functional.interpolate(
97
+ prev_b_embedding, x.shape[-2:], mode='bilinear', align_corners=True)
98
+ x = x + prev_b_embedding
99
+
100
+ A = self._net(x)
101
+ eps = 1e-3
102
+ A = A + eps
103
+ n, c, h, w = A.shape
104
+ A = A.view(n, self.n_attractors, 2, h, w)
105
+ A_normed = A / A.sum(dim=2, keepdim=True) # n, a, 2, h, w
106
+ A_normed = A[:, :, 0, ...] # n, na, h, w
107
+
108
+ b_prev = nn.functional.interpolate(
109
+ b_prev, (h, w), mode='bilinear', align_corners=True)
110
+ b_centers = b_prev
111
+
112
+ if self.attractor_type == 'exp':
113
+ dist = exp_attractor
114
+ else:
115
+ dist = inv_attractor
116
+
117
+ if not self.memory_efficient:
118
+ func = {'mean': torch.mean, 'sum': torch.sum}[self.kind]
119
+ # .shape N, nbins, h, w
120
+ delta_c = func(dist(A_normed.unsqueeze(
121
+ 2) - b_centers.unsqueeze(1)), dim=1)
122
+ else:
123
+ delta_c = torch.zeros_like(b_centers, device=b_centers.device)
124
+ for i in range(self.n_attractors):
125
+ # .shape N, nbins, h, w
126
+ delta_c += dist(A_normed[:, i, ...].unsqueeze(1) - b_centers)
127
+
128
+ if self.kind == 'mean':
129
+ delta_c = delta_c / self.n_attractors
130
+
131
+ b_new_centers = b_centers + delta_c
132
+ B_centers = (self.max_depth - self.min_depth) * \
133
+ b_new_centers + self.min_depth
134
+ B_centers, _ = torch.sort(B_centers, dim=1)
135
+ B_centers = torch.clip(B_centers, self.min_depth, self.max_depth)
136
+ return b_new_centers, B_centers
137
+
138
+
139
+ class AttractorLayerUnnormed(nn.Module):
140
+ def __init__(self, in_features, n_bins, n_attractors=16, mlp_dim=128, min_depth=1e-3, max_depth=10,
141
+ alpha=300, gamma=2, kind='sum', attractor_type='exp', memory_efficient=False):
142
+ """
143
+ Attractor layer for bin centers. Bin centers are unbounded
144
+ """
145
+ super().__init__()
146
+
147
+ self.n_attractors = n_attractors
148
+ self.n_bins = n_bins
149
+ self.min_depth = min_depth
150
+ self.max_depth = max_depth
151
+ self.alpha = alpha
152
+ self.gamma = gamma
153
+ self.kind = kind
154
+ self.attractor_type = attractor_type
155
+ self.memory_efficient = memory_efficient
156
+
157
+ self._net = nn.Sequential(
158
+ nn.Conv2d(in_features, mlp_dim, 1, 1, 0),
159
+ nn.ReLU(inplace=True),
160
+ nn.Conv2d(mlp_dim, n_attractors, 1, 1, 0),
161
+ nn.Softplus()
162
+ )
163
+
164
+ def forward(self, x, b_prev, prev_b_embedding=None, interpolate=True, is_for_query=False):
165
+ """
166
+ Args:
167
+ x (torch.Tensor) : feature block; shape - n, c, h, w
168
+ b_prev (torch.Tensor) : previous bin centers normed; shape - n, prev_nbins, h, w
169
+
170
+ Returns:
171
+ tuple(torch.Tensor,torch.Tensor) : new bin centers unbounded; shape - n, nbins, h, w. Two outputs just to keep the API consistent with the normed version
172
+ """
173
+ if prev_b_embedding is not None:
174
+ if interpolate:
175
+ prev_b_embedding = nn.functional.interpolate(
176
+ prev_b_embedding, x.shape[-2:], mode='bilinear', align_corners=True)
177
+ x = x + prev_b_embedding
178
+
179
+ A = self._net(x)
180
+ n, c, h, w = A.shape
181
+
182
+ b_prev = nn.functional.interpolate(
183
+ b_prev, (h, w), mode='bilinear', align_corners=True)
184
+ b_centers = b_prev
185
+
186
+ if self.attractor_type == 'exp':
187
+ dist = exp_attractor
188
+ else:
189
+ dist = inv_attractor
190
+
191
+ if not self.memory_efficient:
192
+ func = {'mean': torch.mean, 'sum': torch.sum}[self.kind]
193
+ # .shape N, nbins, h, w
194
+ delta_c = func(
195
+ dist(A.unsqueeze(2) - b_centers.unsqueeze(1)), dim=1)
196
+ else:
197
+ delta_c = torch.zeros_like(b_centers, device=b_centers.device)
198
+ for i in range(self.n_attractors):
199
+ delta_c += dist(A[:, i, ...].unsqueeze(1) -
200
+ b_centers) # .shape N, nbins, h, w
201
+
202
+ if self.kind == 'mean':
203
+ delta_c = delta_c / self.n_attractors
204
+
205
+ b_new_centers = b_centers + delta_c
206
+ B_centers = b_new_centers
207
+
208
+ return b_new_centers, B_centers
config.json CHANGED
@@ -2,6 +2,10 @@
2
  "architectures": [
3
  "EVPDepth"
4
  ],
 
 
 
 
5
  "dataset": "nyudepthv2",
6
  "deconv_kernels": [
7
  2,
 
2
  "architectures": [
3
  "EVPDepth"
4
  ],
5
+ "auto_map": {
6
+ "AutoConfig": "evpconfig.EVPConfig",
7
+ "AutoModel": "model.EVPDepth"
8
+ },
9
  "dataset": "nyudepthv2",
10
  "deconv_kernels": [
11
  2,
dist_layers.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MIT License
2
+
3
+ # Copyright (c) 2022 Intelligent Systems Lab Org
4
+
5
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ # of this software and associated documentation files (the "Software"), to deal
7
+ # in the Software without restriction, including without limitation the rights
8
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ # copies of the Software, and to permit persons to whom the Software is
10
+ # furnished to do so, subject to the following conditions:
11
+
12
+ # The above copyright notice and this permission notice shall be included in all
13
+ # copies or substantial portions of the Software.
14
+
15
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ # SOFTWARE.
22
+
23
+ # File author: Shariq Farooq Bhat
24
+
25
+ import torch
26
+ import torch.nn as nn
27
+
28
+
29
+ def log_binom(n, k, eps=1e-7):
30
+ """ log(nCk) using stirling approximation """
31
+ n = n + eps
32
+ k = k + eps
33
+ return n * torch.log(n) - k * torch.log(k) - (n-k) * torch.log(n-k+eps)
34
+
35
+
36
+ class LogBinomial(nn.Module):
37
+ def __init__(self, n_classes=256, act=torch.softmax):
38
+ """Compute log binomial distribution for n_classes
39
+
40
+ Args:
41
+ n_classes (int, optional): number of output classes. Defaults to 256.
