MugheesAwan11 commited on
Commit
b9625a6
1 Parent(s): 4a5ced8

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,892 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: sentence-transformers
6
+ tags:
7
+ - sentence-transformers
8
+ - sentence-similarity
9
+ - feature-extraction
10
+ - generated_from_trainer
11
+ - dataset_size:900
12
+ - loss:MatryoshkaLoss
13
+ - loss:MultipleNegativesRankingLoss
14
+ base_model: BAAI/bge-base-en-v1.5
15
+ datasets: []
16
+ metrics:
17
+ - cosine_accuracy@1
18
+ - cosine_accuracy@3
19
+ - cosine_accuracy@5
20
+ - cosine_accuracy@10
21
+ - cosine_precision@1
22
+ - cosine_precision@3
23
+ - cosine_precision@5
24
+ - cosine_precision@10
25
+ - cosine_recall@1
26
+ - cosine_recall@3
27
+ - cosine_recall@5
28
+ - cosine_recall@10
29
+ - cosine_ndcg@10
30
+ - cosine_mrr@10
31
+ - cosine_map@100
32
+ widget:
33
+ - source_sentence: Vendor Risk Assessment View Breach Management View Privacy Policy
34
+ Management View Privacy Center View Learn more Security Identify data risk and
35
+ enable protection & control Data Security Posture Management View Data Access
36
+ Intelligence & Governance View Data Risk Management View Data Breach Analysis
37
+ View Learn more Governance Optimize Data Governance with granular insights into
38
+ your data Data Catalog View Data Lineage View Data Quality View Data Controls
39
+ Orchestrator View Solutions Technologies Covering you everywhere with 1000+ integrations
40
+ across data systems. Snowflake View AWS View Microsoft 365 View Salesforce View
41
+ Workday View GCP View Azure View Oracle View Learn more Regulations Automate compliance
42
+ with global privacy regulations. US California CCPA View US California CPRA View
43
+ European Union GDPR View Thailand’s PDPA View China PIPL View Canada PIPEDA View
44
+ Brazil's LGPD View \+ More View Learn more Roles Identify data risk and enable
45
+ protection & control. Privacy View Security View Governance View Marketing View
46
+ Resources Blog Read through our articles written by industry experts Collateral
47
+ Product brochures, white papers, infographics, analyst reports and more. Knowledge
48
+ Center Learn about the data privacy, security and governance landscape. Securiti
49
+ Education Courses and Certifications for data privacy, security and governance
50
+ professionals. Company About Us Learn all about Securiti, our mission and history
51
+ Partner Program Join our Partner Program Contact Us Contact us to learn more or
52
+ schedule a demo News Coverage Read about Securiti in the news Press Releases Find
53
+ our latest press releases Careers Join the
54
+ sentences:
55
+ - What is the purpose of tracking changes and transformations of data throughout
56
+ its lifecycle?
57
+ - What is the role of ePD in the European privacy regime and its relation to GDPR?
58
+ - How can data governance be optimized using granular insights?
59
+ - source_sentence: Learn more Asset and Data Discovery Discover dark and native data
60
+ assets Learn more Data Access Intelligence & Governance Identify which users have
61
+ access to sensitive data and prevent unauthorized access Learn more Data Privacy
62
+ Automation PrivacyCenter.Cloud | Data Mapping | DSR Automation | Assessment Automation
63
+ | Vendor Assessment | Breach Management | Privacy Notice Learn more Sensitive
64
+ Data Intelligence Discover & Classify Structured and Unstructured Data | People
65
+ Data Graph Learn more Data Flow Intelligence & Governance Prevent sensitive data
66
+ sprawl through real-time streaming platforms Learn more Data Consent Automation
67
+ First Party Consent | Third Party & Cookie Consent Learn more Data Security Posture
68
+ Management Secure sensitive data in hybrid multicloud and SaaS environments Learn
69
+ more Data Breach Impact Analysis & Response Analyze impact of a data breach and
70
+ coordinate response per global regulatory obligations Learn more Data Catalog
71
+ Automatically catalog datasets and enable users to find, understand, trust and
72
+ access data Learn more Data Lineage Track changes and transformations of data
73
+ throughout its lifecycle Data Controls Orchestrator View Data Command Center View
74
+ Sensitive Data Intelligence View Asset Discovery Data Discovery & Classification
75
+ Sensitive Data Catalog People Data Graph Learn more Privacy Automate compliance
76
+ with global privacy regulations Data Mapping Automation View Data Subject Request
77
+ Automation View People Data Graph View Assessment Automation View Cookie Consent
78
+ View Universal Consent View Vendor Risk Assessment View Breach Management View
79
+ Privacy Policy Management View Privacy Center View Learn more Security Identify
80
+ data risk and enable protection & control Data Security Posture Management View
81
+ Data Access Intelligence & Governance View Data Risk Management View Data Breach
82
+ Analysis View Learn more Governance Optimize Data Governance with granular insights
83
+ into your data Data Catalog View Data Lineage View Data Quality View Data Controls
84
+ Orchestrator , View Learn more Asset and Data Discovery Discover dark and native
85
+ data assets Learn more Data Access Intelligence & Governance Identify which users
86
+ have access to sensitive data and prevent unauthorized access Learn more Data
87
+ Privacy Automation PrivacyCenter.Cloud | Data Mapping | DSR Automation | Assessment
88
+ Automation | Vendor Assessment | Breach Management | Privacy Notice Learn more
89
+ Sensitive Data Intelligence Discover & Classify Structured and Unstructured Data
90
+ | People Data Graph Learn more Data Flow Intelligence & Governance Prevent sensitive
91
+ data sprawl through real-time streaming platforms Learn more Data Consent Automation
92
+ First Party Consent | Third Party & Cookie Consent Learn more Data Security Posture
93
+ Management Secure sensitive data in hybrid multicloud and SaaS environments Learn
94
+ more Data Breach Impact Analysis & Response Analyze impact of a data breach and
95
+ coordinate response per global regulatory obligations Learn more Data Catalog
96
+ Automatically catalog datasets and enable users to find, understand, trust and
97
+ access data Learn more Data Lineage Track changes and transformations of data
98
+ throughout its lifecycle Data Controls Orchestrator View Data Command Center View
99
+ Sensitive Data Intelligence View Asset Discovery Data Discovery & Classification
100
+ Sensitive Data Catalog People Data Graph Learn more Privacy Automate compliance
101
+ with global privacy regulations Data Mapping Automation View Data Subject Request
102
+ Automation View People Data Graph View Assessment Automation View Cookie Consent
103
+ View Universal Consent View Vendor Risk Assessment View Breach Management View
104
+ Privacy Policy Management View Privacy Center View Learn more Security Identify
105
+ data risk and enable protection & control Data Security Posture Management View
106
+ Data Access Intelligence & Governance View Data Risk Management View Data Breach
107
+ Analysis View Learn more Governance Optimize Data Governance with granular insights
108
+ into your data Data Catalog View Data Lineage View Data Quality View Data Controls
109
+ sentences:
110
+ - What is the purpose of Asset and Data Discovery in data governance and security?
