Finetuned Helsinki_lg_inf_en model
Browse files- README.md +88 -196
- generation_config.json +16 -0
README.md
CHANGED
@@ -1,199 +1,91 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: Helsinki-NLP/opus-mt-lg-en
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- bleu
|
8 |
+
model-index:
|
9 |
+
- name: Helsinki_lg_inf_en
|
10 |
+
results: []
|
11 |
---
|
12 |
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/hnamuwaya-makerere-university-business-school/Helsinki_lg_inf_en/runs/9s0x0mb9)
|
17 |
+
# Helsinki_lg_inf_en
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-lg-en](https://huggingface.co/Helsinki-NLP/opus-mt-lg-en) on the Luganda Informal Data dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.1764
|
22 |
+
- Bleu: 22.8149
|
23 |
+
- Gen Len: 17.7776
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 2e-05
|
43 |
+
- train_batch_size: 16
|
44 |
+
- eval_batch_size: 16
|
45 |
+
- seed: 42
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 30
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
|
54 |
+
| No log | 1.0 | 153 | 0.5662 | 0.6031 | 20.9541 |
|
55 |
+
| No log | 2.0 | 306 | 0.5118 | 0.8533 | 20.1433 |
|
56 |
+
| No log | 3.0 | 459 | 0.4754 | 1.1179 | 19.9124 |
|
57 |
+
| 0.6777 | 4.0 | 612 | 0.4452 | 1.4213 | 20.2326 |
|
58 |
+
| 0.6777 | 5.0 | 765 | 0.4181 | 1.7245 | 19.2424 |
|
59 |
+
| 0.6777 | 6.0 | 918 | 0.3940 | 2.0655 | 19.5872 |
|
60 |
+
| 0.463 | 7.0 | 1071 | 0.3722 | 2.6043 | 19.2969 |
|
61 |
+
| 0.463 | 8.0 | 1224 | 0.3512 | 3.4014 | 18.864 |
|
62 |
+
| 0.463 | 9.0 | 1377 | 0.3323 | 4.0558 | 19.0541 |
|
63 |
+
| 0.3973 | 10.0 | 1530 | 0.3150 | 4.9264 | 18.878 |
|
64 |
+
| 0.3973 | 11.0 | 1683 | 0.2989 | 6.1751 | 18.1102 |
|
65 |
+
| 0.3973 | 12.0 | 1836 | 0.2845 | 6.909 | 18.405 |
|
66 |
+
| 0.3973 | 13.0 | 1989 | 0.2708 | 8.2081 | 18.1388 |
|
67 |
+
| 0.3476 | 14.0 | 2142 | 0.2589 | 9.0267 | 18.1527 |
|
68 |
+
| 0.3476 | 15.0 | 2295 | 0.2477 | 9.8007 | 18.1826 |
|
69 |
+
| 0.3476 | 16.0 | 2448 | 0.2374 | 11.2825 | 17.9705 |
|
70 |
+
| 0.309 | 17.0 | 2601 | 0.2282 | 12.38 | 17.9427 |
|
71 |
+
| 0.309 | 18.0 | 2754 | 0.2200 | 13.1971 | 18.2629 |
|
72 |
+
| 0.309 | 19.0 | 2907 | 0.2127 | 14.6993 | 18.0356 |
|
73 |
+
| 0.278 | 20.0 | 3060 | 0.2058 | 15.8696 | 17.7944 |
|
74 |
+
| 0.278 | 21.0 | 3213 | 0.2001 | 17.2214 | 17.656 |
|
75 |
+
| 0.278 | 22.0 | 3366 | 0.1951 | 18.3989 | 17.6769 |
|
76 |
+
| 0.2597 | 23.0 | 3519 | 0.1906 | 19.6026 | 17.7543 |
|
77 |
+
| 0.2597 | 24.0 | 3672 | 0.1869 | 20.6405 | 17.817 |
|
78 |
+
| 0.2597 | 25.0 | 3825 | 0.1835 | 20.7913 | 17.7273 |
|
79 |
+
| 0.2597 | 26.0 | 3978 | 0.1809 | 21.5904 | 17.7518 |
|
80 |
+
| 0.2452 | 27.0 | 4131 | 0.1789 | 21.9249 | 17.69 |
|
81 |
+
| 0.2452 | 28.0 | 4284 | 0.1775 | 22.3964 | 17.6953 |
|
82 |
+
| 0.2452 | 29.0 | 4437 | 0.1767 | 22.6803 | 17.7547 |
|
83 |
+
| 0.2379 | 30.0 | 4590 | 0.1764 | 22.8149 | 17.7776 |
|
84 |
+
|
85 |
+
|
86 |
+
### Framework versions
|
87 |
+
|
88 |
+
- Transformers 4.42.3
|
89 |
+
- Pytorch 2.1.2
|
90 |
+
- Datasets 2.20.0
|
91 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
generation_config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bad_words_ids": [
|
3 |
+
[
|
4 |
+
60446
|
5 |
+
]
|
6 |
+
],
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"decoder_start_token_id": 60446,
|
9 |
+
"eos_token_id": 0,
|
10 |
+
"forced_eos_token_id": 0,
|
11 |
+
"max_length": 512,
|
12 |
+
"num_beams": 6,
|
13 |
+
"pad_token_id": 60446,
|
14 |
+
"renormalize_logits": true,
|
15 |
+
"transformers_version": "4.42.3"
|
16 |
+
}
|