42
+ """
43
+ super().__init__()
44
+ self.K = n_classes
45
+ self.act = act
46
+ self.register_buffer('k_idx', torch.arange(
47
+ 0, n_classes).view(1, -1, 1, 1))
48
+ self.register_buffer('K_minus_1', torch.Tensor(
49
+ [self.K-1]).view(1, -1, 1, 1))
50
+
51
+ def forward(self, x, t=1., eps=1e-4):
52
+ """Compute log binomial distribution for x
53
+
54
+ Args:
55
+ x (torch.Tensor - NCHW): probabilities
56
+ t (float, torch.Tensor - NCHW, optional): Temperature of distribution. Defaults to 1..
57
+ eps (float, optional): Small number for numerical stability. Defaults to 1e-4.
58
+
59
+ Returns:
60
+ torch.Tensor -NCHW: log binomial distribution logbinomial(p;t)
61
+ """
62
+ if x.ndim == 3:
63
+ x = x.unsqueeze(1) # make it nchw
64
+
65
+ one_minus_x = torch.clamp(1 - x, eps, 1)
66
+ x = torch.clamp(x, eps, 1)
67
+ y = log_binom(self.K_minus_1, self.k_idx) + self.k_idx * \
68
+ torch.log(x) + (self.K - 1 - self.k_idx) * torch.log(one_minus_x)
69
+ return self.act(y/t, dim=1)
70
+
71
+
72
+ class ConditionalLogBinomial(nn.Module):
73
+ def __init__(self, in_features, condition_dim, n_classes=256, bottleneck_factor=2, p_eps=1e-4, max_temp=50, min_temp=1e-7, act=torch.softmax):
74
+ """Conditional Log Binomial distribution
75
+
76
+ Args:
77
+ in_features (int): number of input channels in main feature
78
+ condition_dim (int): number of input channels in condition feature
79
+ n_classes (int, optional): Number of classes. Defaults to 256.
80
+ bottleneck_factor (int, optional): Hidden dim factor. Defaults to 2.
81
+ p_eps (float, optional): small eps value. Defaults to 1e-4.
82
+ max_temp (float, optional): Maximum temperature of output distribution. Defaults to 50.
83
+ min_temp (float, optional): Minimum temperature of output distribution. Defaults to 1e-7.
84
+ """
85
+ super().__init__()
86
+ self.p_eps = p_eps
87
+ self.max_temp = max_temp
88
+ self.min_temp = min_temp
89
+ self.log_binomial_transform = LogBinomial(n_classes, act=act)
90
+ bottleneck = (in_features + condition_dim) // bottleneck_factor
91
+ self.mlp = nn.Sequential(
92
+ nn.Conv2d(in_features + condition_dim, bottleneck,
93
+ kernel_size=1, stride=1, padding=0),
94
+ nn.GELU(),
95
+ # 2 for p linear norm, 2 for t linear norm
96
+ nn.Conv2d(bottleneck, 2+2, kernel_size=1, stride=1, padding=0),
97
+ nn.Softplus()
98
+ )
99
+
100
+ def forward(self, x, cond):
101
+ """Forward pass
102
+
103
+ Args:
104
+ x (torch.Tensor - NCHW): Main feature
105
+ cond (torch.Tensor - NCHW): condition feature
106
+
107
+ Returns:
108
+ torch.Tensor: Output log binomial distribution
109
+ """
110
+ pt = self.mlp(torch.concat((x, cond), dim=1))
111
+ p, t = pt[:, :2, ...], pt[:, 2:, ...]
112
+
113
+ p = p + self.p_eps
114
+ p = p[:, 0, ...] / (p[:, 0, ...] + p[:, 1, ...])
115
+
116
+ t = t + self.p_eps
117
+ t = t[:, 0, ...] / (t[:, 0, ...] + t[:, 1, ...])
118
+ t = t.unsqueeze(1)
119
+ t = (self.max_temp - self.min_temp) * t + self.min_temp
120
+
121
+ return self.log_binomial_transform(p, t)
evpconfig.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+ class EVPConfig(PretrainedConfig):
4
+ model_type = "EVP"
5
+ def __init__(
6
+ self,
7
+ **kwargs,
8
+ ):
9
+ self.num_deconv = 3
10
+ self.num_filters = [32,32,32]
11
+ self.deconv_kernels = [2,2,2]
12
+ self.dataset = 'nyudepthv2'
13
+ self.max_depth = 10
14
+ self.min_depth_eval = 1e-3
15
+ super().__init__(**kwargs)
16
+
layers.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+
5
+ class PatchTransformerEncoder(nn.Module):
6
+ def __init__(self, in_channels, patch_size=10, embedding_dim=128, num_heads=4):
7
+ super(PatchTransformerEncoder, self).__init__()
8
+ encoder_layers = nn.TransformerEncoderLayer(embedding_dim, num_heads, dim_feedforward=1024)
9
+ self.transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=4) # takes shape S,N,E
10
+
11
+ self.embedding_convPxP = nn.Conv2d(in_channels, embedding_dim,
12
+ kernel_size=patch_size, stride=patch_size, padding=0)
13
+
14
+ self.positional_encodings = nn.Parameter(torch.rand(900, embedding_dim), requires_grad=True)
15
+
16
+ def forward(self, x):
17
+ embeddings = self.embedding_convPxP(x).flatten(2) # .shape = n,c,s = n, embedding_dim, s
18
+ # embeddings = nn.functional.pad(embeddings, (1,0)) # extra special token at start ?
19
+ embeddings = embeddings + self.positional_encodings[:embeddings.shape[2], :].T.unsqueeze(0)
20
+
21
+ # change to S,N,E format required by transformer
22
+ embeddings = embeddings.permute(2, 0, 1)
23
+ x = self.transformer_encoder(embeddings) # .shape = S, N, E
24
+ return x
25
+
26
+
27
+ class PixelWiseDotProduct(nn.Module):
28
+ def __init__(self):
29
+ super(PixelWiseDotProduct, self).__init__()
30
+
31
+ def forward(self, x, K):
32
+ n, c, h, w = x.size()
33
+ _, cout, ck = K.size()
34
+ assert c == ck, "Number of channels in x and Embedding dimension (at dim 2) of K matrix must match"
35
+ y = torch.matmul(x.view(n, c, h * w).permute(0, 2, 1), K.permute(0, 2, 1)) # .shape = n, hw, cout
36
+ return y.permute(0, 2, 1).view(n, cout, h, w)
localbins_layers.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MIT License
2
+
3
+ # Copyright (c) 2022 Intelligent Systems Lab Org
4
+
5
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ # of this software and associated documentation files (the "Software"), to deal
7
+ # in the Software without restriction, including without limitation the rights
8
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ # copies of the Software, and to permit persons to whom the Software is
10
+ # furnished to do so, subject to the following conditions:
11
+
12
+ # The above copyright notice and this permission notice shall be included in all
13
+ # copies or substantial portions of the Software.