111
+ - Which EU member states have strict cyber laws?
112
+ - What is the obligation for organizations to provide Data Protection Impact Assessments
113
+ (DPIAs) under the LGPD?
114
+ - source_sentence: 'which the data is processed. **Right to Access:** Data subjects
115
+ have the right to obtain confirmation whether or not the controller holds personal
116
+ data about them, access their personal data, and obtain descriptions of data recipients.
117
+ **Right to Rectification** : Under the right to rectification, data subjects can
118
+ request the correction of their data. **Right to Erasure:** Data subjects have
119
+ the right to request the erasure and destruction of the data that is no longer
120
+ needed by the organization. **Right to Object:** The data subject has the right
121
+ to prevent the data controller from processing personal data if such processing
122
+ causes or is likely to cause unwarranted damage or distress to the data subject.
123
+ **Right not to be Subjected to Automated Decision-Making** : The data subject
124
+ has the right to not be subject to automated decision-making that significantly
125
+ affects the individual. ## Facts related to Ghana’s Data Protection Act 2012 1
126
+ While processing personal data, organizations must comply with eight privacy principles:
127
+ lawfulness of processing, data quality, security measures, accountability, purpose
128
+ specification, purpose limitation, openness, and data subject participation. 2
129
+ In the event of a security breach, the data controller shall take measures to
130
+ prevent the breach and notify the Commission and the data subject about the breach
131
+ as soon as reasonably practicable after the discovery of the breach. 3 The DPA
132
+ specifies lawful grounds for data processing, including data subject’s consent,
133
+ the performance of a contract, the interest of data subject and public interest,
134
+ lawful obligations, and the legitimate interest of the data controller. 4 The
135
+ DPA requires data controllers to register with the Data Protection Commission
136
+ (DPC). 5 The DPA provides varying fines and terms of imprisonment according to
137
+ the severity and sensitivity of the violation, such as any person who sells personal
138
+ data may get fined up to 2500 penalty units or up to five years imprisonment or
139
+ both. ### Forrester Names Securiti a Leader in the Privacy Management Wave Q4,
140
+ 2021 Read the Report ### Securiti named a Leader in the IDC MarketScape for Data
141
+ Privacy Compliance Software Read the Report At Securiti, our mission is to enable
142
+ enterprises to safely harness the incredible power of data and the cloud by controlling
143
+ the complex security, privacy and compliance risks. Copyright (C) 2023 Securiti
144
+ Sitem'
145
+ sentences:
146
+ - What information is required for data subjects regarding data transfers under
147
+ the GDPR, including personal data categories, data recipients, retention period,
148
+ and automated decision making?
149
+ - What privacy principles must organizations follow when processing personal data
150
+ under Ghana's Data Protection Act 2012?
151
+ - What is the purpose of Thailand's PDPA?
152
+ - source_sentence: 'consumer has the right to have his/her personal data stored or
153
+ processed by the data controller be deleted. ## Portability The consumer has a
154
+ right to obtain a copy of his/her personal data in a portable, technically feasible
155
+ and readily usable format that allows the consumer to transmit the data to another
156
+ controller without hindrance. ## Opt out The consumer has the right to opt out
157
+ of the processing of the personal data for purposes of targeted advertising, the
158
+ sale of personal data, or profiling in furtherance of decisions that produce legal
159
+ or similarly significant effects concerning the consumer. **Time period to fulfill
160
+ DSR request: ** All data subject rights’ requests (DSR requests) must be fulfilled
161
+ by the data controller within a 45 day period. **Extension in time period: **
162
+ data controllers may seek for an extension of 45 days in fulfilling the request
163
+ depending on the complexity and number of the consumer''s requests. **Denial of
164
+ DSR request: ** If a DSR request is to be denied, the data controller must inform
165
+ the consumer of the reasons within a 45 days period. **Appeal against refusal:
166
+ ** Consumers have a right to appeal the decision for refusal of grant of the DSR
167
+ request. The appeal must be decided within 45 days but the time period can be
168
+ further extended by 60 additional days. **Limitation of DSR requests per year:
169
+ ** Requests for data portability may be made only twice in a year. **Charges:
170
+ ** DSR requests must be fulfilled free of charge once in a year. Any subsequent
171
+ request within a 12 month period can be charged. **Authentication: ** A data controller
172
+ is not to respond to a consumer request unless it can authenticate the request
173
+ using reasonably commercial means. A data controller can request additional information
174
+ from the consumer for the purposes of authenticating the request. ## Who must
175
+ comply? CPA applies to all data controllers who conduct business in Colorado or
176
+ produce or deliver commercial products or services that are intentionally targeted
177
+ to residents of Colorado if they match any one or both of these conditions: If
178
+ they control or process the personal data of 100,000 consumers or more during
179
+ a calendar year; or If they derive revenue or receive a discount on the price
180
+ of goods or services from the sale of personal data and process or control the
181
+ personal data of 25,000'
182
+ sentences:
183
+ - What is the US California CCPA and how does it relate to data privacy regulations?
