Muennighoff
commited on
Commit
•
328c780
1
Parent(s):
abd000a
Add SGPT-125M-scratchmean-nli
Browse files- 1_Pooling/config.json +9 -0
- README.md +91 -0
- config.json +54 -0
- config_sentence_transformers.json +7 -0
- eval/similarity_evaluation_sts-dev_results.csv +12 -0
- merges.txt +0 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- similarity_evaluation_sts-test_results.csv +2 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.json +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false
|
9 |
+
}
|
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
---
|
8 |
+
|
9 |
+
# {MODEL_NAME}
|
10 |
+
|
11 |
+
** Trained from scratch only on NLI with reinitialized GPT-Neo weights **
|
12 |
+
|
13 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
+
|
15 |
+
<!--- Describe your model here -->
|
16 |
+
|
17 |
+
## Usage (Sentence-Transformers)
|
18 |
+
|
19 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
20 |
+
|
21 |
+
```
|
22 |
+
pip install -U sentence-transformers
|
23 |
+
```
|
24 |
+
|
25 |
+
Then you can use the model like this:
|
26 |
+
|
27 |
+
```python
|
28 |
+
from sentence_transformers import SentenceTransformer
|
29 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
+
|
31 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
32 |
+
embeddings = model.encode(sentences)
|
33 |
+
print(embeddings)
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
## Evaluation Results
|
39 |
+
|
40 |
+
<!--- Describe how your model was evaluated -->
|
41 |
+
|
42 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
43 |
+
|
44 |
+
|
45 |
+
## Training
|
46 |
+
The model was trained with the parameters:
|
47 |
+
|
48 |
+
**DataLoader**:
|
49 |
+
|
50 |
+
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 8807 with parameters:
|
51 |
+
```
|
52 |
+
{'batch_size': 64}
|
53 |
+
```
|
54 |
+
|
55 |
+
**Loss**:
|
56 |
+
|
57 |
+
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
|
58 |
+
```
|
59 |
+
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
|
60 |
+
```
|
61 |
+
|
62 |
+
Parameters of the fit()-Method:
|
63 |
+
```
|
64 |
+
{
|
65 |
+
"epochs": 1,
|
66 |
+
"evaluation_steps": 880,
|
67 |
+
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
68 |
+
"max_grad_norm": 1,
|
69 |
+
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
70 |
+
"optimizer_params": {
|
71 |
+
"lr": 2e-05
|
72 |
+
},
|
73 |
+
"scheduler": "WarmupLinear",
|
74 |
+
"steps_per_epoch": null,
|
75 |
+
"warmup_steps": 881,
|
76 |
+
"weight_decay": 0.01
|
77 |
+
}
|
78 |
+
```
|
79 |
+
|
80 |
+
|
81 |
+
## Full Model Architecture
|
82 |
+
```
|
83 |
+
SentenceTransformer(
|
84 |
+
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: GPTNeoModel
|
85 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
|
86 |
+
)
|
87 |
+
```
|
88 |
+
|
89 |
+
## Citing & Authors
|
90 |
+
|
91 |
+
<!--- Describe where people can find more information -->
|
config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "EleutherAI/gpt-neo-125M",
|
3 |
+
"activation_function": "gelu_new",
|
4 |
+
"architectures": [
|
5 |
+
"GPTNeoModel"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0,
|
8 |
+
"attention_layers": [
|
9 |
+
"global",
|
10 |
+
"local",
|
11 |
+
"global",
|
12 |
+
"local",
|
13 |
+
"global",
|
14 |
+
"local",
|
15 |
+
"global",
|
16 |
+
"local",
|
17 |
+
"global",
|
18 |
+
"local",
|
19 |
+
"global",
|
20 |
+
"local"
|
21 |
+
],
|
22 |
+
"attention_types": [
|
23 |
+
[
|
24 |
+
[
|
25 |
+
"global",
|
26 |
+
"local"
|
27 |
+
],
|
28 |
+
6
|
29 |
+
]
|
30 |
+
],
|
31 |
+
"bos_token_id": 50256,
|
32 |
+
"embed_dropout": 0,
|
33 |
+
"eos_token_id": 50256,
|
34 |
+
"gradient_checkpointing": false,