14
+
15
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ # SOFTWARE.
22
+
23
+ # File author: Shariq Farooq Bhat
24
+
25
+ import torch
26
+ import torch.nn as nn
27
+
28
+
29
+ class SeedBinRegressor(nn.Module):
30
+ def __init__(self, in_features, n_bins=16, mlp_dim=256, min_depth=1e-3, max_depth=10):
31
+ """Bin center regressor network. Bin centers are bounded on (min_depth, max_depth) interval.
32
+
33
+ Args:
34
+ in_features (int): input channels
35
+ n_bins (int, optional): Number of bin centers. Defaults to 16.
36
+ mlp_dim (int, optional): Hidden dimension. Defaults to 256.
37
+ min_depth (float, optional): Min depth value. Defaults to 1e-3.
38
+ max_depth (float, optional): Max depth value. Defaults to 10.
39
+ """
40
+ super().__init__()
41
+ self.version = "1_1"
42
+ self.min_depth = min_depth
43
+ self.max_depth = max_depth
44
+
45
+ self._net = nn.Sequential(
46
+ nn.Conv2d(in_features, mlp_dim, 1, 1, 0),
47
+ nn.ReLU(inplace=True),
48
+ nn.Conv2d(mlp_dim, n_bins, 1, 1, 0),
49
+ nn.ReLU(inplace=True)
50
+ )
51
+
52
+ def forward(self, x):
53
+ """
54
+ Returns tensor of bin_width vectors (centers). One vector b for every pixel
55
+ """
56
+ B = self._net(x)
57
+ eps = 1e-3
58
+ B = B + eps
59
+ B_widths_normed = B / B.sum(dim=1, keepdim=True)
60
+ B_widths = (self.max_depth - self.min_depth) * \
61
+ B_widths_normed # .shape NCHW
62
+ # pad has the form (left, right, top, bottom, front, back)
63
+ B_widths = nn.functional.pad(
64
+ B_widths, (0, 0, 0, 0, 1, 0), mode='constant', value=self.min_depth)
65
+ B_edges = torch.cumsum(B_widths, dim=1) # .shape NCHW
66
+
67
+ B_centers = 0.5 * (B_edges[:, :-1, ...] + B_edges[:, 1:, ...])
68
+ return B_widths_normed, B_centers
69
+
70
+
71
+ class SeedBinRegressorUnnormed(nn.Module):
72
+ def __init__(self, in_features, n_bins=16, mlp_dim=256, min_depth=1e-3, max_depth=10):
73
+ """Bin center regressor network. Bin centers are unbounded
74
+
75
+ Args:
76
+ in_features (int): input channels
77
+ n_bins (int, optional): Number of bin centers. Defaults to 16.
78
+ mlp_dim (int, optional): Hidden dimension. Defaults to 256.
79
+ min_depth (float, optional): Not used. (for compatibility with SeedBinRegressor)
80
+ max_depth (float, optional): Not used. (for compatibility with SeedBinRegressor)
81
+ """
82
+ super().__init__()
83
+ self.version = "1_1"
84
+ self._net = nn.Sequential(
85
+ nn.Conv2d(in_features, mlp_dim, 1, 1, 0),
86
+ nn.ReLU(inplace=True),
87
+ nn.Conv2d(mlp_dim, n_bins, 1, 1, 0),
88
+ nn.Softplus()
89
+ )
90
+
91
+ def forward(self, x):
92
+ """
93
+ Returns tensor of bin_width vectors (centers). One vector b for every pixel
94
+ """
95
+ B_centers = self._net(x)
96
+ return B_centers, B_centers
97
+
98
+
99
+ class Projector(nn.Module):
100
+ def __init__(self, in_features, out_features, mlp_dim=128):
101
+ """Projector MLP
102
+
103
+ Args:
104
+ in_features (int): input channels
105
+ out_features (int): output channels
106
+ mlp_dim (int, optional): hidden dimension. Defaults to 128.
107
+ """
108
+ super().__init__()
109
+
110
+ self._net = nn.Sequential(
111
+ nn.Conv2d(in_features, mlp_dim, 1, 1, 0),
112
+ nn.ReLU(inplace=True),
113
+ nn.Conv2d(mlp_dim, out_features, 1, 1, 0),
114
+ )
115
+
116
+ def forward(self, x):
117
+ return self._net(x)
118
+
119
+
120
+
121
+ class LinearSplitter(nn.Module):
122
+ def __init__(self, in_features, prev_nbins, split_factor=2, mlp_dim=128, min_depth=1e-3, max_depth=10):
123
+ super().__init__()
124
+
125
+ self.prev_nbins = prev_nbins
126
+ self.split_factor = split_factor
127
+ self.min_depth = min_depth
128
+ self.max_depth = max_depth
129
+
130
+ self._net = nn.Sequential(
131
+ nn.Conv2d(in_features, mlp_dim, 1, 1, 0),
132
+ nn.GELU(),
133
+ nn.Conv2d(mlp_dim, prev_nbins * split_factor, 1, 1, 0),
134
+ nn.ReLU()
135
+ )
136
+
137
+ def forward(self, x, b_prev, prev_b_embedding=None, interpolate=True, is_for_query=False):
138
+ """
139
+ x : feature block; shape - n, c, h, w
140
+ b_prev : previous bin widths normed; shape - n, prev_nbins, h, w
141
+ """
142
+ if prev_b_embedding is not None:
143
+ if interpolate:
144
+ prev_b_embedding = nn.functional.interpolate(prev_b_embedding, x.shape[-2:], mode='bilinear', align_corners=True)
145
+ x = x + prev_b_embedding
146
+ S = self._net(x)
147
+ eps = 1e-3
148
+ S = S + eps
149
+ n, c, h, w = S.shape
150
+ S = S.view(n, self.prev_nbins, self.split_factor, h, w)
151
+ S_normed = S / S.sum(dim=2, keepdim=True) # fractional splits
152
+
153
+ b_prev = nn.functional.interpolate(b_prev, (h,w), mode='bilinear', align_corners=True)
154
+
155
+
156
+ b_prev = b_prev / b_prev.sum(dim=1, keepdim=True) # renormalize for gurantees
157
+ # print(b_prev.shape, S_normed.shape)
158
+ # if is_for_query:(1).expand(-1, b_prev.size(0)//n, -1, -1, -1, -1).flatten(0,1) # TODO ? can replace all this with a single torch.repeat?
159
+ b = b_prev.unsqueeze(2) * S_normed
160
+ b = b.flatten(1,2) # .shape n, prev_nbins * split_factor, h, w
161
+
162
+ # calculate bin centers for loss calculation
163
+ B_widths = (self.max_depth - self.min_depth) * b # .shape N, nprev * splitfactor, H, W
164
+ # pad has the form (left, right, top, bottom, front, back)
165
+ B_widths = nn.functional.pad(B_widths, (0,0,0,0,1,0), mode='constant', value=self.min_depth)
166
+ B_edges = torch.cumsum(B_widths, dim=1) # .shape NCHW
167
+
168
+ B_centers = 0.5 * (B_edges[:, :-1, ...] + B_edges[:,1:,...])