184
+ - What does the People Data Graph serve in terms of privacy, security, and governance?
185
+ - What rights does a consumer have regarding the portability of their personal data?
186
+ - source_sentence: 'PR and Federal Data Protection Act within Germany; To promote
187
+ awareness within the public related to the risks, rules, safeguards, and rights
188
+ concerning the processing of personal data; To handle all complaints raised by
189
+ data subjects related to data processing in addition to carrying out investigations
190
+ to find out if any data handler has breached any provisions of the Act; ## Penalties
191
+ for Non compliance The GDPR already laid down some stringent penalties for companies
192
+ that would be found in breach of the law''s provisions. More importantly, as opposed
193
+ to other data protection laws such as the CCPA and CPRA, non-compliance with the
194
+ law also meant penalties. Germany''s Federal Data Protection Act has a slightly
195
+ more lenient take in this regard. Suppose a data handler is found to have fraudulently
196
+ collected data, processed, shared, or sold data without proper consent from the
197
+ data subjects, not responded or responded with delay to a data subject request,
198
+ or failed to inform the data subject of a breach properly. In that case, it can
199
+ be fined up to €50,000. This is in addition to the GDPR''s €20 million or 4% of
200
+ the total worldwide annual turnover of the preceding financial year, whichever
201
+ is higher, that any organisation found in breach of the law is subject to. However,
202
+ for this fine to be applied, either the data subject, the Federal Commissioner,
203
+ or the regulatory authority must file an official complaint. ## How an Organization
204
+ Can Operationalize the Law Data handlers processing data inside Germany can remain
205
+ compliant with the country''s data protection law if they fulfill the following
206
+ conditions: Have a comprehensive privacy policy that educates all users of their
207
+ rights and how to contact the relevant personnel within the organisation in case
208
+ of a query Hire a competent Data Protection Officer that understands the GDPR
209
+ and Federal Data Protection Act thoroughly and can lead compliance efforts within
210
+ your organisation Ensure all the company''s employees and staff are acutely aware
211
+ of their responsibilities under the law Conduct regular data protection impact
212
+ assessments as well as data mapping exercises to ensure maximum efficiency in
213
+ your compliance efforts Notify the relevant authorities of a data breach as soon
214
+ as possible ## How can Securiti Help Data privacy and compliance have become incredibly
215
+ vital in earning users'' trust globally. Most users now expect most businesses
216
+ to take all the relevant measures to ensure the data they collect is properly
217
+ stored, protected, and maintained. Data protection laws have made such efforts
218
+ legally mandatory'
219
+ sentences:
220
+ - What are the benefits of automating compliance with global privacy regulations
221
+ for data protection and control?
222
+ - What is required for an official complaint to be filed under Germany's Federal
223
+ Data Protection Act?
224
+ - Why is tracking data lineage important for data management and security?
225
+ pipeline_tag: sentence-similarity
226
+ model-index:
227
+ - name: SentenceTransformer based on BAAI/bge-base-en-v1.5
228
+ results:
229
+ - task:
230
+ type: information-retrieval
231
+ name: Information Retrieval
232
+ dataset:
233
+ name: dim 512
234
+ type: dim_512
235
+ metrics:
236
+ - type: cosine_accuracy@1
237
+ value: 0.08
238
+ name: Cosine Accuracy@1
239
+ - type: cosine_accuracy@3
240
+ value: 0.29
241
+ name: Cosine Accuracy@3
242
+ - type: cosine_accuracy@5
243
+ value: 0.48
244
+ name: Cosine Accuracy@5
245
+ - type: cosine_accuracy@10
246
+ value: 0.65
247
+ name: Cosine Accuracy@10
248
+ - type: cosine_precision@1
249
+ value: 0.08
250
+ name: Cosine Precision@1
251
+ - type: cosine_precision@3
252
+ value: 0.09666666666666668
253
+ name: Cosine Precision@3
254
+ - type: cosine_precision@5
255
+ value: 0.09599999999999997
256
+ name: Cosine Precision@5
257
+ - type: cosine_precision@10
258
+ value: 0.06499999999999999
259
+ name: Cosine Precision@10
260
+ - type: cosine_recall@1
261
+ value: 0.08
262
+ name: Cosine Recall@1
263
+ - type: cosine_recall@3
264
+ value: 0.29
265
+ name: Cosine Recall@3
266
+ - type: cosine_recall@5
267
+ value: 0.48
268
+ name: Cosine Recall@5
269
+ - type: cosine_recall@10
270
+ value: 0.65
271
+ name: Cosine Recall@10
272
+ - type: cosine_ndcg@10
273
+ value: 0.3356834483699582
274
+ name: Cosine Ndcg@10
275
+ - type: cosine_mrr@10
276
+ value: 0.23805952380952378
277
+ name: Cosine Mrr@10
278
+ - type: cosine_map@100
279
+ value: 0.25373588653956675
280
+ name: Cosine Map@100
281
+ - task:
282
+ type: information-retrieval
283
+ name: Information Retrieval
284
+ dataset:
285
+ name: dim 256
286
+ type: dim_256
287
+ metrics:
288
+ - type: cosine_accuracy@1
289
+ value: 0.09
290
+ name: Cosine Accuracy@1
291
+ - type: cosine_accuracy@3
292
+ value: 0.33
293
