Muennighoff commited on
Commit
fb066e9
·
1 Parent(s): 4185410

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -29
README.md CHANGED
@@ -6,39 +6,15 @@ tags:
6
  - sentence-similarity
7
  ---
8
 
9
- # {MODEL_NAME}
10
-
11
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
12
-
13
- <!--- Describe your model here -->
14
-
15
- ## Usage (Sentence-Transformers)
16
-
17
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
18
-
19
- ```
20
- pip install -U sentence-transformers
21
- ```
22
-
23
- Then you can use the model like this:
24
-
25
- ```python
26
- from sentence_transformers import SentenceTransformer
27
- sentences = ["This is an example sentence", "Each sentence is converted"]
28
-
29
- model = SentenceTransformer('{MODEL_NAME}')
30
- embeddings = model.encode(sentences)
31
- print(embeddings)
32
- ```
33
 
 
34
 
 
35
 
36
  ## Evaluation Results
37
 
38
- <!--- Describe how your model was evaluated -->
39
-
40
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
41
-
42
 
43
  ## Training
44
  The model was trained with the parameters:
@@ -86,4 +62,11 @@ SentenceTransformer(
86
 
87
  ## Citing & Authors
88
 
89
- <!--- Describe where people can find more information -->
 
 
 
 
 
 
 
 
6
  - sentence-similarity
7
  ---
8
 
9
+ # SGPT-125M-weightedmean-msmarco-specb-bitfitwte
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
+ ## Usage
12
 
13
+ For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt
14
 
15
  ## Evaluation Results
16
 
17
+ For eval results, refer to our paper: https://arxiv.org/abs/2202.08904
 
 
 
18
 
19
  ## Training
20
  The model was trained with the parameters:
 
62
 
63
  ## Citing & Authors
64
 
65
+ ```bibtex
66
+ @article{muennighoff2022sgpt,
67
+ title={SGPT: GPT Sentence Embeddings for Semantic Search},
68
+ author={Muennighoff, Niklas},
69
+ journal={arXiv preprint arXiv:2202.08904},
70
+ year={2022}
71
+ }
72
+ ```