169
+ return b, B_centers
miniViT.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from .layers import PatchTransformerEncoder, PixelWiseDotProduct
5
+
6
+
7
+ class mViT(nn.Module):
8
+ def __init__(self, in_channels, n_query_channels=128, patch_size=16, dim_out=256,
9
+ embedding_dim=128, num_heads=4, norm='linear'):
10
+ super(mViT, self).__init__()
11
+ self.norm = norm
12
+ self.n_query_channels = n_query_channels
13
+ self.patch_transformer = PatchTransformerEncoder(in_channels, patch_size, embedding_dim, num_heads)
14
+ self.dot_product_layer = PixelWiseDotProduct()
15
+
16
+ self.conv3x3 = nn.Conv2d(in_channels, embedding_dim, kernel_size=3, stride=1, padding=1)
17
+ self.regressor = nn.Sequential(nn.Linear(embedding_dim, 256),
18
+ nn.LeakyReLU(),
19
+ nn.Linear(256, 256),
20
+ nn.LeakyReLU(),
21
+ nn.Linear(256, dim_out))
22
+
23
+ def forward(self, x):
24
+ # n, c, h, w = x.size()
25
+ tgt = self.patch_transformer(x.clone()) # .shape = S, N, E
26
+
27
+ x = self.conv3x3(x)
28
+
29
+ regression_head, queries = tgt[0, ...], tgt[1:self.n_query_channels + 1, ...]
30
+
31
+ # Change from S, N, E to N, S, E
32
+ queries = queries.permute(1, 0, 2)
33
+ range_attention_maps = self.dot_product_layer(x, queries) # .shape = n, n_query_channels, h, w
34
+
35
+ y = self.regressor(regression_head) # .shape = N, dim_out
36
+ if self.norm == 'linear':
37
+ y = torch.relu(y)
38
+ eps = 0.1
39
+ y = y + eps
40
+ elif self.norm == 'softmax':
41
+ return torch.softmax(y, dim=1), range_attention_maps
42
+ else:
43
+ y = torch.sigmoid(y)
44
+ y = y / y.sum(dim=1, keepdim=True)
45
+ return y, range_attention_maps
model.py ADDED
@@ -0,0 +1,698 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------------
2
+ # Copyright (c) Microsoft
3
+ # Licensed under the MIT License.
4
+ # The deconvolution code is based on Simple Baseline.
5
+ # (https://github.com/microsoft/human-pose-estimation.pytorch/blob/master/lib/models/pose_resnet.py)
6
+ # Modified by Zigang Geng (zigang@mail.ustc.edu.cn).
7
+ # ------------------------------------------------------------------------------
8
+
9
+ import torch
10
+ import torch.nn as nn
11
+ from timm.models.layers import trunc_normal_, DropPath
12
+ from mmcv.cnn import (build_conv_layer, build_norm_layer, build_upsample_layer,
13
+ constant_init, normal_init)
14
+ from omegaconf import OmegaConf
15
+ from ldm.util import instantiate_from_config
16
+ import torch.nn.functional as F
17
+ import sys
18
+ import os
19
+ current_script_path = os.path.abspath(__file__)
20
+ parent_folder_path = os.path.dirname(os.path.dirname(current_script_path))
21
+ sys.path.append(parent_folder_path)
22
+ parent_folder_path = os.path.dirname(parent_folder_path)
23
+ print(parent_folder_path)
24
+ # Add the parent folder to sys.path
25
+ sys.path.append(parent_folder_path)
26
+
27
+ from evpconfig import EVPConfig
28
+
29
+ from evp.models import UNetWrapper, TextAdapterRefer, FrozenCLIPEmbedder
30
+ from .miniViT import mViT
31
+ from .attractor import AttractorLayer, AttractorLayerUnnormed
32
+ from .dist_layers import ConditionalLogBinomial
33
+ from .localbins_layers import (Projector, SeedBinRegressor, SeedBinRegressorUnnormed)
34
+ import os
35
+ from transformers import PreTrainedModel
36
+ import sys
37
+ current_script_path = os.path.abspath(__file__)
38
+ parent_folder_path = os.path.dirname(os.path.dirname(current_script_path))
39
+ import torchvision.transforms as transforms
40
+
41
+ # Add the parent folder to sys.path
42
+ sys.path.append(parent_folder_path)
43
+
44
+ def icnr(x, scale=2, init=nn.init.kaiming_normal_):
45
+ """
46
+ Checkerboard artifact free sub-pixel convolution
47
+ https://arxiv.org/abs/1707.02937
48
+ """
49
+ ni,nf,h,w = x.shape
50
+ ni2 = int(ni/(scale**2))
51
+ k = init(torch.zeros([ni2,nf,h,w])).transpose(0, 1)
52
+ k = k.contiguous().view(ni2, nf, -1)
53
+ k = k.repeat(1, 1, scale**2)
54
+ k = k.contiguous().view([nf,ni,h,w]).transpose(0, 1)
55
+ x.data.copy_(k)
56
+
57
+
58
+ class PixelShuffle(nn.Module):
59
+ """
60
+ Real-Time Single Image and Video Super-Resolution
61
+ https://arxiv.org/abs/1609.05158
62
+ """
63
+ def __init__(self, n_channels, scale):
64
+ super(PixelShuffle, self).__init__()
65
+ self.conv = nn.Conv2d(n_channels, n_channels*(scale**2), kernel_size=1)
66
+ icnr(self.conv.weight)
67
+ self.shuf = nn.PixelShuffle(scale)
68
+ self.relu = nn.ReLU()
69
+
70
+ def forward(self,x):
71
+ x = self.shuf(self.relu(self.conv(x)))
72
+ return x
73
+
74
+
75
+ class AttentionModule(nn.Module):
76
+ def __init__(self, in_channels, out_channels):
77
+ super(AttentionModule, self).__init__()
78
+
79
+ # Convolutional Layers
80
+ self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
81
+
82
+ # Group Normalization
83
+ self.group_norm = nn.GroupNorm(20, out_channels)
84
+
85
+ # ReLU Activation
86
+ self.relu = nn.ReLU()
87
+
88
+ # Spatial Attention
89
+ self.spatial_attention = nn.Sequential(
90
+ nn.Conv2d(in_channels, 1, kernel_size=1),
91
+ nn.Sigmoid()
92
+ )
93
+
94
+ def forward(self, x):
95
+ # Apply spatial attention
96
+ spatial_attention = self.spatial_attention(x)
97
+ x = x * spatial_attention