+ name: Cosine Accuracy@3
294
+ - type: cosine_accuracy@5
295
+ value: 0.52
296
+ name: Cosine Accuracy@5
297
+ - type: cosine_accuracy@10
298
+ value: 0.68
299
+ name: Cosine Accuracy@10
300
+ - type: cosine_precision@1
301
+ value: 0.09
302
+ name: Cosine Precision@1
303
+ - type: cosine_precision@3
304
+ value: 0.11
305
+ name: Cosine Precision@3
306
+ - type: cosine_precision@5
307
+ value: 0.10399999999999998
308
+ name: Cosine Precision@5
309
+ - type: cosine_precision@10
310
+ value: 0.06799999999999998
311
+ name: Cosine Precision@10
312
+ - type: cosine_recall@1
313
+ value: 0.09
314
+ name: Cosine Recall@1
315
+ - type: cosine_recall@3
316
+ value: 0.33
317
+ name: Cosine Recall@3
318
+ - type: cosine_recall@5
319
+ value: 0.52
320
+ name: Cosine Recall@5
321
+ - type: cosine_recall@10
322
+ value: 0.68
323
+ name: Cosine Recall@10
324
+ - type: cosine_ndcg@10
325
+ value: 0.35403179411423247
326
+ name: Cosine Ndcg@10
327
+ - type: cosine_mrr@10
328
+ value: 0.2524960317460317
329
+ name: Cosine Mrr@10
330
+ - type: cosine_map@100
331
+ value: 0.26470102220887337
332
+ name: Cosine Map@100
333
+ - task:
334
+ type: information-retrieval
335
+ name: Information Retrieval
336
+ dataset:
337
+ name: dim 128
338
+ type: dim_128
339
+ metrics:
340
+ - type: cosine_accuracy@1
341
+ value: 0.09
342
+ name: Cosine Accuracy@1
343
+ - type: cosine_accuracy@3
344
+ value: 0.27
345
+ name: Cosine Accuracy@3
346
+ - type: cosine_accuracy@5
347
+ value: 0.45
348
+ name: Cosine Accuracy@5
349
+ - type: cosine_accuracy@10
350
+ value: 0.65
351
+ name: Cosine Accuracy@10
352
+ - type: cosine_precision@1
353
+ value: 0.09
354
+ name: Cosine Precision@1
355
+ - type: cosine_precision@3
356
+ value: 0.09
357
+ name: Cosine Precision@3
358
+ - type: cosine_precision@5
359
+ value: 0.09
360
+ name: Cosine Precision@5
361
+ - type: cosine_precision@10
362
+ value: 0.06499999999999999
363
+ name: Cosine Precision@10
364
+ - type: cosine_recall@1
365
+ value: 0.09
366
+ name: Cosine Recall@1
367
+ - type: cosine_recall@3
368
+ value: 0.27
369
+ name: Cosine Recall@3
370
+ - type: cosine_recall@5
371
+ value: 0.45
372
+ name: Cosine Recall@5
373
+ - type: cosine_recall@10
374
+ value: 0.65
375
+ name: Cosine Recall@10
376
+ - type: cosine_ndcg@10
377
+ value: 0.33203261209382817
378
+ name: Cosine Ndcg@10
379
+ - type: cosine_mrr@10
380
+ value: 0.23417063492063486
381
+ name: Cosine Mrr@10
382
+ - type: cosine_map@100
383
+ value: 0.24858408269645846
384
+ name: Cosine Map@100
385
+ - task:
386
+ type: information-retrieval
387
+ name: Information Retrieval
388
+ dataset:
389
+ name: dim 64
390
+ type: dim_64
391
+ metrics:
392
+ - type: cosine_accuracy@1
393
+ value: 0.06
394
+ name: Cosine Accuracy@1
395
+ - type: cosine_accuracy@3
396
+ value: 0.23
397
+ name: Cosine Accuracy@3
398
+ - type: cosine_accuracy@5
399
+ value: 0.44
400
+ name: Cosine Accuracy@5
401
+ - type: cosine_accuracy@10
402
+ value: 0.57
403
+ name: Cosine Accuracy@10
404
+ - type: cosine_precision@1
405
+ value: 0.06
406
+ name: Cosine Precision@1
407
+ - type: cosine_precision@3
408
+ value: 0.07666666666666666
409
+ name: Cosine Precision@3
410
+ - type: cosine_precision@5
411
+ value: 0.08799999999999997
412
+ name: Cosine Precision@5
413
+ - type: cosine_precision@10
414
+ value: 0.056999999999999995
415
+ name: Cosine Precision@10
416
+ - type: cosine_recall@1
417
+ value: 0.06
418
+ name: Cosine Recall@1
419
+ - type: cosine_recall@3
420
+ value: 0.23
421
+ name: Cosine Recall@3
422
+ - type: cosine_recall@5
423
+ value: 0.44
424
+ name: Cosine Recall@5
425
+ - type: cosine_recall@10
426
+ value: 0.57
427
+ name: Cosine Recall@10
428
+ - type: cosine_ndcg@10
429
+ value: 0.28544770610641695
430
+ name: Cosine Ndcg@10
431
+ - type: cosine_mrr@10
432
+ value: 0.19726587301587298
433
+ name: Cosine Mrr@10
434
+ - type: cosine_map@100
435
+ value: 0.21493811628701745
436
+ name: Cosine Map@100
437
+ ---
438
+
439
+ # SentenceTransformer based on BAAI/bge-base-en-v1.5
440
+
441
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
442
+
443
+ ## Model Details
444
+
445
+ ### Model Description
446
+ - **Model Type:** Sentence Transformer
447
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
448
+ - **Maximum Sequence Length:** 512 tokens
449
+ - **Output Dimensionality:** 768 tokens
450
+ - **Similarity Function:** Cosine Similarity
451
+ <!-- - **Training Dataset:** Unknown -->
452
+ - **Language:** en
453
+ - **License:** apache-2.0
454
+
455
+ ### Model Sources
456
+
457
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
458
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
459
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
460
+
461
+ ### Full Model Architecture
462
+
463
+ ```
464
+ SentenceTransformer(
465
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
466
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
467
+ (2): Normalize()
468
+ )
469
+ ```
470
+
471
+ ## Usage
472
+
473
+ ### Direct Usage (Sentence Transformers)
474
+
475
+ First install the Sentence Transformers library:
476
+
477
+ ```bash
478
+ pip install -U sentence-transformers
479
+ ```
480
+
481
+ Then you can load this model and run inference.
