Musha-the-Yusha commited on
Commit
101b881
·
1 Parent(s): e745dff

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.33 +/- 0.33
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16e10ec76a276ae7c0973fcb6445ae7436ca9f959964713e9fa6a7273f13abdb
3
+ size 107987
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1722881160>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f1722879900>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1675080607512149671,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAsOLNPjU6GD0MVRA/sOLNPjU6GD0MVRA/sOLNPjU6GD0MVRA/sOLNPjU6GD0MVRA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWaULPVPNur+Zxpm/sG8EP9fjYb8S+28+86uBvsmOLr8P84m/3sCWPYvoXz9Ky5+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACw4s0+NToYPQxVED/7HX88OikLOyRcTzyw4s0+NToYPQxVED/7HX88OikLOyRcTzyw4s0+NToYPQxVED/7HX88OikLOyRcTzyw4s0+NToYPQxVED/7HX88OikLOyRcTzyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.4021201 0.03716489 0.5637977 ]\n [0.4021201 0.03716489 0.5637977 ]\n [0.4021201 0.03716489 0.5637977 ]\n [0.4021201 0.03716489 0.5637977 ]]",
60
+ "desired_goal": "[[ 0.03409323 -1.459391 -1.2013732 ]\n [ 0.5173292 -0.8823828 0.2343562 ]\n [-0.253265 -0.6818662 -1.0777301 ]\n [ 0.07361005 0.8746421 -1.2483914 ]]",
61
+ "observation": "[[0.4021201 0.03716489 0.5637977 0.01557111 0.00212343 0.01265625]\n [0.4021201 0.03716489 0.5637977 0.01557111 0.00212343 0.01265625]\n [0.4021201 0.03716489 0.5637977 0.01557111 0.00212343 0.01265625]\n [0.4021201 0.03716489 0.5637977 0.01557111 0.00212343 0.01265625]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7mUTPjvnyz2dyf09wC/tPGyEiTz0/pg+ms/uPIlxkz08R9Q8+I0FvpUI0j11jpc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.14394352 0.09956213 0.1239197 ]\n [ 0.02895343 0.01678678 0.29882014]\n [ 0.02915173 0.07199389 0.02591287]\n [-0.13042438 0.10255543 