|
import os |
|
import numpy as np |
|
import cv2 |
|
import time |
|
from tqdm import tqdm |
|
import multiprocessing |
|
import glob |
|
|
|
import mediapipe as mp |
|
from mediapipe import solutions |
|
from mediapipe.framework.formats import landmark_pb2 |
|
from mediapipe.tasks import python |
|
from mediapipe.tasks.python import vision |
|
from . import face_landmark |
|
|
|
CUR_DIR = os.path.dirname(__file__) |
|
|
|
|
|
class LMKExtractor(): |
|
def __init__(self, FPS=25): |
|
|
|
self.mode = mp.tasks.vision.FaceDetectorOptions.running_mode.IMAGE |
|
base_options = python.BaseOptions(model_asset_path=os.path.join(CUR_DIR, 'mp_models/face_landmarker_v2_with_blendshapes.task')) |
|
base_options.delegate = mp.tasks.BaseOptions.Delegate.CPU |
|
options = vision.FaceLandmarkerOptions(base_options=base_options, |
|
running_mode=self.mode, |
|
output_face_blendshapes=True, |
|
output_facial_transformation_matrixes=True, |
|
num_faces=1) |
|
self.detector = face_landmark.FaceLandmarker.create_from_options(options) |
|
self.last_ts = 0 |
|
self.frame_ms = int(1000 / FPS) |
|
|
|
det_base_options = python.BaseOptions(model_asset_path=os.path.join(CUR_DIR, 'mp_models/blaze_face_short_range.tflite')) |
|
det_options = vision.FaceDetectorOptions(base_options=det_base_options) |
|
self.det_detector = vision.FaceDetector.create_from_options(det_options) |
|
|
|
|
|
def __call__(self, img): |
|
frame = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
image = mp.Image(image_format=mp.ImageFormat.SRGB, data=frame) |
|
t0 = time.time() |
|
if self.mode == mp.tasks.vision.FaceDetectorOptions.running_mode.VIDEO: |
|
det_result = self.det_detector.detect(image) |
|
if len(det_result.detections) != 1: |
|
return None |
|
self.last_ts += self.frame_ms |
|
try: |
|
detection_result, mesh3d = self.detector.detect_for_video(image, timestamp_ms=self.last_ts) |
|
except: |
|
return None |
|
elif self.mode == mp.tasks.vision.FaceDetectorOptions.running_mode.IMAGE: |
|
|
|
|
|
|
|
|
|
try: |
|
detection_result, mesh3d = self.detector.detect(image) |
|
except: |
|
return None |
|
|
|
|
|
bs_list = detection_result.face_blendshapes |
|
if len(bs_list) == 1: |
|
bs = bs_list[0] |
|
bs_values = [] |
|
for index in range(len(bs)): |
|
bs_values.append(bs[index].score) |
|
bs_values = bs_values[1:] |
|
trans_mat = detection_result.facial_transformation_matrixes[0] |
|
face_landmarks_list = detection_result.face_landmarks |
|
face_landmarks = face_landmarks_list[0] |
|
lmks = [] |
|
for index in range(len(face_landmarks)): |
|
x = face_landmarks[index].x |
|
y = face_landmarks[index].y |
|
z = face_landmarks[index].z |
|
lmks.append([x, y, z]) |
|
lmks = np.array(lmks) |
|
|
|
lmks3d = np.array(mesh3d.vertex_buffer) |
|
lmks3d = lmks3d.reshape(-1, 5)[:, :3] |
|
mp_tris = np.array(mesh3d.index_buffer).reshape(-1, 3) + 1 |
|
|
|
return { |
|
"lmks": lmks, |
|
'lmks3d': lmks3d, |
|
"trans_mat": trans_mat, |
|
'faces': mp_tris, |
|
"bs": bs_values |
|
} |
|
else: |
|
|
|
return None |
|
|