|
35 |
+
"hidden_size": 768,
|
36 |
+
"initializer_range": 0.02,
|
37 |
+
"intermediate_size": null,
|
38 |
+
"layer_norm_epsilon": 1e-05,
|
39 |
+
"max_position_embeddings": 2048,
|
40 |
+
"model_type": "gpt_neo",
|
41 |
+
"num_heads": 12,
|
42 |
+
"num_layers": 12,
|
43 |
+
"resid_dropout": 0,
|
44 |
+
"summary_activation": null,
|
45 |
+
"summary_first_dropout": 0.1,
|
46 |
+
"summary_proj_to_labels": true,
|
47 |
+
"summary_type": "cls_index",
|
48 |
+
"summary_use_proj": true,
|
49 |
+
"torch_dtype": "float32",
|
50 |
+
"transformers_version": "4.12.3",
|
51 |
+
"use_cache": true,
|
52 |
+
"vocab_size": 50257,
|
53 |
+
"window_size": 256
|
54 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.1.0",
|
4 |
+
"transformers": "4.12.3",
|
5 |
+
"pytorch": "1.10.0+cu113"
|
6 |
+
}
|
7 |
+
}
|
eval/similarity_evaluation_sts-dev_results.csv
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
2 |
+
0,880,0.5298895446169344,0.5312240374218833,0.5117367201753408,0.5245744420855956,0.5104904261012467,0.5231746284173534,0.4585831281872321,0.4757636486142692
|
3 |
+
0,1760,0.6414522822064204,0.6466598626369797,0.6315813393117423,0.6351470966847795,0.6299802345481992,0.633638220198648,0.5564450205278492,0.5860890895197167
|
4 |
+
0,2640,0.6651305710363661,0.6758417801736336,0.6722952033313845,0.6762575147352333,0.6732778021726432,0.6770590704485377,0.5615850866939909,0.5915882175060602
|
5 |
+
0,3520,0.6936786606162212,0.7000569579383393,0.6870984944729166,0.6926032039515108,0.6852739285305858,0.6900644263987616,0.5915931944462255,0.6139743454184338
|
6 |
+
0,4400,0.700899713888771,0.7047739810339679,0.6920555918002221,0.6958745033620944,0.6916965374691982,0.6954146507315779,0.6066928354981058,0.6273693546624726
|
7 |
+
0,5280,0.7141938628219852,0.7201963457696333,0.6962514159036581,0.6984396706127707,0.6952247227203017,0.6971711750754467,0.6170316020557418,0.6385997236226345
|
8 |
+
0,6160,0.7118754507353484,0.7179873371277351,0.6992091001590869,0.7010723806146854,0.6987773965936882,0.7003257377506648,0.619611553839931,0.6403750629261068
|
9 |
+
0,7040,0.7189095591545901,0.7236743303762333,0.7004906826331114,0.7015026404319671,0.6996276311227727,0.7006774675307638,0.623697167086132,0.6521847383358765
|
10 |
+
0,7920,0.725586194362776,0.7296134020905084,0.7079407270210554,0.7094840376652114,0.707021328265756,0.7083845297889915,0.6309189030417285,0.655483391857864
|
11 |
+
0,8800,0.7267545474582126,0.7307983815559623,0.7085992003709655,0.7102699385634418,0.707714153882588,0.709112834562065,0.6312806322363824,0.6558650202351088
|
12 |
+
0,-1,0.7267570775457864,0.7308159723154326,0.7085975081646948,0.7102818638385754,0.7077130942522993,0.7091036181041682,0.631292016689388,0.6558531305471883
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "pooling.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3ebb02ad389e1b23b364681bb5eccf5e94be41fef6c5ea6a9c2ce1dc2e88080
|
3 |
+
size 551190545
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 75,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
similarity_evaluation_sts-test_results.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
2 |
+
-1,-1,0.6779194087604842,0.659069787792863,0.6490090020325722,0.637928681167657,0.6482993637695468,0.6366318312354695,0.5731378793587686,0.5578949630024792
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "pad_token": "<|endoftext|>"}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "errors": "replace", "model_max_length": 2048, "special_tokens_map_file": null, "name_or_path": "EleutherAI/gpt-neo-125M", "tokenizer_class": "GPT2Tokenizer"}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|