482
+ ```python
483
+ from sentence_transformers import SentenceTransformer
484
+
485
+ # Download from the 🤗 Hub
486
+ model = SentenceTransformer("MugheesAwan11/bge-base-securiti-dataset-1-v10")
487
+ # Run inference
488
+ sentences = [
489
+ "PR and Federal Data Protection Act within Germany; To promote awareness within the public related to the risks, rules, safeguards, and rights concerning the processing of personal data; To handle all complaints raised by data subjects related to data processing in addition to carrying out investigations to find out if any data handler has breached any provisions of the Act; ## Penalties for Non compliance The GDPR already laid down some stringent penalties for companies that would be found in breach of the law's provisions. More importantly, as opposed to other data protection laws such as the CCPA and CPRA, non-compliance with the law also meant penalties. Germany's Federal Data Protection Act has a slightly more lenient take in this regard. Suppose a data handler is found to have fraudulently collected data, processed, shared, or sold data without proper consent from the data subjects, not responded or responded with delay to a data subject request, or failed to inform the data subject of a breach properly. In that case, it can be fined up to €50,000. This is in addition to the GDPR's €20 million or 4% of the total worldwide annual turnover of the preceding financial year, whichever is higher, that any organisation found in breach of the law is subject to. However, for this fine to be applied, either the data subject, the Federal Commissioner, or the regulatory authority must file an official complaint. ## How an Organization Can Operationalize the Law Data handlers processing data inside Germany can remain compliant with the country's data protection law if they fulfill the following conditions: Have a comprehensive privacy policy that educates all users of their rights and how to contact the relevant personnel within the organisation in case of a query Hire a competent Data Protection Officer that understands the GDPR and Federal Data Protection Act thoroughly and can lead compliance efforts within your organisation Ensure all the company's employees and staff are acutely aware of their responsibilities under the law Conduct regular data protection impact assessments as well as data mapping exercises to ensure maximum efficiency in your compliance efforts Notify the relevant authorities of a data breach as soon as possible ## How can Securiti Help Data privacy and compliance have become incredibly vital in earning users' trust globally. Most users now expect most businesses to take all the relevant measures to ensure the data they collect is properly stored, protected, and maintained. Data protection laws have made such efforts legally mandatory",
490
+ "What is required for an official complaint to be filed under Germany's Federal Data Protection Act?",
491
+ 'Why is tracking data lineage important for data management and security?',
492
+ ]
493
+ embeddings = model.encode(sentences)
494
+ print(embeddings.shape)
495
+ # [3, 768]
496
+
497
+ # Get the similarity scores for the embeddings
498
+ similarities = model.similarity(embeddings, embeddings)
499
+ print(similarities.shape)
500
+ # [3, 3]
501
+ ```
502
+
503
+ <!--
504
+ ### Direct Usage (Transformers)
505
+
506
+ <details><summary>Click to see the direct usage in Transformers</summary>
507
+
508
+ </details>
509
+ -->
510
+
511
+ <!--
512
+ ### Downstream Usage (Sentence Transformers)
513
+
514
+ You can finetune this model on your own dataset.
515
+
516
+ <details><summary>Click to expand</summary>
517
+
518
+ </details>
519
+ -->
520
+
521
+ <!--
522
+ ### Out-of-Scope Use
523
+
524
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
525
+ -->
526
+
527
+ ## Evaluation
528
+
529
+ ### Metrics
530
+
531
+ #### Information Retrieval
532
+ * Dataset: `dim_512`
533
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
534
+
535
+ | Metric | Value |
536
+ |:--------------------|:-----------|
537
+ | cosine_accuracy@1 | 0.08 |
538
+ | cosine_accuracy@3 | 0.29 |
539
+ | cosine_accuracy@5 | 0.48 |
540
+ | cosine_accuracy@10 | 0.65 |
541
+ | cosine_precision@1 | 0.08 |
542
+ | cosine_precision@3 | 0.0967 |
543
+ | cosine_precision@5 | 0.096 |
544
+ | cosine_precision@10 | 0.065 |
545
+ | cosine_recall@1 | 0.08 |
546
+ | cosine_recall@3 | 0.29 |
547
+ | cosine_recall@5 | 0.48 |
548
+ | cosine_recall@10 | 0.65 |
549
+ | cosine_ndcg@10 | 0.3357 |
550
+ | cosine_mrr@10 | 0.2381 |
551
+ | **cosine_map@100** | **0.2537** |
552
+
553
+ #### Information Retrieval
554
+ * Dataset: `dim_256`
555
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
556
+
557
+ | Metric | Value |
558
+ |:--------------------|:-----------|
559
+ | cosine_accuracy@1 | 0.09 |
560
+ | cosine_accuracy@3 | 0.33 |
561
+ | cosine_accuracy@5 | 0.52 |
562
+ | cosine_accuracy@10 | 0.68 |
563
+ | cosine_precision@1 | 0.09 |
564
+ | cosine_precision@3 | 0.11 |
565
+ | cosine_precision@5 | 0.104 |
566
+ | cosine_precision@10 | 0.068 |
567
+ | cosine_recall@1 | 0.09 |
568
+ | cosine_recall@3 | 0.33 |
569
+ | cosine_recall@5 | 0.52 |
570
+ | cosine_recall@10 | 0.68 |
571
+ | cosine_ndcg@10 | 0.354 |
572
+ | cosine_mrr@10 | 0.2525 |
573
+ | **cosine_map@100** | **0.2647** |
574
+
575
+ #### Information Retrieval
576
+ * Dataset: `dim_128`
577
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
578
+
579
+ | Metric | Value |
580
+ |:--------------------|:-----------|