98
+
99
+ # Apply convolutional layer
100
+ x = self.conv1(x)
101
+ x = self.group_norm(x)
102
+ x = self.relu(x)
103
+
104
+ return x
105
+
106
+
107
+ class AttentionDownsamplingModule(nn.Module):
108
+ def __init__(self, in_channels, out_channels, scale_factor=2):
109
+ super(AttentionDownsamplingModule, self).__init__()
110
+
111
+ # Spatial Attention
112
+ self.spatial_attention = nn.Sequential(
113
+ nn.Conv2d(in_channels, 1, kernel_size=1),
114
+ nn.Sigmoid()
115
+ )
116
+
117
+ # Channel Attention
118
+ self.channel_attention = nn.Sequential(
119
+ nn.AdaptiveAvgPool2d(1),
120
+ nn.Conv2d(in_channels, in_channels // 8, kernel_size=1),
121
+ nn.ReLU(inplace=True),
122
+ nn.Conv2d(in_channels // 8, in_channels, kernel_size=1),
123
+ nn.Sigmoid()
124
+ )
125
+
126
+ # Convolutional Layers
127
+ if scale_factor == 2:
128
+ self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
129
+ elif scale_factor == 4:
130
+ self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1)
131
+
132
+ self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=2, padding=1)
133
+
134
+ # Group Normalization
135
+ self.group_norm = nn.GroupNorm(20, out_channels)
136
+
137
+ # ReLU Activation
138
+ self.relu = nn.ReLU(inplace=True)
139
+
140
+ def forward(self, x):
141
+ # Apply spatial attention
142
+ spatial_attention = self.spatial_attention(x)
143
+ x = x * spatial_attention
144
+
145
+ # Apply channel attention
146
+ channel_attention = self.channel_attention(x)
147
+ x = x * channel_attention
148
+
149
+ # Apply convolutional layers
150
+ x = self.conv1(x)
151
+ x = self.group_norm(x)
152
+ x = self.relu(x)
153
+ x = self.conv2(x)
154
+ x = self.group_norm(x)
155
+ x = self.relu(x)
156
+
157
+ return x
158
+
159
+
160
+ class AttentionUpsamplingModule(nn.Module):
161
+ def __init__(self, in_channels, out_channels):
162
+ super(AttentionUpsamplingModule, self).__init__()
163
+
164
+ # Spatial Attention for outs[2]
165
+ self.spatial_attention = nn.Sequential(
166
+ nn.Conv2d(in_channels, 1, kernel_size=1),
167
+ nn.Sigmoid()
168
+ )
169
+
170
+ # Channel Attention for outs[2]
171
+ self.channel_attention = nn.Sequential(
172
+ nn.AdaptiveAvgPool2d(1),
173
+ nn.Conv2d(in_channels, in_channels // 8, kernel_size=1),
174
+ nn.ReLU(),
175
+ nn.Conv2d(in_channels // 8, in_channels, kernel_size=1),
176
+ nn.Sigmoid()
177
+ )
178
+
179
+ self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
180
+ self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
181
+
182
+ # Group Normalization
183
+ self.group_norm = nn.GroupNorm(20, out_channels)
184
+
185
+ # ReLU Activation
186
+ self.relu = nn.ReLU()
187
+ self.upscale = PixelShuffle(in_channels, 2)
188
+
189
+ def forward(self, x):
190
+ # Apply spatial attention
191
+ spatial_attention = self.spatial_attention(x)
192
+ x = x * spatial_attention
193
+
194
+ # Apply channel attention
195
+ channel_attention = self.channel_attention(x)
196
+ x = x * channel_attention
197
+
198
+ # Apply convolutional layers
199
+ x = self.conv1(x)
200
+ x = self.group_norm(x)
201
+ x = self.relu(x)
202
+ x = self.conv2(x)
203
+ x = self.group_norm(x)
204
+ x = self.relu(x)
205
+
206
+ # Upsample
207
+ x = self.upscale(x)
208
+
209
+ return x
210
+
211
+
212
+ class ConvLayer(nn.Module):
213
+ def __init__(self, in_channels, out_channels):
214
+ super(ConvLayer, self).__init__()
215
+
216
+ self.conv1 = nn.Sequential(
217
+ nn.Conv2d(in_channels, out_channels, 1),
218
+ nn.GroupNorm(20, out_channels),
219
+ nn.ReLU(),
220
+ )
221
+
222
+ def forward(self, x):
223
+ x = self.conv1(x)
224
+
225
+ return x
226
+
227
+
228
+ class InverseMultiAttentiveFeatureRefinement(nn.Module):
229
+ def __init__(self, in_channels_list):
230
+ super(InverseMultiAttentiveFeatureRefinement, self).__init__()
231
+
232
+ self.layer1 = AttentionModule(in_channels_list[0], in_channels_list[0])
233
+ self.layer2 = AttentionDownsamplingModule(in_channels_list[0], in_channels_list[0]//2, scale_factor = 2)
234
+ self.layer3 = ConvLayer(in_channels_list[0]//2 + in_channels_list[1], in_channels_list[1])
235
+ self.layer4 = AttentionDownsamplingModule(in_channels_list[1], in_channels_list[1]//2, scale_factor = 2)
236
+ self.layer5 = ConvLayer(in_channels_list[1]//2 + in_channels_list[2], in_channels_list[2])
237
+ self.layer6 = AttentionDownsamplingModule(in_channels_list[2], in_channels_list[2]//2, scale_factor = 2)
238
+ self.layer7 = ConvLayer(in_channels_list[2]//2 + in_channels_list[3], in_channels_list[3])
239
+
240
+ '''
241
+ self.layer8 = AttentionUpsamplingModule(in_channels_list[3], in_channels_list[3])
242
+ self.layer9 = ConvLayer(in_channels_list[2] + in_channels_list[3], in_channels_list[2])
243
+ self.layer10 = AttentionUpsamplingModule(in_channels_list[2], in_channels_list[2])
244
+ self.layer11 = ConvLayer(in_channels_list[1] + in_channels_list[2], in_channels_list[1])
245
+ self.layer12 = AttentionUpsamplingModule(in_channels_list[1], in_channels_list[1])
246
+ self.layer13 = ConvLayer(in_channels_list[0] + in_channels_list[1], in_channels_list[0])
247
+ '''
248
+ def forward(self, inputs):
249
+ x_c4, x_c3, x_c2, x_c1 = inputs
250
