temp / train_pixel.py
Muinez's picture
Upload train_pixel.py with huggingface_hub
ffb9865 verified
import glob
import torch
import json
import os
from PIL import Image
from torchvision.transforms import v2
from torch.utils.data import DataLoader
import torch.nn.functional as F
from tqdm import tqdm
import torch.distributions as dist
def load_state_dict_safely(model, state_dict):
model_state = model.state_dict()
matched_keys = []
skipped_keys = []
for key, tensor in state_dict.items():
#if("encoder_proj" in key):
# continue
if key not in model_state:
skipped_keys.append(f"'{key}' (отсутствует в модели)")
continue
if tensor.shape != model_state[key].shape:
skipped_keys.append(f"'{key}' (форма {tensor.shape} != {model_state[key].shape})")
continue
model_state[key] = tensor
matched_keys.append(key)
model.load_state_dict(model_state)
return matched_keys, skipped_keys
def generate_skewed_tensor(shape, loc=-0.3, scale=1.0, device='cpu'):
base_distribution = dist.Normal(
torch.full(shape, loc, device=device, dtype=torch.bfloat16),
torch.full(shape, scale, device=device, dtype=torch.bfloat16)
)
logit_normal_distribution = dist.TransformedDistribution(
base_distribution, [dist.transforms.SigmoidTransform()]
)
return logit_normal_distribution.sample()
from tqdm import tqdm
def sample_images(vae, image, t = 0.5, num_inference_steps=50, cond=None):
torch.cuda.empty_cache()
timesteps = torch.linspace(0, 1, num_inference_steps, device='cuda', dtype=torch.bfloat16)
x = (1 - t) * torch.randn_like(image) + t * image
for i in tqdm(range(0, num_inference_steps-1)):
t_cur = timesteps[i].unsqueeze(0)
t_next = timesteps[i+1]
dt = t_next - t_cur
flow = vae(x,cond)
flow = (flow - x) / (1-t_cur)
x = x + flow * dt.to('cuda')
return x
from stae_pixel import StupidAE
from diffusers import AutoencoderKL
from transformers import AutoModel
os.environ['HF_HOME'] = '/home/muinez/hf_home'
siglip = AutoModel.from_pretrained("google/siglip2-base-patch32-256", trust_remote_code=True).bfloat16().cuda()
siglip.text_model = None
torch.cuda.empty_cache()
vae = StupidAE().cuda()
params = list(vae.parameters())
from muon import SingleDeviceMuonWithAuxAdam
hidden_weights = [p for p in params if p.ndim >= 2]
hidden_gains_biases = [p for p in params if p.ndim < 2]
param_groups = [
dict(params=hidden_weights, use_muon=True,
lr=5e-4, weight_decay=0),
dict(params=hidden_gains_biases, use_muon=False,
lr=3e-4, betas=(0.9, 0.95), weight_decay=0),
]
optimizer = SingleDeviceMuonWithAuxAdam(param_groups)
from snooc import SnooC
optimizer = SnooC(optimizer)
from torchvision.io import decode_image
import webdataset as wds
def decode_image_data(key, value):
if key.endswith((".jpg", ".jpeg", ".webp")):
try:
return decode_image(torch.tensor(list(value), dtype=torch.uint8), mode="RGB")
except Exception:
return None
return None
image_transforms = v2.Compose([
v2.ToDtype(torch.float32, scale=True),
v2.Resize((128, 128)),
v2.Normalize([0.5], [0.5]),
#v2.RandomHorizontalFlip(0.5),
#transforms.RandomVerticalFlip(0.5),
])
def preprocess(sample):
image_key = 'jpg' if 'jpg' in sample else 'webp' if 'webp' in sample else None
if image_key:
sample[image_key] = image_transforms(sample[image_key])
sample['jpg'] = sample.pop(image_key)
return sample
batch_size = 512
num_workers = 32
urls = [
f"https://huggingface.co/datasets/Muinez/sankaku-webp-256shortest-edge/resolve/main/{i:04d}.tar"
for i in range(1000)
]
dataset = wds.WebDataset(urls, handler=wds.warn_and_continue, shardshuffle=100000) \
.shuffle(2000) \
.decode(decode_image_data) \
.map(preprocess) \
.to_tuple("jpg")#.batched(batch_size)
from torch.utils.tensorboard import SummaryWriter
import datetime
logger = SummaryWriter(f'./logs/{datetime.datetime.now().strftime("%Y%m%d-%H%M%S")}')
load_state_dict_safely(vae, torch.load('pixel_flow_ae.pt'))
step = 0
while(True):
dataloader = DataLoader(
dataset,
num_workers=num_workers,
batch_size=batch_size,
prefetch_factor=16, persistent_workers=True,
drop_last=True
)
bar = tqdm(dataloader)
for data, in bar:
image = data.cuda().bfloat16()
# with torch.no_grad(), torch.amp.autocast('cuda', torch.bfloat16):
# last_hidden_state = siglip.vision_model(image, output_hidden_states=True).last_hidden_state
with torch.amp.autocast('cuda', torch.bfloat16):
device = image.device
cond = vae.encode(image)
t = generate_skewed_tensor((image.shape[0],1,1,1), device=device).to(torch.bfloat16)
x0 = torch.randn_like(image)
t_clamped = (1 - t).clamp(0.05, 1)
xt = (1 - t) * x0 + t * image
pred = vae(xt, cond)
velocity = (xt - pred) / t_clamped
target = (xt - image) / t_clamped
loss = torch.nn.functional.mse_loss(velocity.float(), target.float())
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(vae.parameters(), 1.0)
optimizer.step()
optimizer.zero_grad()
if(step % 1000 == 0):
torch.save(vae.state_dict(), 'pixel_flow_ae.pt')
bar.set_description(f'Step: {step}, Loss: {loss.item()}, Grad norm: {grad_norm}')
logger.add_scalar(f'Loss', loss, step)
if(step % 50 == 0):
with torch.amp.autocast('cuda', torch.bfloat16):
decoded = sample_images(vae, image[:4], t=0.0, cond=cond[:4])
for i in range(4):
logger.add_image(f'Decoded/{i}', decoded[i].cpu() * 0.5 + 0.5, step)
logger.add_image(f'Real/{i}', image[i].cpu() * 0.5 + 0.5, step)
torch.cuda.empty_cache()
logger.flush()
step += 1