581
+ | cosine_accuracy@1 | 0.09 |
582
+ | cosine_accuracy@3 | 0.27 |
583
+ | cosine_accuracy@5 | 0.45 |
584
+ | cosine_accuracy@10 | 0.65 |
585
+ | cosine_precision@1 | 0.09 |
586
+ | cosine_precision@3 | 0.09 |
587
+ | cosine_precision@5 | 0.09 |
588
+ | cosine_precision@10 | 0.065 |
589
+ | cosine_recall@1 | 0.09 |
590
+ | cosine_recall@3 | 0.27 |
591
+ | cosine_recall@5 | 0.45 |
592
+ | cosine_recall@10 | 0.65 |
593
+ | cosine_ndcg@10 | 0.332 |
594
+ | cosine_mrr@10 | 0.2342 |
595
+ | **cosine_map@100** | **0.2486** |
596
+
597
+ #### Information Retrieval
598
+ * Dataset: `dim_64`
599
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
600
+
601
+ | Metric | Value |
602
+ |:--------------------|:-----------|
603
+ | cosine_accuracy@1 | 0.06 |
604
+ | cosine_accuracy@3 | 0.23 |
605
+ | cosine_accuracy@5 | 0.44 |
606
+ | cosine_accuracy@10 | 0.57 |
607
+ | cosine_precision@1 | 0.06 |
608
+ | cosine_precision@3 | 0.0767 |
609
+ | cosine_precision@5 | 0.088 |
610
+ | cosine_precision@10 | 0.057 |
611
+ | cosine_recall@1 | 0.06 |
612
+ | cosine_recall@3 | 0.23 |
613
+ | cosine_recall@5 | 0.44 |
614
+ | cosine_recall@10 | 0.57 |
615
+ | cosine_ndcg@10 | 0.2854 |
616
+ | cosine_mrr@10 | 0.1973 |
617
+ | **cosine_map@100** | **0.2149** |
618
+
619
+ <!--
620
+ ## Bias, Risks and Limitations
621
+
622
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
623
+ -->
624
+
625
+ <!--
626
+ ### Recommendations
627
+
628
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
629
+ -->
630
+
631
+ ## Training Details
632
+
633
+ ### Training Dataset
634
+
635
+ #### Unnamed Dataset
636
+
637
+
638
+ * Size: 900 training samples
639
+ * Columns: <code>positive</code> and <code>anchor</code>
640
+ * Approximate statistics based on the first 1000 samples:
641
+ | | positive | anchor |
642
+ |:--------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
643
+ | type | string | string |
644
+ | details | <ul><li>min: 159 tokens</li><li>mean: 445.26 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 22.05 tokens</li><li>max: 82 tokens</li></ul> |
645
+ * Samples:
646
+ | positive | anchor |
647
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------|
648
+ | <code>orra The Andorra personal data protection act came into force on May 17, 2022, by the Andorra Data Protection Authority (ADPA). Learn more about Andorra PDPA ### United Kingdom The UK Data Protection Act (DPA) 2018 is the amended version of the Data Protection Act that was passed in 1998. The DPA 2018 implements the GDPR with several additions and restrictions. Learn more about UK DPA ### Botswana The Botswana Data Protection came into effect on October 15, 2021 after the issuance of the Data Protection Act (Commencement Date) Order 2021 by the Minister of Presidential Affairs, Governance and Public Administration. Learn more about Botswana DPA ### Zambia On March 31, 2021, the Zambian parliament formally passed the Data Protection Act No. 3 of 2021 and the Electronic Communications and Transactions Act No. 4 of 2021. Learn more about Zambia DPA ### Jamaica On November 30, 2020, the First Schedule of the Data Protection Act No. 7 of 2020 came into effect following the publication of Supplement No. 160 of Volume CXLIV in the Jamaica Gazette Supplement. Learn more about Jamaica DPA ### Belarus The Law on Personal Data Protection of May 7, 2021, No. 99-Z, entered into effect within Belarus on November 15, 2021. Learn more about Belarus DPA ### Russian Federation The primary Russian law on data protection, Federal Law No. 152-FZ has been in effect since July 2006. Learn more ### Eswatini On March 4, 2022, the Eswatini Communications Commission published the Data Protection Act No. 5 of 2022, simultaneously announcing its immediate enforcement. Learn more ### Oman The Royal Decree 6/2022 promulgating the Personal Data Protection Law (PDPL) was passed on February 9, 2022. Learn more ### Sri Lanka Sri Lanka's parliament formally passed the Personal Data Protection Act (PDPA), No. 9 Of 2022, on March 19, 2022. Learn more ### Kuwait Kuwait's DPPR was formally introduced by the CITRA to ensure the Gulf country's data privacy infrastructure. Learn more ### Brunei Darussalam The draft Personal Data Protection Order is Brunei’s primary data protection law which came into effect in 2022. Learn more ### India India’</code> | <code>What is the name of India's data protection law before May 17, 2022?</code> |
649
+ | <code>the affected data subjects and regulatory authority about the breach and whether any of their information has been compromised as a result. ### Data Protection Impact Assessment There is no requirement for conducting data protection impact assessment under the PDPA. ### Record of Processing Activities A data controller must keep and maintain a record of any privacy notice, data subject request, or any other information relating to personal data processed by him in the form and manner that may be determined by the regulatory authority. ### Cross Border Data Transfer Requirements The PDPA provides that personal data can be transferred out of Malaysia only when the recipient country is specified as adequate in the Official Gazette. The personal data of data subjects can not be disclosed without the consent of the data subject. The PDPA provides the following exceptions to the cross border data transfer requirements: Where the consent of data subject is obtained for transfer; or Where the transfer is necessary for the performance of contract between the