+ x_c4 = self.layer1(x_c4)
251
+ x_c4_3 = self.layer2(x_c4)
252
+ x_c3 = torch.cat([x_c4_3, x_c3], dim=1)
253
+ x_c3 = self.layer3(x_c3)
254
+ x_c3_2 = self.layer4(x_c3)
255
+ x_c2 = torch.cat([x_c3_2, x_c2], dim=1)
256
+ x_c2 = self.layer5(x_c2)
257
+ x_c2_1 = self.layer6(x_c2)
258
+ x_c1 = torch.cat([x_c2_1, x_c1], dim=1)
259
+ x_c1 = self.layer7(x_c1)
260
+ '''
261
+ x_c1_2 = self.layer8(x_c1)
262
+ x_c2 = torch.cat([x_c1_2, x_c2], dim=1)
263
+ x_c2 = self.layer9(x_c2)
264
+ x_c2_3 = self.layer10(x_c2)
265
+ x_c3 = torch.cat([x_c2_3, x_c3], dim=1)
266
+ x_c3 = self.layer11(x_c3)
267
+ x_c3_4 = self.layer12(x_c3)
268
+ x_c4 = torch.cat([x_c3_4, x_c4], dim=1)
269
+ x_c4 = self.layer13(x_c4)
270
+ '''
271
+ return [x_c4, x_c3, x_c2, x_c1]
272
+
273
+
274
+ class EVPDepthEncoder(nn.Module):
275
+ def __init__(self, out_dim=1024, ldm_prior=[320, 680, 1320+1280], sd_path=None, text_dim=768,
276
+ dataset='nyu', caption_aggregation=False
277
+ ):
278
+ super().__init__()
279
+
280
+
281
+ self.layer1 = nn.Sequential(
282
+ nn.Conv2d(ldm_prior[0], ldm_prior[0], 3, stride=2, padding=1),
283
+ nn.GroupNorm(16, ldm_prior[0]),
284
+ nn.ReLU(),
285
+ nn.Conv2d(ldm_prior[0], ldm_prior[0], 3, stride=2, padding=1),
286
+ )
287
+
288
+ self.layer2 = nn.Sequential(
289
+ nn.Conv2d(ldm_prior[1], ldm_prior[1], 3, stride=2, padding=1),
290
+ )
291
+
292
+ self.out_layer = nn.Sequential(
293
+ nn.Conv2d(sum(ldm_prior), out_dim, 1),
294
+ nn.GroupNorm(16, out_dim),
295
+ nn.ReLU(),
296
+ )
297
+
298
+ self.aggregation = InverseMultiAttentiveFeatureRefinement([320, 680, 1320, 1280])
299
+
300
+ self.apply(self._init_weights)
301
+
302
+ ### stable diffusion layers
303
+
304
+ config = OmegaConf.load('./v1-inference.yaml')
305
+ if sd_path is None:
306
+ if os.path.exists('../checkpoints/v1-5-pruned-emaonly.ckpt'):
307
+ config.model.params.ckpt_path = '../checkpoints/v1-5-pruned-emaonly.ckpt'
308
+ else:
309
+ config.model.params.ckpt_path = None
310
+ else:
311
+ config.model.params.ckpt_path = f'../{sd_path}'
312
+
313
+ sd_model = instantiate_from_config(config.model)
314
+ self.encoder_vq = sd_model.first_stage_model
315
+
316
+ self.unet = UNetWrapper(sd_model.model, use_attn=True)
317
+ if dataset == 'kitti':
318
+ self.unet = UNetWrapper(sd_model.model, use_attn=True, base_size=384)
319
+
320
+ del sd_model.cond_stage_model
321
+ del self.encoder_vq.decoder
322
+ del self.unet.unet.diffusion_model.out
323
+ del self.encoder_vq.post_quant_conv.weight
324
+ del self.encoder_vq.post_quant_conv.bias
325
+
326
+ for param in self.encoder_vq.parameters():
327
+ param.requires_grad = True
328
+
329
+ self.text_adapter = TextAdapterRefer(text_dim=text_dim)
330
+ self.gamma = nn.Parameter(torch.ones(text_dim) * 1e-4)
331
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
332
+
333
+ if caption_aggregation:
334
+ class_embeddings = torch.load(f'{dataset}_class_embeddings_my_captions.pth', map_location=device)
335
+ #class_embeddings_list = [value['class_embeddings'] for key, value in class_embeddings.items()]
336
+ #stacked_embeddings = torch.stack(class_embeddings_list, dim=0)
337
+ #class_embeddings = torch.mean(stacked_embeddings, dim=0).unsqueeze(0)
338
+
339
+ if 'aggregated' in class_embeddings:
340
+ class_embeddings = class_embeddings['aggregated']
341
+ else:
342
+ clip_model = FrozenCLIPEmbedder(max_length=40,pool=False).to(device)
343
+ class_embeddings_new = [clip_model.encode(value['caption'][0]) for key, value in class_embeddings.items()]
344
+ class_embeddings_new = torch.mean(torch.stack(class_embeddings_new, dim=0), dim=0)
345
+ class_embeddings['aggregated'] = class_embeddings_new
346
+ torch.save(class_embeddings, f'{dataset}_class_embeddings_my_captions.pth')
347
+ class_embeddings = class_embeddings['aggregated']
348
+ self.register_buffer('class_embeddings', class_embeddings)
349
+ else:
350
+ self.class_embeddings = torch.load(f'{dataset}_class_embeddings_my_captions.pth', map_location=device)
351
+
352
+ self.clip_model = FrozenCLIPEmbedder(max_length=40,pool=False)
353
+ for param in self.clip_model.parameters():
354
+ param.requires_grad = True
355
+
356
+ #if dataset == 'kitti':
357
+ # self.text_adapter_ = TextAdapterRefer(text_dim=text_dim)
358
+ # self.gamma_ = nn.Parameter(torch.ones(text_dim) * 1e-4)
359
+
360
+ self.caption_aggregation = caption_aggregation
361
+ self.dataset = dataset
362
+
363
+ def _init_weights(self, m):
364
+ if isinstance(m, (nn.Conv2d, nn.Linear)):
365
+ trunc_normal_(m.weight, std=.02)
366
+ nn.init.constant_(m.bias, 0)
367
+
368
+ def forward_features(self, feats):
369
+ x = self.ldm_to_net[0](feats[0])
370
+ for i in range(3):
371
+ if i > 0:
372
+ x = x + self.ldm_to_net[i](feats[i])
373
+ x = self.layers[i](x)
374
+ x = self.upsample_layers[i](x)
375
+ return self.out_conv(x)
376
+
377
+ def forward(self, x, class_ids=None, img_paths=None):
378
+ latents = self.encoder_vq.encode(x).mode()
379
+
380
+ # add division by std
381
+ if self.dataset == 'nyu':
382
+ latents = latents / 5.07543
383
+ elif self.dataset == 'kitti':
384
+ latents = latents / 4.6211
385
+ else:
386
+ print('Please calculate the STD for the dataset!')