0.29600874]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXvI/+btXCcCUhpRSlIwBbJRLMowBdJRHQKSbqrXDm8x1fZQoaAZoCWgPQwjcZirEIwEQwJSGlFKUaBVLMmgWR0Ckm2sY2sJZdX2UKGgGaAloD0MIX/BpTl6ED8CUhpRSlGgVSzJoFkdApJsnGp++d3V9lChoBmgJaA9DCA+4rpgRngrAlIaUUpRoFUsyaBZHQKSamAFxGUh1fZQoaAZoCWgPQwid1JelnVr7v5SGlFKUaBVLMmgWR0CknKHL7oB8dX2UKGgGaAloD0MIQFHZsKZyCMCUhpRSlGgVSzJoFkdApJxiEOAiFHV9lChoBmgJaA9DCAWLw5lfLQPAlIaUUpRoFUsyaBZHQKScHncL0Bh1fZQoaAZoCWgPQwi70jJS74kCwJSGlFKUaBVLMmgWR0Ckm4+Yc/+sdX2UKGgGaAloD0MIesVTjzSYBcCUhpRSlGgVSzJoFkdApJ2ZnYg7o3V9lChoBmgJaA9DCMMN+Pwwgv2/lIaUUpRoFUsyaBZHQKSdWhZha1V1fZQoaAZoCWgPQwi5jnHFxREEwJSGlFKUaBVLMmgWR0CknRYaYNRWdX2UKGgGaAloD0MINbOWAtK+97+UhpRSlGgVSzJoFkdApJyHIsAeaXV9lChoBmgJaA9DCBSxiGGH0QHAlIaUUpRoFUsyaBZHQKSee/Efkmx1fZQoaAZoCWgPQwi4ByEgX2IOwJSGlFKUaBVLMmgWR0Cknjwpe/pMdX2UKGgGaAloD0MIWHVWC+yRD8CUhpRSlGgVSzJoFkdApJ34RChN/XV9lChoBmgJaA9DCPtbAvBPSQzAlIaUUpRoFUsyaBZHQKSdaW0JF9d1fZQoaAZoCWgPQwhN2ekHdZENwJSGlFKUaBVLMmgWR0Ckn3cwQDmsdX2UKGgGaAloD0MIVwkWhzN/AcCUhpRSlGgVSzJoFkdApJ832kBS1nV9lChoBmgJaA9DCMtlo3N+KgDAlIaUUpRoFUsyaBZHQKSe9CtRvWJ1fZQoaAZoCWgPQwhBmrFoOtsDwJSGlFKUaBVLMmgWR0CknmUmtyPudX2UKGgGaAloD0MIcr9DUaDPBsCUhpRSlGgVSzJoFkdApKBwUWVNYnV9lChoBmgJaA9DCEesxacAmATAlIaUUpRoFUsyaBZHQKSgMKCxu891fZQoaAZoCWgPQwhAho4dVKIBwJSGlFKUaBVLMmgWR0Ckn+yY5T60dX2UKGgGaAloD0MIJCao4VsYEMCUhpRSlGgVSzJoFkdApJ9d6eGwinV9lChoBmgJaA9DCOGWj6SkhwPAlIaUUpRoFUsyaBZHQKShYu/1xsF1fZQoaAZoCWgPQwixNPCjGpYEwJSGlFKUaBVLMmgWR0CkoSMkQf6odX2UKGgGaAloD0MIRBmqYiq9BcCUhpRSlGgVSzJoFkdApKDfEMspX3V9lChoBmgJaA9DCGFVvfxOMwbAlIaUUpRoFUsyaBZHQKSgUEDhcZ91fZQoaAZoCWgPQwhpqFFIMisCwJSGlFKUaBVLMmgWR0CkolAymALBdX2UKGgGaAloD0MIL4uJzceVBMCUhpRSlGgVSzJoFkdApKIQVZcLSnV9lChoBmgJaA9DCIC21awz/gDAlIaUUpRoFUsyaBZHQKShzK/20zF1fZQoaAZoCWgPQwiLU62FWegBwJSGlFKUaBVLMmgWR0CkoT2b5M11dX2UKGgGaAloD0MIlx+4yhNoBMCUhpRSlGgVSzJoFkdApKNJdnkDIXV9lChoBmgJaA9DCHR8tDhjWADAlIaUUpRoFUsyaBZHQKSjCaKk2xZ1fZQoaAZoCWgPQwhCz2bV56r+v5SGlFKUaBVLMmgWR0CkosWSdOIqdX2UKGgGaAloD0MIfO9v0F79/7+UhpRSlGgVSzJoFkdApKI2fAbhnHV9lChoBmgJaA9DCPDDQUKUL/6/lIaUUpRoFUsyaBZHQKSkMr0aqCJ1fZQoaAZoCWgPQwgDllzF4vf9v5SGlFKUaBVLMmgWR0Cko/Mj/uLKdX2UKGgGaAloD0MI3h6EgHwpAsCUhpRSlGgVSzJoFkdApKOvHJcPfHV9lChoBmgJaA9DCA7d7A+UGwjAlIaUUpRoFUsyaBZHQKSjH/hESdx1fZQoaAZoCWgPQwjc9dIUAY4AwJSGlFKUaBVLMmgWR0CkpRFPBSDRdX2UKGgGaAloD0MI5dU5BmQvBMCUhpRSlGgVSzJoFkdApKTRblijL3V9lChoBmgJaA9DCDMxXYjV3wHAlIaUUpRoFUsyaBZHQKSkjWJ79ht1fZQoaAZoCWgPQwgF3V7SGA0GwJSGlFKUaBVLMmgWR0Cko/5X+2mYdX2UKGgGaAloD0MI/tE3aRo0C8CUhpRSlGgVSzJoFkdApKYkEC/47HV9lChoBmgJaA9DCPcF9MKdSwPAlIaUUpRoFUsyaBZHQKSl5CQcPvt1fZQoaAZoCWgPQwi4BUt1AS8EwJSGlFKUaBVLMmgWR0CkpaDvNNahdX2UKGgGaAloD0MIq5LIPshSCMCUhpRSlGgVSzJoFkdApKUR2bG3nnV9lChoBmgJaA9DCOgyNQne0P6/lIaUUpRoFUsyaBZHQKSnCSeyzHF1fZQoaAZoCWgPQwi6o//lWnQKwJSGlFKUaBVLMmgWR0CkpslVDKHPdX2UKGgGaAloD0MItf0rK01qC8CUhpRSlGgVSzJoFkdApKaFfG+9J3V9lChoBmgJaA9DCGa9GMqJlgLAlIaUUpRoFUsyaBZHQKSl9nbItDl1fZQoaAZoCWgPQwjJWdjTDt8BwJSGlFKUaBVLMmgWR0CkqAjBdld1dX2UKGgGaAloD0MISs/0EmOZ/b+UhpRSlGgVSzJoFkdApKfI6fapP3V9lChoBmgJaA9DCIekFkomZwDAlIaUUpRoFUsyaBZHQKSnhN+LFXJ1fZQoaAZoCWgPQwjWHCCYowf5v5SGlFKUaBVLMmgWR0CkpvY0dilSdX2UKGgGaAloD0MIlYEDWrqCBsCUhpRSlGgVSzJoFkdApKkBLuhK2HV9lChoBmgJaA9DCNAKDFndagTAlIaUUpRoFUsyaBZHQKSowVNYbKl1fZQoaAZoCWgPQwgNcEG2LP8AwJSGlFKUaBVLMmgWR0CkqH0163RYdX2UKGgGaAloD0MIKNL9nIK8BcCUhpRSlGgVSzJoFkdApKfuXsw+MnV9lChoBmgJaA9DCCpwsg3cgfa/lIaUUpRoFUsyaBZHQKSqAK3uuzR1fZQoaAZoCWgPQwjFWRE10Sf3v5SGlFKUaBVLMmgWR0CkqcDz7MxHdX2UKGgGaAloD0MITrNAu0OqCcCUhpRSlGgVSzJoFkdApKl84R28qXV9lChoBmgJaA9DCMrFGFjHsQrAlIaUUpRoFUsyaBZHQKSo7hF3IMl1fZQoaAZoCWgPQwjnq+Rjd8H1v5SGlFKUaBVLMmgWR0CkqvRjBl+WdX2UKGgGaAloD0MI4Zo7+l+uAsCUhpRSlGgVSzJoFkdApKq0kjX4CnV9lChoBmgJaA9DCDOLUGwFDfi/lIaUUpRoFUsyaBZHQKSqcO5rgwZ1fZQoaAZoCWgPQwjL2xFOC972v5SGlFKUaBVLMmgWR0CkqeH1vl2edX2UKGgGaAloD0MIN2xblNnACcCUhpRSlGgVSzJoFkdApKvveUILPXV9lChoBmgJaA9DCC+KHvgYbAbAlIaUUpRoFUsyaBZHQKSrr9XLeRB1fZQoaAZoCWgPQwirksg+yJIIwJSGlFKUaBVLMmgWR0Ckq2v24/eMdX2UKGgGaAloD0MIjX40nDL3AMCUhpRSlGgVSzJoFkdApKrc4PwuunV9lChoBmgJaA9DCEpGzsKeVg/AlIaUUpRoFUsyaBZHQKStBgpjMFF1fZQoaAZoCWgPQwjQ0D/BxcoFwJSGlFKUaBVLMmgWR0CkrMbFjurqdX2UKGgGaAloD0MIZJP8iF9xCcCUhpRSlGgVSzJoFkdApKyDaEi+tnV9lChoBmgJaA9DCCi4WFGDiQLAlIaUUpRoFUsyaBZHQKSr9M5fdAR1fZQoaAZoCWgPQwhuh4bFqCsBwJSGlFKUaBVLMmgWR0Ckrfk2pAD8dX2UKGgGaAloD0MI9tN/1vy4AsCUhpRSlGgVSzJoFkdApK25bt7a7HV9lChoBmgJaA9DCEGDTZ1HRfm/lIaUUpRoFUsyaBZHQKStdV94NZx1fZQoaAZoCWgPQwgSvYxiucULwJSGlFKUaBVLMmgWR0CkrOZG8VYZdX2UKGgGaAloD0MIJqd2hqntCcCUhpRSlGgVSzJoFkdApK8CDmKZUnV9lChoBmgJaA9DCM9oq5LIPva/lIaUUpRoFUsyaBZHQKSuwso2GZh1fZQoaAZoCWgPQwjKqZ1hagv7v5SGlFKUaBVLMmgWR0Ckrn8QiA2AdX2UKGgGaAloD0MIvOtsyD+zBMCUhpRSlGgVSzJoFkdApK3wEIPbwnV9lChoBmgJaA9DCAt8RbdecwbAlIaUUpRoFUsyaBZHQKSv869TP0J1fZQoaAZoCWgPQwjswg/Op04KwJSGlFKUaBVLMmgWR0Ckr7PfKp1idX2UKGgGaAloD0MIWU3XE133BsCUhpRSlGgVSzJoFkdApK9v1L8JlnV9lChoBmgJaA9DCA5Pr5RlyPW/lIaUUpRoFUsyaBZHQKSu4NyYG+t1fZQoaAZoCWgPQwj0NjY7Uj0AwJSGlFKUaBVLMmgWR0CksNof8uSPdX2UKGgGaAloD0MI3L3cJ0cBC8CUhpRSlGgVSzJoFkdApLCaRlpXZHV9lChoBmgJaA9DCLAfYoOFU/i/lIaUUpRoFUsyaBZHQKSwVljmSyN1fZQoaAZoCWgPQwg34zREFT4DwJSGlFKUaBVLMmgWR0Ckr8dhRZU2dX2UKGgGaAloD0MIQz19BP7QBcCUhpRSlGgVSzJoFkdApLHfIS13MnV9lChoBmgJaA9DCG3KFd7lggjAlIaUUpRoFUsyaBZHQKSxn0TURWd1fZQoaAZoCWgPQwg491eP+9YAwJSGlFKUaBVLMmgWR0CksVvnbItEdX2UKGgGaAloD0MIUtSZe0i4/L+UhpRSlGgVSzJoFkdApLDM54nndXV9lChoBmgJaA9DCGhdo+VAz/6/lIaUUpRoFUsyaBZHQKSyyOKfnOl1fZQoaAZoCWgPQwjYf52bNuP7v5SGlFKUaBVLMmgWR0CksokH2RJVdX2UKGgGaAloD0MIat0Gtd/aA8CUhpRSlGgVSzJoFkdApLJFDQZ4wHV9lChoBmgJaA9DCNPe4AuTSQrAlIaUUpRoFUsyaBZHQKSxtefI0ZZ1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2d4452a97262c11720808d2e2a0e9c47a977eab961b6da9151504b63fe60f4a
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ff8e6d7e2fd90c8727b08595663cd88777bbad64423cf0dbc015a4bdbd471b9
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1722881160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1722879900>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675080607512149671, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAsOLNPjU6GD0MVRA/sOLNPjU6GD0MVRA/sOLNPjU6GD0MVRA/sOLNPjU6GD0MVRA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWaULPVPNur+Zxpm/sG8EP9fjYb8S+28+86uBvsmOLr8P84m/3sCWPYvoXz9Ky5+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACw4s0+NToYPQxVED/7HX88OikLOyRcTzyw4s0+NToYPQxVED/7HX88OikLOyRcTzyw4s0+NToYPQxVED/7HX88OikLOyRcTzyw4s0+NToYPQxVED/7HX88OikLOyRcTzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4021201 0.03716489 0.5637977 ]\n [0.4021201 0.03716489 0.5637977 ]\n [0.4021201 0.03716489 0.5637977 ]\n [0.4021201 0.03716489 0.5637977 ]]", "desired_goal": "[[ 0.03409323 -1.459391 -1.2013732 ]\n [ 0.5173292 -0.8823828 0.2343562 ]\n [-0.253265 -0.6818662 -1.0777301 ]\n [ 0.07361005 0.8746421 -1.2483914 ]]", "observation": "[[0.4021201 0.03716489 0.5637977 0.01557111 0.00212343 0.01265625]\n [0.4021201 0.03716489 0.5637977 0.01557111 0.00212343 0.01265625]\n [0.4021201 0.03716489 0.5637977 0.01557111 0.00212343 0.01265625]\n [0.4021201 0.03716489 0.5637977 0.01557111 0.00212343 0.01265625]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7mUTPjvnyz2dyf09wC/tPGyEiTz0/pg+ms/uPIlxkz08R9Q8+I0FvpUI0j11jpc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.14394352 0.09956213 0.1239197 ]\n [ 0.02895343 0.01678678 0.29882014]\n [ 0.02915173 0.07199389 0.02591287]\n [-0.13042438 0.10255543 0.29600874]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXvI/+btXCcCUhpRSlIwBbJRLMowBdJRHQKSbqrXDm8x1fZQoaAZoCWgPQwjcZirEIwEQwJSGlFKUaBVLMmgWR0Ckm2sY2sJZdX2UKGgGaAloD0MIX/BpTl6ED8CUhpRSlGgVSzJoFkdApJsnGp++d3V9lChoBmgJaA9DCA+4rpgRngrAlIaUUpRoFUsyaBZHQKSamAFxGUh1fZQoaAZoCWgPQwid1JelnVr7v5SGlFKUaBVLMmgWR0CknKHL7oB8dX2UKGgGaAloD0MIQFHZsKZyCMCUhpRSlGgVSzJoFkdApJxiEOAiFHV9lChoBmgJaA9DCAWLw5lfLQPAlIaUUpRoFUsyaBZHQKScHncL0Bh1fZQoaAZoCWgPQwi70jJS74kCwJSGlFKUaBVLMmgWR0Ckm4+Yc/+sdX2UKGgGaAloD0MIesVTjzSYBcCUhpRSlGgVSzJoFkdApJ2ZnYg7o3V9lChoBmgJaA9DCMMN+Pwwgv2/lIaUUpRoFUsyaBZHQKSdWhZha1V1fZQoaAZoCWgPQwi5jnHFxREEwJSGlFKUaBVLMmgWR0CknRYaYNRWdX2UKGgGaAloD0MINbOWAtK+97+UhpRSlGgVSzJoFkdApJyHIsAeaXV9lChoBmgJaA9DCBSxiGGH0QHAlIaUUpRoFUsyaBZHQKSee/Efkmx1fZQoaAZoCWgPQwi4ByEgX2IOwJSGlFKUaBVLMmgWR0Cknjwpe/pMdX2UKGgGaAloD0MIWHVWC+yRD8CUhpRSlGgVSzJoFkdApJ34RChN/XV9lChoBmgJaA9DCPtbAvBPSQzAlIaUUpRoFUsyaBZHQKSdaW0JF9d1fZQoaAZoCWgPQwhN2ekHdZENwJSGlFKUaBVLMmgWR0Ckn3cwQDmsdX2UKGgGaAloD0MIVwkWhzN/AcCUhpRSlGgVSzJoFkdApJ832kBS1nV9lChoBmgJaA9DCMtlo3N+KgDAlIaUUpRoFUsyaBZHQKSe9CtRvWJ1fZQoaAZoCWgPQwhBmrFoOtsDwJSGlFKUaBVLMmgWR0CknmUmtyPudX2UKGgGaAloD0MIcr9DUaDPBsCUhpRSlGgVSzJoFkdApKBwUWVNYnV9lChoBmgJaA9DCEesxacAmATAlIaUUpRoFUsyaBZHQKSgMKCxu891fZQoaAZoCWgPQwhAho4dVKIBwJSGlFKUaBVLMmgWR0Ckn+yY5T60dX2UKGgGaAloD0MIJCao4VsYEMCUhpRSlGgVSzJoFkdApJ9d6eGwinV9lChoBmgJaA9DCOGWj6SkhwPAlIaUUpRoFUsyaBZHQKShYu/1xsF1fZQoaAZoCWgPQwixNPCjGpYEwJSGlFKUaBVLMmgWR0CkoSMkQf6odX2UKGgGaAloD0MIRBmqYiq9BcCUhpRSlGgVSzJoFkdApKDfEMspX3V9lChoBmgJaA9DCGFVvfxOMwbAlIaUUpRoFUsyaBZHQKSgUEDhcZ91fZQoaAZoCWgPQwhpqFFIMisCwJSGlFKUaBVLMmgWR0CkolAymALBdX2UKGgGaAloD0MIL4uJzceVBMCUhpRSlGgVSzJoFkdApKIQVZcLSnV9lChoBmgJaA9DCIC21awz/gDAlIaUUpRoFUsyaBZHQKShzK/20zF1fZQoaAZoCWgPQwiLU62FWegBwJSGlFKUaBVLMmgWR0CkoT2b5M11dX2UKGgGaAloD0MIlx+4yhNoBMCUhpRSlGgVSzJoFkdApKNJdnkDIXV9lChoBmgJaA9DCHR8tDhjWADAlIaUUpRoFUsyaBZHQKSjCaKk2xZ1fZQoaAZoCWgPQwhCz2bV56r+v5SGlFKUaBVLMmgWR0CkosWSdOIqdX2UKGgGaAloD0MIfO9v0F79/7+UhpRSlGgVSzJoFkdApKI2fAbhnHV9lChoBmgJaA9DCPDDQUKUL/6/lIaUUpRoFUsyaBZHQKSkMr0aqCJ1fZQoaAZoCWgPQwgDllzF4vf9v5SGlFKUaBVLMmgWR0Cko/Mj/uLKdX2UKGgGaAloD0MI3h6EgHwpAsCUhpRSlGgVSzJoFkdApKOvHJcPfHV9lChoBmgJaA9DCA7d7A+UGwjAlIaUUpRoFUsyaBZHQKSjH/hESdx1fZQoaAZoCWgPQwjc9dIUAY4AwJSGlFKUaBVLMmgWR0CkpRFPBSDRdX2UKGgGaAloD0MI5dU5BmQvBMCUhpRSlGgVSzJoFkdApKTRblijL3V9lChoBmgJaA9DCDMxXYjV3wHAlIaUUpRoFUsyaBZHQKSkjWJ79ht1fZQoaAZoCWgPQwgF3V7SGA0GwJSGlFKUaBVLMmgWR0Cko/5X+2mYdX2UKGgGaAloD0MI/tE3aRo0C8CUhpRSlGgVSzJoFkdApKYkEC/47HV9lChoBmgJaA9DCPcF9MKdSwPAlIaUUpRoFUsyaBZHQKSl5CQcPvt1fZQoaAZoCWgPQwi4BUt1AS8EwJSGlFKUaBVLMmgWR0CkpaDvNNahdX2UKGgGaAloD0MIq5LIPshSCMCUhpRSlGgVSzJoFkdApKUR2bG3nnV9lChoBmgJaA9DCOgyNQne0P6/lIaUUpRoFUsyaBZHQKSnCSeyzHF1fZQoaAZoCWgPQwi6o//lWnQKwJSGlFKUaBVLMmgWR0CkpslVDKHPdX2UKGgGaAloD0MItf0rK01qC8CUhpRSlGgVSzJoFkdApKaFfG+9J3V9lChoBmgJaA9DCGa9GMqJlgLAlIaUUpRoFUsyaBZHQKSl9nbItDl1fZQoaAZoCWgPQwjJWdjTDt8BwJSGlFKUaBVLMmgWR0CkqAjBdld1dX2UKGgGaAloD0MISs/0EmOZ/b+UhpRSlGgVSzJoFkdApKfI6fapP3V9lChoBmgJaA9DCIekFkomZwDAlIaUUpRoFUsyaBZHQKSnhN+LFXJ1fZQoaAZoCWgPQwjWHCCYowf5v5SGlFKUaBVLMmgWR0CkpvY0dilSdX2UKGgGaAloD0MIlYEDWrqCBsCUhpRSlGgVSzJoFkdApKkBLuhK2HV9lChoBmgJaA9DCNAKDFndagTAlIaUUpRoFUsyaBZHQKSowVNYbKl1fZQoaAZoCWgPQwgNcEG2LP8AwJSGlFKUaBVLMmgWR0CkqH0163RYdX2UKGgGaAloD0MIKNL9nIK8BcCUhpRSlGgVSzJoFkdApKfuXsw+MnV9lChoBmgJaA9DCCpwsg3cgfa/lIaUUpRoFUsyaBZHQKSqAK3uuzR1fZQoaAZoCWgPQwjFWRE10Sf3v5SGlFKUaBVLMmgWR0CkqcDz7MxHdX2UKGgGaAloD0MITrNAu0OqCcCUhpRSlGgVSzJoFkdApKl84R28qXV9lChoBmgJaA9DCMrFGFjHsQrAlIaUUpRoFUsyaBZHQKSo7hF3IMl1fZQoaAZoCWgPQwjnq+Rjd8H1v5SGlFKUaBVLMmgWR0CkqvRjBl+WdX2UKGgGaAloD0MI4Zo7+l+uAsCUhpRSlGgVSzJoFkdApKq0kjX4CnV9lChoBmgJaA9DCDOLUGwFDfi/lIaUUpRoFUsyaBZHQKSqcO5rgwZ1fZQoaAZoCWgPQwjL2xFOC972v5SGlFKUaBVLMmgWR0CkqeH1vl2edX2UKGgGaAloD0MIN2xblNnACcCUhpRSlGgVSzJoFkdApKvveUILPXV9lChoBmgJaA9DCC+KHvgYbAbAlIaUUpRoFUsyaBZHQKSrr9XLeRB1fZQoaAZoCWgPQwirksg+yJIIwJSGlFKUaBVLMmgWR0Ckq2v24/eMdX2UKGgGaAloD0MIjX40nDL3AMCUhpRSlGgVSzJoFkdApKrc4PwuunV9lChoBmgJaA9DCEpGzsKeVg/AlIaUUpRoFUsyaBZHQKStBgpjMFF1fZQoaAZoCWgPQwjQ0D/BxcoFwJSGlFKUaBVLMmgWR0CkrMbFjurqdX2UKGgGaAloD0MIZJP8iF9xCcCUhpRSlGgVSzJoFkdApKyDaEi+tnV9lChoBmgJaA9DCCi4WFGDiQLAlIaUUpRoFUsyaBZHQKSr9M5fdAR1fZQoaAZoCWgPQwhuh4bFqCsBwJSGlFKUaBVLMmgWR0Ckrfk2pAD8dX2UKGgGaAloD0MI9tN/1vy4AsCUhpRSlGgVSzJoFkdApK25bt7a7HV9lChoBmgJaA9DCEGDTZ1HRfm/lIaUUpRoFUsyaBZHQKStdV94NZx1fZQoaAZoCWgPQwgSvYxiucULwJSGlFKUaBVLMmgWR0CkrOZG8VYZdX2UKGgGaAloD0MIJqd2hqntCcCUhpRSlGgVSzJoFkdApK8CDmKZUnV9lChoBmgJaA9DCM9oq5LIPva/lIaUUpRoFUsyaBZHQKSuwso2GZh1fZQoaAZoCWgPQwjKqZ1hagv7v5SGlFKUaBVLMmgWR0Ckrn8QiA2AdX2UKGgGaAloD0MIvOtsyD+zBMCUhpRSlGgVSzJoFkdApK3wEIPbwnV9lChoBmgJaA9DCAt8RbdecwbAlIaUUpRoFUsyaBZHQKSv869TP0J1fZQoaAZoCWgPQwjswg/Op04KwJSGlFKUaBVLMmgWR0Ckr7PfKp1idX2UKGgGaAloD0MIWU3XE133BsCUhpRSlGgVSzJoFkdApK9v1L8JlnV9lChoBmgJaA9DCA5Pr5RlyPW/lIaUUpRoFUsyaBZHQKSu4NyYG+t1fZQoaAZoCWgPQwj0NjY7Uj0AwJSGlFKUaBVLMmgWR0CksNof8uSPdX2UKGgGaAloD0MI3L3cJ0cBC8CUhpRSlGgVSzJoFkdApLCaRlpXZHV9lChoBmgJaA9DCLAfYoOFU/i/lIaUUpRoFUsyaBZHQKSwVljmSyN1fZQoaAZoCWgPQwg34zREFT4DwJSGlFKUaBVLMmgWR0Ckr8dhRZU2dX2UKGgGaAloD0MIQz19BP7QBcCUhpRSlGgVSzJoFkdApLHfIS13MnV9lChoBmgJaA9DCG3KFd7lggjAlIaUUpRoFUsyaBZHQKSxn0TURWd1fZQoaAZoCWgPQwg491eP+9YAwJSGlFKUaBVLMmgWR0CksVvnbItEdX2UKGgGaAloD0MIUtSZe0i4/L+UhpRSlGgVSzJoFkdApLDM54nndXV9lChoBmgJaA9DCGhdo+VAz/6/lIaUUpRoFUsyaBZHQKSyyOKfnOl1fZQoaAZoCWgPQwjYf52bNuP7v5SGlFKUaBVLMmgWR0CksokH2RJVdX2UKGgGaAloD0MIat0Gtd/aA8CUhpRSlGgVSzJoFkdApLJFDQZ4wHV9lChoBmgJaA9DCNPe4AuTSQrAlIaUUpRoFUsyaBZHQKSxtefI0ZZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (754 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.331459430977702, "std_reward": 0.3258635030453675, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-30T13:16:25.395369"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:938736a69005267f781643d0478cb5f567697cfa270a3be8ca5387d8939bd9a6
3
+ size 3056