parties; The transfer is for the purpose of any legal proceedings or for the purpose of obtaining legal advice or for establishing, exercising or defending legal rights; The data user has taken all reasonable precautions and exercised all due diligence to ensure that the personal data will not in that place be processed in any manner which, if that place is Malaysia, would be a contravention of this PDPA; The transfer is necessary in order to protect the vital interests of the data subject; or The transfer is necessary as being in the public interest in circumstances as determined by the Minister. ## Data Subject Rights The data subjects or the person whose data is being collected has certain rights under the PDPA. The most prominent rights can be categorized under the following: ## Right to withdraw consent The PDPA, like some of the other landmark data protection laws such as CPRA and GDPR gives data subjects the right to revoke their consent at any time by way of written notice from having their data collected processed. ## Right to access and rectification As per this right, anyone whose data has been collected has the right to request to review their personal data and have it updated. The onus is on the data handlers to respond to such a request as soon as possible while also making it easier for data subjects on how they can request access to their personal data. ## Right to data portability Data subjects have the right to request that their data be stored in a manner where it</code> | <code>What is the requirement for conducting a data protection impact assessment under the PDPA?</code> |
650
+ | <code>more Privacy Automate compliance with global privacy regulations Data Mapping Automation View Data Subject Request Automation View People Data Graph View Assessment Automation View Cookie Consent View Universal Consent View Vendor Risk Assessment View Breach Management View Privacy Policy Management View Privacy Center View Learn more Security Identify data risk and enable protection & control Data Security Posture Management View Data Access Intelligence & Governance View Data Risk Management View Data Breach Analysis View Learn more Governance Optimize Data Governance with granular insights into your data Data Catalog View Data Lineage View Data Quality View Data Controls Orchestrator View Solutions Technologies Covering you everywhere with 1000+ integrations across data systems. Snowflake View AWS View Microsoft 365 View Salesforce View Workday View GCP View Azure View Oracle View Learn more Regulations Automate compliance with global privacy regulations. US California CCPA View US California CPRA View European Union GDPR View Thailand’s PDPA View China PIPL View Canada PIPEDA View Brazil's LGPD View \+ More View Learn more Roles Identify data risk and enable protection & control. Privacy View Security View Governance View Marketing View Resources Blog Read through our articles written by industry experts Collateral Product brochures, white papers, infographics, analyst reports and more. Knowledge Center Learn about the data privacy, security and governance landscape. Securiti Education Courses and Certifications for data privacy, security and governance professionals. Company About Us Learn all about</code> | <code>What is Data Subject Request Automation?</code> |
651
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
652
+ ```json
653
+ {
654
+ "loss": "MultipleNegativesRankingLoss",
655
+ "matryoshka_dims": [
656
+ 512,
657
+ 256,
658
+ 128,
659
+ 64
660
+ ],
661
+ "matryoshka_weights": [
662
+ 1,
663
+ 1,
664
+ 1,
665
+ 1
666
+ ],
667
+ "n_dims_per_step": -1
668
+ }
669
+ ```
670
+
671
+ ### Training Hyperparameters
672
+ #### Non-Default Hyperparameters
673
+
674
+ - `eval_strategy`: epoch
675
+ - `per_device_train_batch_size`: 32
676
+ - `per_device_eval_batch_size`: 16
677
+ - `learning_rate`: 2e-05
678
+ - `num_train_epochs`: 5
679
+ - `lr_scheduler_type`: cosine
680
+ - `warmup_ratio`: 0.1
681
+ - `bf16`: True
682
+ - `tf32`: True
683
+ - `load_best_model_at_end`: True
684
+ - `optim`: adamw_torch_fused
685
+ - `batch_sampler`: no_duplicates
686
+
687
+ #### All Hyperparameters
688
+ <details><summary>Click to expand</summary>
689
+
690
+ - `overwrite_output_dir`: False
691
+ - `do_predict`: False
692
+ - `eval_strategy`: epoch
693
+ - `prediction_loss_only`: True
694
+ - `per_device_train_batch_size`: 32
695
+ - `per_device_eval_batch_size`: 16
696
+ - `per_gpu_train_batch_size`: None
697
+ - `per_gpu_eval_batch_size`: None
698
+ - `gradient_accumulation_steps`: 1
699
+ - `eval_accumulation_steps`: None
700
+ - `learning_rate`: 2e-05
701
+ - `weight_decay`: 0.0
702
+ - `adam_beta1`: 0.9
703
+ - `adam_beta2`: 0.999
704
+ - `adam_epsilon`: 1e-08
705
+ - `max_grad_norm`: 1.0
706
+ - `num_train_epochs`: 5
707
+ - `max_steps`: -1
708
+ - `lr_scheduler_type`: cosine
709
+ - `lr_scheduler_kwargs`: {}
710
+ - `warmup_ratio`: 0.1
711
+ - `warmup_steps`: 0
712
+ - `log_level`: passive
713
+ - `log_level_replica`: warning
714
+ - `log_on_each_node`: True
715
+ - `logging_nan_inf_filter`: True
716
+ - `save_safetensors`: True
717
+ - `save_on_each_node`: False
718
+ - `save_only_model`: False
719
+ - `restore_callback_states_from_checkpoint`: False
720
+ - `no_cuda`: False
721
+ - `use_cpu`: False
722
+ - `use_mps_device`: False
723
+ - `seed`: 42
724
+ - `data_seed`: None
725
+ - `jit_mode_eval`: False
726
+ - `use_ipex`: False
727
+ - `bf16`: True
728
+ - `fp16`: False
729
+ - `fp16_opt_level`: O1
730
