Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
tags:
|
4 |
+
- generative qa
|
5 |
+
datasets:
|
6 |
+
- eli5
|
7 |
+
- stackexchange(pets, cooking, gardening, diy, crafts)
|
8 |
+
---
|
9 |
+
|
10 |
+
Work by [Frederico Vicente](https://huggingface.co/mrvicente) & [Diogo Tavares](https://huggingface.co/d-c-t). We finetuned BART Large for the task of generative question answering. It was trained on eli5, askScience and stackexchange using the following forums: pets, cooking, gardening, diy, crafts.
|
11 |
+
|
12 |
+
### Usage
|
13 |
+
|
14 |
+
```python
|
15 |
+
|
16 |
+
from transformers import (
|
17 |
+
BartForConditionalGeneration,
|
18 |
+
BartTokenizer
|
19 |
+
)
|
20 |
+
import torch
|
21 |
+
import json
|
22 |
+
|
23 |
+
def read_json_file_2_dict(filename, store_dir='.'):
|
24 |
+
with open(f'{store_dir}/{filename}', 'r', encoding='utf-8') as file:
|
25 |
+
return json.load(file)
|
26 |
+
|
27 |
+
def get_device():
|
28 |
+
# If there's a GPU available...
|
29 |
+
if torch.cuda.is_available():
|
30 |
+
device = torch.device("cuda")
|
31 |
+
n_gpus = torch.cuda.device_count()
|
32 |
+
first_gpu = torch.cuda.get_device_name(0)
|
33 |
+
|
34 |
+
print(f'There are {n_gpus} GPU(s) available.')
|
35 |
+
print(f'GPU gonna be used: {first_gpu}')
|
36 |
+
else:
|
37 |
+
print('No GPU available, using the CPU instead.')
|
38 |
+
device = torch.device("cpu")
|
39 |
+
return device
|
40 |
+
|
41 |
+
model_name = 'unlisboa/bart_qa_assistant'
|
42 |
+
tokenizer = BartTokenizer.from_pretrained(model_name)
|
43 |
+
device = get_device()
|
44 |
+
model = BartForConditionalGeneration.from_pretrained(model_name).to(device)
|
45 |
+
model.eval()
|
46 |
+
|
47 |
+
model_input = tokenizer(question, truncation=True, padding=True, return_tensors="pt")
|
48 |
+
generated_answers_encoded = model.generate(input_ids=model_input["input_ids"].to(device),attention_mask=model_input["attention_mask"].to(device),
|
49 |
+
force_words_ids=None,
|
50 |
+
min_length=1,
|
51 |
+
max_length=100,
|
52 |
+
do_sample=True,
|
53 |
+
early_stopping=True,
|
54 |
+
num_beams=4,
|
55 |
+
temperature=1.0,
|
56 |
+
top_k=None,
|
57 |
+
top_p=None,
|
58 |
+
# eos_token_id=tokenizer.eos_token_id,
|
59 |
+
no_repeat_ngram_size=2,
|
60 |
+
num_return_sequences=1,
|
61 |
+
return_dict_in_generate=True,
|
62 |
+
output_scores=True)
|
63 |
+
response = tokenizer.batch_decode(generated_answers_encoded['sequences'], skip_special_tokens=True,clean_up_tokenization_spaces=True)
|
64 |
+
print(response)
|
65 |
+
|
66 |
+
```
|
67 |
+
|
68 |
+
Have fun!
|