387
+
388
+ if class_ids is not None:
389
+ if self.caption_aggregation:
390
+ class_embeddings = self.class_embeddings[[0]*len(class_ids.tolist())]#[class_ids.tolist()]
391
+ else:
392
+ class_embeddings = []
393
+
394
+ for img_path in img_paths:
395
+ class_embeddings.extend([value['caption'][0] for key, value in self.class_embeddings.items() if key in img_path.replace('//', '/')])
396
+
397
+ class_embeddings = self.clip_model.encode(class_embeddings)
398
+ else:
399
+ class_embeddings = self.class_embeddings
400
+
401
+ c_crossattn = self.text_adapter(latents, class_embeddings, self.gamma)
402
+ t = torch.ones((x.shape[0],), device=x.device).long()
403
+
404
+ #if self.dataset == 'kitti':
405
+ # c_crossattn_last = self.text_adapter_(latents, class_embeddings, self.gamma_)
406
+ # outs = self.unet(latents, t, c_crossattn=[c_crossattn, c_crossattn_last])
407
+ #else:
408
+ outs = self.unet(latents, t, c_crossattn=[c_crossattn])
409
+ outs = self.aggregation(outs)
410
+
411
+ feats = [outs[0], outs[1], torch.cat([outs[2], F.interpolate(outs[3], scale_factor=2)], dim=1)]
412
+ x = torch.cat([self.layer1(feats[0]), self.layer2(feats[1]), feats[2]], dim=1)
413
+ return self.out_layer(x)
414
+
415
+ def get_latent(self, x):
416
+ return self.encoder_vq.encode(x).mode()
417
+
418
+
419
+ class EVPDepth(PreTrainedModel):
420
+ config_class = EVPConfig
421
+ def __init__(self, config, caption_aggregation=True):
422
+ super().__init__(config)
423
+ args = config
424
+ self.max_depth = args.max_depth
425
+ self.min_depth = args.min_depth_eval
426
+
427
+ embed_dim = 192
428
+
429
+ channels_in = embed_dim*8
430
+ channels_out = embed_dim
431
+
432
+ if args.dataset == 'nyudepthv2':
433
+ self.encoder = EVPDepthEncoder(out_dim=channels_in, dataset='nyu', caption_aggregation=caption_aggregation)
434
+ else:
435
+ self.encoder = EVPDepthEncoder(out_dim=channels_in, dataset='kitti', caption_aggregation=caption_aggregation)
436
+
437
+ self.decoder = Decoder(channels_in, channels_out, args)
438
+ self.decoder.init_weights()
439
+ self.mViT = False
440
+ self.custom = False
441
+
442
+
443
+ if not self.mViT and not self.custom:
444
+ n_bins = 64
445
+ bin_embedding_dim = 128
446
+ num_out_features = [32, 32, 32, 192]
447
+ min_temp = 0.0212
448
+ max_temp = 50
449
+ btlnck_features = 256
450
+ n_attractors = [16, 8, 4, 1]
451
+ attractor_alpha = 1000
452
+ attractor_gamma = 2
453
+ attractor_kind = "mean"
454
+ attractor_type = "inv"
455
+ self.bin_centers_type = "softplus"
456
+
457
+ self.bottle_neck = nn.Sequential(
458
+ nn.Conv2d(channels_in, btlnck_features, kernel_size=3, stride=1, padding=1),
459
+ nn.ReLU(inplace=False),
460
+ nn.Conv2d(btlnck_features, btlnck_features, kernel_size=3, stride=1, padding=1))
461
+
462
+
463
+ for m in self.bottle_neck.modules():
464
+ if isinstance(m, nn.Conv2d):
465
+ normal_init(m, std=0.001, bias=0)
466
+
467
+
468
+ SeedBinRegressorLayer = SeedBinRegressorUnnormed
469
+ Attractor = AttractorLayerUnnormed
470
+ self.seed_bin_regressor = SeedBinRegressorLayer(
471
+ btlnck_features, n_bins=n_bins, min_depth=self.min_depth, max_depth=self.max_depth)
472
+ self.seed_projector = Projector(btlnck_features, bin_embedding_dim)
473
+ self.projectors = nn.ModuleList([
474
+ Projector(num_out, bin_embedding_dim)
475
+ for num_out in num_out_features
476
+ ])
477
+ self.attractors = nn.ModuleList([
478
+ Attractor(bin_embedding_dim, n_bins, n_attractors=n_attractors[i], min_depth=self.min_depth, max_depth=self.max_depth,
479
+ alpha=attractor_alpha, gamma=attractor_gamma, kind=attractor_kind, attractor_type=attractor_type)
480
+ for i in range(len(num_out_features))
481
+ ])
482
+
483
+ last_in = 192 + 1
484
+ self.conditional_log_binomial = ConditionalLogBinomial(
485
+ last_in, bin_embedding_dim, n_classes=n_bins, min_temp=min_temp, max_temp=max_temp)
486
+ elif self.mViT and not self.custom:
487
+ n_bins = 256
488
+ self.adaptive_bins_layer = mViT(192, n_query_channels=192, patch_size=16,
489
+ dim_out=n_bins,
490
+ embedding_dim=192, norm='linear')
491
+ self.conv_out = nn.Sequential(nn.Conv2d(192, n_bins, kernel_size=1, stride=1, padding=0),
492
+ nn.Softmax(dim=1))
493
+
494
+
495
+ def forward(self, image, class_ids=None, img_paths=None):
496
+
497
+ #image = transform(image).unsqueeze(0)
498
+ shape = image.shape
499
+ image = torch.nn.functional.interpolate(image, (440,480), mode='bilinear', align_corners=True)
500
+ x = F.pad(image, (0, 0, 40, 0))
501
+
502
+ b, c, h, w = x.shape
503
+ x = x*2.0 - 1.0 # normalize to [-1, 1]
504
+ if h == 480 and w == 480:
505
+ new_x = torch.zeros(b, c, 512, 512, device=x.device)
506
+ new_x[:, :, 0:480, 0:480] = x
507
+ x = new_x
508
+ elif h==352 and w==352:
509
+ new_x = torch.zeros(b, c, 384, 384, device=x.device)
510
+ new_x[:, :, 0:352, 0:352] = x
511
+ x = new_x
512
+ elif h == 512 and w == 512:
513
+ pass
514
+ else:
515
+ print(h,w)
516
+ raise NotImplementedError
517
+ conv_feats = self.encoder(x, class_ids, img_paths)
518
+
519
+ if h == 480 or h == 352:
520
+ conv_feats = conv_feats[:, :, :-1, :-1]
521
+
522
+ self.decoder.remove_hooks()
523
+ out_depth, out, x_blocks = self.decoder([conv_feats])
524
+
525
+ if not self.mViT and not self.custom:
526
+ x = self.bottle_neck(conv_feats)
527
+ _, seed_b_centers = self.seed_bin_regressor(x)
528
+
529
+ if self.bin_centers_type == 'normed' or self.bin_centers_type == 'hybrid2':
530
+ b_prev = (seed_b_centers - self.min_depth) / \
531
+ (self.max_depth - self.min_depth)
532
+ else:
533
+ b_prev = seed_b_centers
534
+
535
+ prev_b_embedding = self.seed_projector(x)
536
+
537
+ for projector, attractor, x in zip(self.projectors, self.attractors, x_blocks):
538
+ b_embedding = projector(x)
539
+ b, b_centers = attractor(
540
+ b_embedding, b_prev, prev_b_embedding, interpolate=True)
541
+ b_prev = b.clone()
542
+ prev_b_embedding = b_embedding.clone()
543
+
544
+ rel_cond = torch.sigmoid(out_depth) * self.max_depth
545
+
546
+ # concat rel depth with last. First interpolate rel depth to last size
547
+ rel_cond = nn.functional.interpolate(
548
+ rel_cond, size=out.shape[2:], mode='bilinear', align_corners=True)
549
+ last = torch.cat([out, rel_cond], dim=1)
550
+
551
+ b_embedding = nn.functional.interpolate(
552
+ b_embedding, last.shape[-2:], mode='bilinear', align_corners=True)
553
+ x = self.conditional_log_binomial(last, b_embedding)
554
+
555
+ # Now depth value is Sum px * cx , where cx are bin_centers from the last bin tensor
556
+ b_centers = nn.functional.interpolate(
557
+ b_centers, x.shape[-2:], mode='bilinear', align_corners=True)
558
+ out_depth = torch.sum(x * b_centers, dim=1, keepdim=True)
559
+
560
+ elif self.mViT and not self.custom:
561
+ bin_widths_normed, range_attention_maps = self.adaptive_bins_layer(out)
562
+ out = self.conv_out(range_attention_maps)
563
+
564
+ bin_widths = (self.max_depth - self.min_depth) * bin_widths_normed # .shape = N, dim_out
565
+ bin_widths = nn.functional.pad(bin_widths, (1, 0), mode='constant', value=self.min_depth)
566
+ bin_edges = torch.cumsum(bin_widths, dim=1)
567
+
568
+ centers = 0.5 * (bin_edges[:, :-1] + bin_edges[:, 1:])
569
+ n, dout = centers.size()
570
+ centers = centers.view(n, dout, 1, 1)
571
+
572
+ out_depth = torch.sum(out * centers, dim=1, keepdim=True)
573
+ else:
574
+ out_depth = torch.sigmoid(out_depth) * self.max_depth
575
+
576
+ pred = out_depth
577
+ pred = pred[:,:,40:,:]
578
+ pred = torch.nn.functional.interpolate(pred, shape[2:], mode='bilinear', align_corners=True)
579
+ pred_d_numpy = pred.squeeze().detach().cpu().numpy()
580
+
581
+ return pred_d_numpy
582
+
583
+
584
+ class Decoder(nn.Module):
585
+ def __init__(self, in_channels, out_channels, args):
586
+ super().__init__()
587
+ self.deconv = args.num_deconv
588
+ self.in_channels = in_channels
589
+
590
+ embed_dim = 192
591
+
592
+ channels_in = embed_dim*8
593
+ channels_out = embed_dim
594
+
595
+ self.deconv_layers, self.intermediate_results = self._make_deconv_layer(
596
+ args.num_deconv,
597
+ args.num_filters,
598
+ args.deconv_kernels,
599
+ )
600
+ self.last_layer_depth = nn.Sequential(
601
+ nn.Conv2d(channels_out, channels_out, kernel_size=3, stride=1, padding=1),
602
+ nn.ReLU(inplace=False),
603
+ nn.Conv2d(channels_out, 1, kernel_size=3, stride=1, padding=1))
604
+
605
+ for m in self.last_layer_depth.modules():
606
+ if isinstance(m, nn.Conv2d):
607
+ normal_init(m, std=0.001, bias=0)
608
+
609
+ conv_layers = []
610
+ conv_layers.append(
611
+ build_conv_layer(
612
+ dict(type='Conv2d'),
613
+ in_channels=args.num_filters[-1],
614
+ out_channels=out_channels,
615
+ kernel_size=3,
616
+ stride=1,
617
+ padding=1))
618
+ conv_layers.append(
619
+ build_norm_layer(dict(type='BN'), out_channels)[1])
620
+ conv_layers.append(nn.ReLU())
621
+ self.conv_layers = nn.Sequential(*conv_layers)
622
+
623
+ self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
624
+
625
+ def forward(self, conv_feats):
626
+ out = self.deconv_layers(conv_feats[0])
627
+ out = self.conv_layers(out)
628
+ out = self.up(out)
629
+ self.intermediate_results.append(out)
630
+ out = self.up(out)
631
+ out_depth = self.last_layer_depth(out)
632
+
633
+ return out_depth, out, self.intermediate_results
634
+
635
+ def _make_deconv_layer(self, num_layers, num_filters, num_kernels):
636
+ """Make deconv layers."""
637
+
638
+ layers = []
639
+ in_planes = self.in_channels
640
+ intermediate_results = [] # List to store intermediate feature maps
641
+
642
+ for i in range(num_layers):
643
+ kernel, padding, output_padding = \
644
+ self._get_deconv_cfg(num_kernels[i])
645
+
646
+ planes = num_filters[i]
647
+ layers.append(
648
+ build_upsample_layer(
649
+ dict(type='deconv'),
650
+ in_channels=in_planes,
651
+ out_channels=planes,
652
+ kernel_size=kernel,
653
+ stride=2,
654
+ padding=padding,
655
+ output_padding=output_padding,
656
+ bias=False))
657
+ layers.append(nn.BatchNorm2d(planes))
658
+ layers.append(nn.ReLU())
659
+ in_planes = planes
660
+
661
+ # Add a hook to store the intermediate result
662
+ layers[-1].register_forward_hook(self._hook_fn(intermediate_results))
663
+
664
+ return nn.Sequential(*layers), intermediate_results
665
+
666
+ def _hook_fn(self, intermediate_results):
667
+ def hook(module, input, output):
668
+ intermediate_results.append(output)
669
+ return hook
670
+
671
+ def remove_hooks(self):
672
+ self.intermediate_results.clear()
673
+
674
+ def _get_deconv_cfg(self, deconv_kernel):
675
+ """Get configurations for deconv layers."""
676
+ if deconv_kernel == 4:
677
+ padding = 1
678
+ output_padding = 0
679
+ elif deconv_kernel == 3:
680
+ padding = 1
681
+ output_padding = 1
682
+ elif deconv_kernel == 2:
683
+ padding = 0
684
+ output_padding = 0
685
+ else:
686
+ raise ValueError(f'Not supported num_kernels ({deconv_kernel}).')
687
+
688
+ return deconv_kernel, padding, output_padding
689
+
690
+ def init_weights(self):
691
+ """Initialize model weights."""
692
+ for m in self.modules():
693
+ if isinstance(m, nn.Conv2d):
694
+ normal_init(m, std=0.001, bias=0)
695
+ elif isinstance(m, nn.BatchNorm2d):
696
+ constant_init(m, 1)
697
+ elif isinstance(m, nn.ConvTranspose2d):
698
+ normal_init(m, std=0.001)
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:913c380f95fe3e5b79b07a86bd4d4dc33baa6f80621179d315d6699a10115242
3
  size 3735516436
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b67d266d40074d28fd30fe8b341ce964d80773ad4bb0eb7d321fc4454e9c461b
3
  size 3735516436