+ - `half_precision_backend`: auto
731
+ - `bf16_full_eval`: False
732
+ - `fp16_full_eval`: False
733
+ - `tf32`: True
734
+ - `local_rank`: 0
735
+ - `ddp_backend`: None
736
+ - `tpu_num_cores`: None
737
+ - `tpu_metrics_debug`: False
738
+ - `debug`: []
739
+ - `dataloader_drop_last`: False
740
+ - `dataloader_num_workers`: 0
741
+ - `dataloader_prefetch_factor`: None
742
+ - `past_index`: -1
743
+ - `disable_tqdm`: False
744
+ - `remove_unused_columns`: True
745
+ - `label_names`: None
746
+ - `load_best_model_at_end`: True
747
+ - `ignore_data_skip`: False
748
+ - `fsdp`: []
749
+ - `fsdp_min_num_params`: 0
750
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
751
+ - `fsdp_transformer_layer_cls_to_wrap`: None
752
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
753
+ - `deepspeed`: None
754
+ - `label_smoothing_factor`: 0.0
755
+ - `optim`: adamw_torch_fused
756
+ - `optim_args`: None
757
+ - `adafactor`: False
758
+ - `group_by_length`: False
759
+ - `length_column_name`: length
760
+ - `ddp_find_unused_parameters`: None
761
+ - `ddp_bucket_cap_mb`: None
762
+ - `ddp_broadcast_buffers`: False
763
+ - `dataloader_pin_memory`: True
764
+ - `dataloader_persistent_workers`: False
765
+ - `skip_memory_metrics`: True
766
+ - `use_legacy_prediction_loop`: False
767
+ - `push_to_hub`: False
768
+ - `resume_from_checkpoint`: None
769
+ - `hub_model_id`: None
770
+ - `hub_strategy`: every_save
771
+ - `hub_private_repo`: False
772
+ - `hub_always_push`: False
773
+ - `gradient_checkpointing`: False
774
+ - `gradient_checkpointing_kwargs`: None
775
+ - `include_inputs_for_metrics`: False
776
+ - `eval_do_concat_batches`: True
777
+ - `fp16_backend`: auto
778
+ - `push_to_hub_model_id`: None
779
+ - `push_to_hub_organization`: None
780
+ - `mp_parameters`:
781
+ - `auto_find_batch_size`: False
782
+ - `full_determinism`: False
783
+ - `torchdynamo`: None
784
+ - `ray_scope`: last
785
+ - `ddp_timeout`: 1800
786
+ - `torch_compile`: False
787
+ - `torch_compile_backend`: None
788
+ - `torch_compile_mode`: None
789
+ - `dispatch_batches`: None
790
+ - `split_batches`: None
791
+ - `include_tokens_per_second`: False
792
+ - `include_num_input_tokens_seen`: False
793
+ - `neftune_noise_alpha`: None
794
+ - `optim_target_modules`: None
795
+ - `batch_eval_metrics`: False
796
+ - `batch_sampler`: no_duplicates
797
+ - `multi_dataset_batch_sampler`: proportional
798
+
799
+ </details>
800
+
801
+ ### Training Logs
802
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 |
803
+ |:-------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
804
+ | 0.3448 | 10 | 7.4297 | - | - | - | - |
805
+ | 0.6897 | 20 | 5.5127 | - | - | - | - |
806
+ | 1.0 | 29 | - | 0.2399 | 0.2435 | 0.2579 | 0.1837 |
807
+ | 1.0345 | 30 | 4.8788 | - | - | - | - |
808
+ | 1.3793 | 40 | 4.0614 | - | - | - | - |
809
+ | 1.7241 | 50 | 3.3471 | - | - | - | - |
810
+ | 2.0 | 58 | - | 0.2373 | 0.2510 | 0.2545 | 0.1964 |
811
+ | 2.0690 | 60 | 3.104 | - | - | - | - |
812
+ | 2.4138 | 70 | 2.695 | - | - | - | - |
813
+ | 2.7586 | 80 | 2.2038 | - | - | - | - |
814
+ | 3.0 | 87 | - | 0.2416 | 0.2630 | 0.2587 | 0.2121 |
815
+ | 3.1034 | 90 | 2.2576 | - | - | - | - |
816
+ | 3.4483 | 100 | 2.1552 | - | - | - | - |
817
+ | 3.7931 | 110 | 1.8199 | - | - | - | - |
818
+ | 4.0 | 116 | - | 0.2429 | 0.2613 | 0.2546 | 0.2098 |
819
+ | 4.1379 | 120 | 1.9192 | - | - | - | - |
820
+ | 4.4828 | 130 | 1.7221 | - | - | - | - |
821
+ | 4.8276 | 140 | 1.6878 | - | - | - | - |
822
+ | **5.0** | **145** | **-** | **0.2486** | **0.2647** | **0.2537** | **0.2149** |
823
+
824
+ * The bold row denotes the saved checkpoint.
825
+
826
+ ### Framework Versions
827
+ - Python: 3.10.14
828
+ - Sentence Transformers: 3.0.1
829
+ - Transformers: 4.41.2
830
+ - PyTorch: 2.1.2+cu121
831
+ - Accelerate: 0.31.0
832
+ - Datasets: 2.19.1
833
+ - Tokenizers: 0.19.1
834
+
835
+ ## Citation
836
+
837
+ ### BibTeX
838
+
839
+ #### Sentence Transformers
840
+ ```bibtex
841
+ @inproceedings{reimers-2019-sentence-bert,
842
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
843
+ author = "Reimers, Nils and Gurevych, Iryna",
844
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
845
+ month = "11",
846
+ year = "2019",
847
+ publisher = "Association for Computational Linguistics",
848
+ url = "https://arxiv.org/abs/1908.10084",
849
+ }
850
+ ```
851
+
852
+ #### MatryoshkaLoss
853
+ ```bibtex
854
+ @misc{kusupati2024matryoshka,
855
+ title={Matryoshka Representation Learning},
856
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
857
+ year={2024},
858
+ eprint={2205.13147},
859
+ archivePrefix={arXiv},
860
+ primaryClass={cs.LG}
861
+ }
862
+ ```
863
+
864
+ #### MultipleNegativesRankingLoss
865
+ ```bibtex
866
+ @misc{henderson2017efficient,
867
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
868
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
869
+ year={2017},
870
+ eprint={1705.00652},
871
+ archivePrefix={arXiv},
872
+ primaryClass={cs.CL}
873
+ }
874
+ ```
875
+
876
+ <!--
877
+ ## Glossary
878
+
879
+ *Clearly define terms in order to be accessible across audiences.*
880
+ -->
881
+
882
+ <!--
883
+ ## Model Card Authors
884
+
885
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
886
+ -->
887
+
888
+ <!--
889
+ ## Model Card Contact
890
+
891
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
892
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ac1776c7161209b6c1de82852e0bd456f8dbcdb4306cfb76974f49b778aee08
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff