Mr-Cool commited on
Commit
927d0ef
·
verified ·
1 Parent(s): b8b5323

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,982 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Snowflake/snowflake-arctic-embed-m
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy@1
8
+ - cosine_accuracy@3
9
+ - cosine_accuracy@5
10
+ - cosine_accuracy@10
11
+ - cosine_precision@1
12
+ - cosine_precision@3
13
+ - cosine_precision@5
14
+ - cosine_precision@10
15
+ - cosine_recall@1
16
+ - cosine_recall@3
17
+ - cosine_recall@5
18
+ - cosine_recall@10
19
+ - cosine_ndcg@10
20
+ - cosine_mrr@10
21
+ - cosine_map@100
22
+ - dot_accuracy@1
23
+ - dot_accuracy@3
24
+ - dot_accuracy@5
25
+ - dot_accuracy@10
26
+ - dot_precision@1
27
+ - dot_precision@3
28
+ - dot_precision@5
29
+ - dot_precision@10
30
+ - dot_recall@1
31
+ - dot_recall@3
32
+ - dot_recall@5
33
+ - dot_recall@10
34
+ - dot_ndcg@10
35
+ - dot_mrr@10
36
+ - dot_map@100
37
+ pipeline_tag: sentence-similarity
38
+ tags:
39
+ - sentence-transformers
40
+ - sentence-similarity
41
+ - feature-extraction
42
+ - generated_from_trainer
43
+ - dataset_size:678
44
+ - loss:MatryoshkaLoss
45
+ - loss:MultipleNegativesRankingLoss
46
+ widget:
47
+ - source_sentence: What are some of the content types mentioned in the context?
48
+ sentences:
49
+ - 'and/or use cases that were not evaluated in initial testing. \\
50
+
51
+ \end{tabular} & \begin{tabular}{l}
52
+
53
+ Value Chain and Component \\
54
+
55
+ Integration \\
56
+
57
+ \end{tabular} \\
58
+
59
+ \hline
60
+
61
+ MG-3.1-004 & \begin{tabular}{l}
62
+
63
+ Take reasonable measures to review training data for CBRN information, and \\
64
+
65
+ intellectual property, and where appropriate, remove it. Implement reasonable
66
+ \\
67
+
68
+ measures to prevent, flag, or take other action in response to outputs that \\
69
+
70
+ reproduce particular training data (e.g., plagiarized, trademarked, patented,
71
+ \\
72
+
73
+ licensed content or trade secret material). \\
74
+
75
+ \end{tabular} & \begin{tabular}{l}
76
+
77
+ Intellectual Property; CBRN \\
78
+
79
+ Information or Capabilities \\
80
+
81
+ \end{tabular} \\
82
+
83
+ \hline
84
+
85
+ \end{tabular}
86
+
87
+ \end{center}'
88
+ - 'Bias and Homogenization \\
89
+
90
+ \end{tabular} \\
91
+
92
+ \hline
93
+
94
+ GV-6.2-004 & \begin{tabular}{l}
95
+
96
+ Establish policies and procedures for continuous monitoring of third-party GAI
97
+ \\
98
+
99
+ systems in deployment. \\
100
+
101
+ \end{tabular} & \begin{tabular}{l}
102
+
103
+ Value Chain and Component \\
104
+
105
+ Integration \\
106
+
107
+ \end{tabular} \\
108
+
109
+ \hline
110
+
111
+ GV-6.2-005 & \begin{tabular}{l}
112
+
113
+ Establish policies and procedures that address GAI data redundancy, including
114
+ \\
115
+
116
+ model weights and other system artifacts. \\
117
+
118
+ \end{tabular} & Harmful Bias and Homogenization \\
119
+
120
+ \hline
121
+
122
+ GV-6.2-006 & \begin{tabular}{l}
123
+
124
+ Establish policies and procedures to test and manage risks related to rollover
125
+ and \\
126
+
127
+ fallback technologies for GAI systems, acknowledging that rollover and fallback
128
+ \\
129
+
130
+ may include manual processing. \\
131
+
132
+ \end{tabular} & Information Integrity \\
133
+
134
+ \hline
135
+
136
+ GV-6.2-007 & \begin{tabular}{l}
137
+
138
+ Review vendor contracts and avoid arbitrary or capricious termination of critical
139
+ \\
140
+
141
+ GAI technologies or vendor services and non-standard terms that may amplify or
142
+ \\'
143
+ - 'time. \\
144
+
145
+ \end{tabular} & \begin{tabular}{l}
146
+
147
+ Information Integrity; Obscene, \\
148
+
149
+ Degrading, and/or Abusive \\
150
+
151
+ Content; Value Chain and \\
152
+
153
+ Component Integration; Harmful \\
154
+
155
+ Bias and Homogenization; \\
156
+
157
+ Dangerous, Violent, or Hateful \\
158
+
159
+ Content; CBRN Information or \\
160
+
161
+ Capabilities \\
162
+
163
+ \end{tabular} \\
164
+
165
+ \hline
166
+
167
+ GV-1.3-002 & \begin{tabular}{l}
168
+
169
+ Establish minimum thresholds for performance or assurance criteria and review
170
+ as \\
171
+
172
+ part of deployment approval ("go/"no-go") policies, procedures, and processes,
173
+ \\
174
+
175
+ with reviewed processes and approval thresholds reflecting measurement of GAI
176
+ \\
177
+
178
+ capabilities and risks. \\
179
+
180
+ \end{tabular} & \begin{tabular}{l}
181
+
182
+ CBRN Information or Capabilities; \\
183
+
184
+ Confabulation; Dangerous, \\
185
+
186
+ Violent, or Hateful Content \\
187
+
188
+ \end{tabular} \\
189
+
190
+ \hline
191
+
192
+ GV-1.3-003 & \begin{tabular}{l}
193
+
194
+ Establish a test plan and response policy, before developing highly capable models,
195
+ \\
196
+
197
+ to periodically evaluate whether the model may misuse CBRN information or \\'
198
+ - source_sentence: What are the legal and regulatory requirements involving AI that
199
+ need to be understood, managed, and documented?
200
+ sentences:
201
+ - 'GOVERN 1.1: Legal and regulatory requirements involving Al are understood, managed,
202
+ and documented.
203
+
204
+
205
+ \begin{center}
206
+
207
+ \begin{tabular}{|l|l|l|}
208
+
209
+ \hline
210
+
211
+ Action ID & Suggested Action & GAI Risks \\
212
+
213
+ \hline
214
+
215
+ GV-1.1-001 & \begin{tabular}{l}
216
+
217
+ Align GAI development and use with applicable laws and regulations, including
218
+ \\
219
+
220
+ those related to data privacy, copyright and intellectual property law. \\
221
+
222
+ \end{tabular} & \begin{tabular}{l}
223
+
224
+ Data Privacy; Harmful Bias and \\
225
+
226
+ Homogenization; Intellectual \\
227
+
228
+ Property \\
229
+
230
+ \end{tabular} \\
231
+
232
+ \hline
233
+
234
+ \end{tabular}
235
+
236
+ \end{center}
237
+
238
+
239
+ Al Actor Tasks: Governance and Oversight\\
240
+
241
+ ${ }^{14} \mathrm{AI}$ Actors are defined by the OECD as "those who play an active
242
+ role in the AI system lifecycle, including organizations and individuals that
243
+ deploy or operate AI." See Appendix A of the AI RMF for additional descriptions
244
+ of Al Actors and AI Actor Tasks.'
245
+ - '\begin{center}
246
+
247
+ \begin{tabular}{|c|c|c|}
248
+
249
+ \hline
250
+
251
+ Action ID & Suggested Action & GAI Risks \\
252
+
253
+ \hline
254
+
255
+ GV-1.6-001 & \begin{tabular}{l}
256
+
257
+ Enumerate organizational GAI systems for incorporation into AI system inventory
258
+ \\
259
+
260
+ and adjust AI system inventory requirements to account for GAI risks. \\
261
+
262
+ \end{tabular} & Information Security \\
263
+
264
+ \hline
265
+
266
+ GV-1.6-002 & \begin{tabular}{l}
267
+
268
+ Define any inventory exemptions in organizational policies for GAI systems \\
269
+
270
+ embedded into application software. \\
271
+
272
+ \end{tabular} & \begin{tabular}{l}
273
+
274
+ Value Chain and Component \\
275
+
276
+ Integration \\
277
+
278
+ \end{tabular} \\
279
+
280
+ \hline
281
+
282
+ GV-1.6-003 & \begin{tabular}{l}
283
+
284
+ In addition to general model, governance, and risk information, consider the \\
285
+
286
+ following items in GAI system inventory entries: Data provenance information \\
287
+
288
+ (e.g., source, signatures, versioning, watermarks); Known issues reported from
289
+ \\
290
+
291
+ internal bug tracking or external information sharing resources (e.g., Al incident
292
+ \\'
293
+ - 'Wei, J. et al. (2024) Long Form Factuality in Large Language Models. arXiv. \href{https://arxiv.org/pdf/2403.18802}{https://arxiv.org/pdf/2403.18802}
294
+
295
+
296
+ Weidinger, L. et al. (2021) Ethical and social risks of harm from Language Models.
297
+ arXiv. \href{https://arxiv.org/pdf/2112.04359}{https://arxiv.org/pdf/2112.04359}
298
+
299
+
300
+ Weidinger, L. et al. (2023) Sociotechnical Safety Evaluation of Generative AI
301
+ Systems. arXiv. \href{https://arxiv.org/pdf/2310.11986}{https://arxiv.org/pdf/2310.11986}
302
+
303
+
304
+ Weidinger, L. et al. (2022) Taxonomy of Risks posed by Language Models. FAccT''
305
+ 22. \href{https://dl.acm.org/doi/pdf/10.1145/3531146.3533088}{https://dl.acm.org/doi/pdf/10.1145/3531146.3533088}
306
+
307
+
308
+ West, D. (2023) Al poses disproportionate risks to women. Brookings. \href{https://www.brookings.edu/articles/ai-poses-disproportionate-risks-to-women/}{https://www.brookings.edu/articles/ai-poses-disproportionate-risks-to-women/}'
309
+ - source_sentence: What are some known issues reported from internal bug tracking
310
+ or external information sharing resources?
311
+ sentences:
312
+ - 'Kirchenbauer, J. et al. (2023) A Watermark for Large Language Models. OpenReview.
313
+ \href{https://openreview.net/forum?id=aX8ig9X2a7}{https://openreview.net/forum?id=aX8ig9X2a7}
314
+
315
+
316
+ Kleinberg, J. et al. (May 2021) Algorithmic monoculture and social welfare. PNAS.\\
317
+
318
+ \href{https://www.pnas.org/doi/10.1073/pnas}{https://www.pnas.org/doi/10.1073/pnas}.
319
+ 2018340118\\
320
+
321
+ Lakatos, S. (2023) A Revealing Picture. Graphika. \href{https://graphika.com/reports/a-revealing-picture}{https://graphika.com/reports/a-revealing-picture}\\
322
+
323
+ Lee, H. et al. (2024) Deepfakes, Phrenology, Surveillance, and More! A Taxonomy
324
+ of AI Privacy Risks. arXiv. \href{https://arxiv.org/pdf/2310.07879}{https://arxiv.org/pdf/2310.07879}
325
+
326
+
327
+ Lenaerts-Bergmans, B. (2024) Data Poisoning: The Exploitation of Generative AI.
328
+ Crowdstrike. \href{https://www.crowdstrike.com/cybersecurity-101/cyberattacks/data-poisoning/}{https://www.crowdstrike.com/cybersecurity-101/cyberattacks/data-poisoning/}'
329
+ - '(e.g., source, signatures, versioning, watermarks); Known issues reported from
330
+ \\
331
+
332
+ internal bug tracking or external information sharing resources (e.g., Al incident
333
+ \\
334
+
335
+ database, AVID, CVE, NVD, or OECD AI incident monitor); Human oversight roles
336
+ \\
337
+
338
+ and responsibilities; Special rights and considerations for intellectual property,
339
+ \\
340
+
341
+ licensed works, or personal, privileged, proprietary or sensitive data; Underlying
342
+ \\
343
+
344
+ foundation models, versions of underlying models, and access modes. \\
345
+
346
+ \end{tabular} & \begin{tabular}{l}
347
+
348
+ Data Privacy; Human-AI \\
349
+
350
+ Configuration; Information \\
351
+
352
+ Integrity; Intellectual Property; \\
353
+
354
+ Value Chain and Component \\
355
+
356
+ Integration \\
357
+
358
+ \end{tabular} \\
359
+
360
+ \hline
361
+
362
+ \multicolumn{3}{|l|}{AI Actor Tasks: Governance and Oversight} \\
363
+
364
+ \hline
365
+
366
+ \end{tabular}
367
+
368
+ \end{center}'
369
+ - 'Trustworthy AI Characteristic: Safe, Explainable and Interpretable
370
+
371
+ \subsection*{2.2. Confabulation}
372
+
373
+ "Confabulation" refers to a phenomenon in which GAI systems generate and confidently
374
+ present erroneous or false content in response to prompts. Confabulations also
375
+ include generated outputs that diverge from the prompts or other input or that
376
+ contradict previously generated statements in the same context. These phenomena
377
+ are colloquially also referred to as "hallucinations" or "fabrications."'
378
+ - source_sentence: Why do image generator models struggle to produce non-stereotyped
379
+ content even when prompted?
380
+ sentences:
381
+ - Bias exists in many forms and can become ingrained in automated systems. Al systems,
382
+ including GAI systems, can increase the speed and scale at which harmful biases
383
+ manifest and are acted upon, potentially perpetuating and amplifying harms to
384
+ individuals, groups, communities, organizations, and society. For example, when
385
+ prompted to generate images of CEOs, doctors, lawyers, and judges, current text-to-image
386
+ models underrepresent women and/or racial minorities, and people with disabilities.
387
+ Image generator models have also produced biased or stereotyped output for various
388
+ demographic groups and have difficulty producing non-stereotyped content even
389
+ when the prompt specifically requests image features that are inconsistent with
390
+ the stereotypes. Harmful bias in GAI models, which may stem from their training
391
+ data, can also cause representational harms or perpetuate or exacerbate bias based
392
+ on race, gender, disability, or other protected classes.
393
+ - 'The White House (2016) Circular No. A-130, Managing Information as a Strategic
394
+ Resource. \href{https://www.whitehouse.gov/wp-}{https://www.whitehouse.gov/wp-}\\
395
+
396
+ content/uploads/legacy drupal files/omb/circulars/A130/a130revised.pdf\\
397
+
398
+ The White House (2023) Executive Order on the Safe, Secure, and Trustworthy Development
399
+ and Use of Artificial Intelligence. \href{https://www.whitehouse.gov/briefing-room/presidentialactions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-ofartificial-intelligence/}{https://www.whitehouse.gov/briefing-room/presidentialactions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-ofartificial-intelligence/}'
400
+ - "%Overriding the \\footnotetext command to hide the marker if its value is `0`\n\
401
+ \\let\\svfootnotetext\\footnotetext\n\\renewcommand\\footnotetext[2][?]{%\n \\\
402
+ if\\relax#1\\relax%\n \\ifnum\\value{footnote}=0\\blfootnotetext{#2}\\else\\\
403
+ svfootnotetext{#2}\\fi%\n \\else%\n \\if?#1\\ifnum\\value{footnote}=0\\blfootnotetext{#2}\\\
404
+ else\\svfootnotetext{#2}\\fi%\n \\else\\svfootnotetext[#1]{#2}\\fi%\n \\fi\n\
405
+ }\n\n\\begin{document}\n\\maketitle\n\\section*{Artificial Intelligence Risk Management\
406
+ \ Framework: Generative Artificial Intelligence Profile}\n\\section*{NIST Trustworthy\
407
+ \ and Responsible AI NIST AI 600-1}\n\\section*{Artificial Intelligence Risk Management\
408
+ \ Framework: Generative Artificial Intelligence Profile}\nThis publication is\
409
+ \ available free of charge from:\\\\\n\\href{https://doi.org/10.6028/NIST.Al.600-1}{https://doi.org/10.6028/NIST.Al.600-1}\n\
410
+ \nJuly 2024\n\n\\includegraphics[max width=\\textwidth, center]{2024_09_22_1b8d52aa873ff5f60066g-02}\\\
411
+ \\\nU.S. Department of Commerce Gina M. Raimondo, Secretary"
412
+ - source_sentence: What processes should be updated for GAI acquisition and procurement
413
+ vendor assessments?
414
+ sentences:
415
+ - 'Inventory all third-party entities with access to organizational content and
416
+ \\
417
+
418
+ establish approved GAI technology and service provider lists. \\
419
+
420
+ \end{tabular} & \begin{tabular}{l}
421
+
422
+ Value Chain and Component \\
423
+
424
+ Integration \\
425
+
426
+ \end{tabular} \\
427
+
428
+ \hline
429
+
430
+ GV-6.1-008 & \begin{tabular}{l}
431
+
432
+ Maintain records of changes to content made by third parties to promote content
433
+ \\
434
+
435
+ provenance, including sources, timestamps, metadata. \\
436
+
437
+ \end{tabular} & \begin{tabular}{l}
438
+
439
+ Information Integrity; Value Chain \\
440
+
441
+ and Component Integration; \\
442
+
443
+ Intellectual Property \\
444
+
445
+ \end{tabular} \\
446
+
447
+ \hline
448
+
449
+ GV-6.1-009 & \begin{tabular}{l}
450
+
451
+ Update and integrate due diligence processes for GAI acquisition and \\
452
+
453
+ procurement vendor assessments to include intellectual property, data privacy,
454
+ \\
455
+
456
+ security, and other risks. For example, update processes to: Address solutions
457
+ that \\
458
+
459
+ may rely on embedded GAI technologies; Address ongoing monitoring, \\
460
+
461
+ assessments, and alerting, dynamic risk assessments, and real-time reporting \\'
462
+ - "\\item Information Integrity: Lowered barrier to entry to generate and support\
463
+ \ the exchange and consumption of content which may not distinguish fact from\
464
+ \ opinion or fiction or acknowledge uncertainties, or could be leveraged for large-scale\
465
+ \ dis- and mis-information campaigns.\n \\item Information Security: Lowered\
466
+ \ barriers for offensive cyber capabilities, including via automated discovery\
467
+ \ and exploitation of vulnerabilities to ease hacking, malware, phishing, offensive\
468
+ \ cyber\n\\end{enumerate}\n\\footnotetext{${ }^{6}$ Some commenters have noted\
469
+ \ that the terms \"hallucination\" and \"fabrication\" anthropomorphize GAI, which\
470
+ \ itself is a risk related to GAI systems as it can inappropriately attribute\
471
+ \ human characteristics to non-human entities.\\\\"
472
+ - 'Evaluation data; Ethical considerations; Legal and regulatory requirements. \\
473
+
474
+ \end{tabular} & \begin{tabular}{l}
475
+
476
+ Information Integrity; Harmful Bias \\
477
+
478
+ and Homogenization \\
479
+
480
+ \end{tabular} \\
481
+
482
+ \hline
483
+
484
+ AI Actor Tasks: Al Deployment, Al Impact Assessment, Domain Experts, End-Users,
485
+ Operation and Monitoring, TEVV & & \\
486
+
487
+ \hline
488
+
489
+ \end{tabular}
490
+
491
+ \end{center}'
492
+ model-index:
493
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
494
+ results:
495
+ - task:
496
+ type: information-retrieval
497
+ name: Information Retrieval
498
+ dataset:
499
+ name: Unknown
500
+ type: unknown
501
+ metrics:
502
+ - type: cosine_accuracy@1
503
+ value: 0.8850574712643678
504
+ name: Cosine Accuracy@1
505
+ - type: cosine_accuracy@3
506
+ value: 0.9540229885057471
507
+ name: Cosine Accuracy@3
508
+ - type: cosine_accuracy@5
509
+ value: 1.0
510
+ name: Cosine Accuracy@5
511
+ - type: cosine_accuracy@10
512
+ value: 1.0
513
+ name: Cosine Accuracy@10
514
+ - type: cosine_precision@1
515
+ value: 0.8850574712643678
516
+ name: Cosine Precision@1
517
+ - type: cosine_precision@3
518
+ value: 0.31800766283524895
519
+ name: Cosine Precision@3
520
+ - type: cosine_precision@5
521
+ value: 0.19999999999999996
522
+ name: Cosine Precision@5
523
+ - type: cosine_precision@10
524
+ value: 0.09999999999999998
525
+ name: Cosine Precision@10
526
+ - type: cosine_recall@1
527
+ value: 0.02458492975734355
528
+ name: Cosine Recall@1
529
+ - type: cosine_recall@3
530
+ value: 0.026500638569604086
531
+ name: Cosine Recall@3
532
+ - type: cosine_recall@5
533
+ value: 0.027777777777777776
534
+ name: Cosine Recall@5
535
+ - type: cosine_recall@10
536
+ value: 0.027777777777777776
537
+ name: Cosine Recall@10
538
+ - type: cosine_ndcg@10
539
+ value: 0.20817571346541755
540
+ name: Cosine Ndcg@10
541
+ - type: cosine_mrr@10
542
+ value: 0.927969348659004
543
+ name: Cosine Mrr@10
544
+ - type: cosine_map@100
545
+ value: 0.025776926351638994
546
+ name: Cosine Map@100
547
+ - type: dot_accuracy@1
548
+ value: 0.8850574712643678
549
+ name: Dot Accuracy@1
550
+ - type: dot_accuracy@3
551
+ value: 0.9540229885057471
552
+ name: Dot Accuracy@3
553
+ - type: dot_accuracy@5
554
+ value: 1.0
555
+ name: Dot Accuracy@5
556
+ - type: dot_accuracy@10
557
+ value: 1.0
558
+ name: Dot Accuracy@10
559
+ - type: dot_precision@1
560
+ value: 0.8850574712643678
561
+ name: Dot Precision@1
562
+ - type: dot_precision@3
563
+ value: 0.31800766283524895
564
+ name: Dot Precision@3
565
+ - type: dot_precision@5
566
+ value: 0.19999999999999996
567
+ name: Dot Precision@5
568
+ - type: dot_precision@10
569
+ value: 0.09999999999999998
570
+ name: Dot Precision@10
571
+ - type: dot_recall@1
572
+ value: 0.02458492975734355
573
+ name: Dot Recall@1
574
+ - type: dot_recall@3
575
+ value: 0.026500638569604086
576
+ name: Dot Recall@3
577
+ - type: dot_recall@5
578
+ value: 0.027777777777777776
579
+ name: Dot Recall@5
580
+ - type: dot_recall@10
581
+ value: 0.027777777777777776
582
+ name: Dot Recall@10
583
+ - type: dot_ndcg@10
584
+ value: 0.20817571346541755
585
+ name: Dot Ndcg@10
586
+ - type: dot_mrr@10
587
+ value: 0.927969348659004
588
+ name: Dot Mrr@10
589
+ - type: dot_map@100
590
+ value: 0.025776926351638994
591
+ name: Dot Map@100
592
+ ---
593
+
594
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
595
+
596
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
597
+
598
+ ## Model Details
599
+
600
+ ### Model Description
601
+ - **Model Type:** Sentence Transformer
602
+ - **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
603
+ - **Maximum Sequence Length:** 512 tokens
604
+ - **Output Dimensionality:** 768 tokens
605
+ - **Similarity Function:** Cosine Similarity
606
+ <!-- - **Training Dataset:** Unknown -->
607
+ <!-- - **Language:** Unknown -->
608
+ <!-- - **License:** Unknown -->
609
+
610
+ ### Model Sources
611
+
612
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
613
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
614
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
615
+
616
+ ### Full Model Architecture
617
+
618
+ ```
619
+ SentenceTransformer(
620
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
621
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
622
+ (2): Normalize()
623
+ )
624
+ ```
625
+
626
+ ## Usage
627
+
628
+ ### Direct Usage (Sentence Transformers)
629
+
630
+ First install the Sentence Transformers library:
631
+
632
+ ```bash
633
+ pip install -U sentence-transformers
634
+ ```
635
+
636
+ Then you can load this model and run inference.
637
+ ```python
638
+ from sentence_transformers import SentenceTransformer
639
+
640
+ # Download from the 🤗 Hub
641
+ model = SentenceTransformer("Mr-Cool/midterm-finetuned-embedding")
642
+ # Run inference
643
+ sentences = [
644
+ 'What processes should be updated for GAI acquisition and procurement vendor assessments?',
645
+ 'Inventory all third-party entities with access to organizational content and \\\\\nestablish approved GAI technology and service provider lists. \\\\\n\\end{tabular} & \\begin{tabular}{l}\nValue Chain and Component \\\\\nIntegration \\\\\n\\end{tabular} \\\\\n\\hline\nGV-6.1-008 & \\begin{tabular}{l}\nMaintain records of changes to content made by third parties to promote content \\\\\nprovenance, including sources, timestamps, metadata. \\\\\n\\end{tabular} & \\begin{tabular}{l}\nInformation Integrity; Value Chain \\\\\nand Component Integration; \\\\\nIntellectual Property \\\\\n\\end{tabular} \\\\\n\\hline\nGV-6.1-009 & \\begin{tabular}{l}\nUpdate and integrate due diligence processes for GAI acquisition and \\\\\nprocurement vendor assessments to include intellectual property, data privacy, \\\\\nsecurity, and other risks. For example, update processes to: Address solutions that \\\\\nmay rely on embedded GAI technologies; Address ongoing monitoring, \\\\\nassessments, and alerting, dynamic risk assessments, and real-time reporting \\\\',
646
+ 'Evaluation data; Ethical considerations; Legal and regulatory requirements. \\\\\n\\end{tabular} & \\begin{tabular}{l}\nInformation Integrity; Harmful Bias \\\\\nand Homogenization \\\\\n\\end{tabular} \\\\\n\\hline\nAI Actor Tasks: Al Deployment, Al Impact Assessment, Domain Experts, End-Users, Operation and Monitoring, TEVV & & \\\\\n\\hline\n\\end{tabular}\n\\end{center}',
647
+ ]
648
+ embeddings = model.encode(sentences)
649
+ print(embeddings.shape)
650
+ # [3, 768]
651
+
652
+ # Get the similarity scores for the embeddings
653
+ similarities = model.similarity(embeddings, embeddings)
654
+ print(similarities.shape)
655
+ # [3, 3]
656
+ ```
657
+
658
+ <!--
659
+ ### Direct Usage (Transformers)
660
+
661
+ <details><summary>Click to see the direct usage in Transformers</summary>
662
+
663
+ </details>
664
+ -->
665
+
666
+ <!--
667
+ ### Downstream Usage (Sentence Transformers)
668
+
669
+ You can finetune this model on your own dataset.
670
+
671
+ <details><summary>Click to expand</summary>
672
+
673
+ </details>
674
+ -->
675
+
676
+ <!--
677
+ ### Out-of-Scope Use
678
+
679
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
680
+ -->
681
+
682
+ ## Evaluation
683
+
684
+ ### Metrics
685
+
686
+ #### Information Retrieval
687
+
688
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
689
+
690
+ | Metric | Value |
691
+ |:--------------------|:-----------|
692
+ | cosine_accuracy@1 | 0.8851 |
693
+ | cosine_accuracy@3 | 0.954 |
694
+ | cosine_accuracy@5 | 1.0 |
695
+ | cosine_accuracy@10 | 1.0 |
696
+ | cosine_precision@1 | 0.8851 |
697
+ | cosine_precision@3 | 0.318 |
698
+ | cosine_precision@5 | 0.2 |
699
+ | cosine_precision@10 | 0.1 |
700
+ | cosine_recall@1 | 0.0246 |
701
+ | cosine_recall@3 | 0.0265 |
702
+ | cosine_recall@5 | 0.0278 |
703
+ | cosine_recall@10 | 0.0278 |
704
+ | cosine_ndcg@10 | 0.2082 |
705
+ | cosine_mrr@10 | 0.928 |
706
+ | **cosine_map@100** | **0.0258** |
707
+ | dot_accuracy@1 | 0.8851 |
708
+ | dot_accuracy@3 | 0.954 |
709
+ | dot_accuracy@5 | 1.0 |
710
+ | dot_accuracy@10 | 1.0 |
711
+ | dot_precision@1 | 0.8851 |
712
+ | dot_precision@3 | 0.318 |
713
+ | dot_precision@5 | 0.2 |
714
+ | dot_precision@10 | 0.1 |
715
+ | dot_recall@1 | 0.0246 |
716
+ | dot_recall@3 | 0.0265 |
717
+ | dot_recall@5 | 0.0278 |
718
+ | dot_recall@10 | 0.0278 |
719
+ | dot_ndcg@10 | 0.2082 |
720
+ | dot_mrr@10 | 0.928 |
721
+ | dot_map@100 | 0.0258 |
722
+
723
+ <!--
724
+ ## Bias, Risks and Limitations
725
+
726
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
727
+ -->
728
+
729
+ <!--
730
+ ### Recommendations
731
+
732
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
733
+ -->
734
+
735
+ ## Training Details
736
+
737
+ ### Training Dataset
738
+
739
+ #### Unnamed Dataset
740
+
741
+
742
+ * Size: 678 training samples
743
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
744
+ * Approximate statistics based on the first 1000 samples:
745
+ | | sentence_0 | sentence_1 |
746
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
747
+ | type | string | string |
748
+ | details | <ul><li>min: 7 tokens</li><li>mean: 18.37 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 188.5 tokens</li><li>max: 396 tokens</li></ul> |
749
+ * Samples:
750
+ | sentence_0 | sentence_1 |
751
+ |:------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------|
752
+ | <code>What are the characteristics of trustworthy AI?</code> | <code>GOVERN 1.2: The characteristics of trustworthy AI are integrated into organizational policies, processes, procedures, and practices.</code> |
753
+ | <code>How are the characteristics of trustworthy AI integrated into organizational policies?</code> | <code>GOVERN 1.2: The characteristics of trustworthy AI are integrated into organizational policies, processes, procedures, and practices.</code> |
754
+ | <code>Why is it important to integrate trustworthy AI characteristics into organizational processes?</code> | <code>GOVERN 1.2: The characteristics of trustworthy AI are integrated into organizational policies, processes, procedures, and practices.</code> |
755
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
756
+ ```json
757
+ {
758
+ "loss": "MultipleNegativesRankingLoss",
759
+ "matryoshka_dims": [
760
+ 768,
761
+ 512,
762
+ 256,
763
+ 128,
764
+ 64
765
+ ],
766
+ "matryoshka_weights": [
767
+ 1,
768
+ 1,
769
+ 1,
770
+ 1,
771
+ 1
772
+ ],
773
+ "n_dims_per_step": -1
774
+ }
775
+ ```
776
+
777
+ ### Training Hyperparameters
778
+ #### Non-Default Hyperparameters
779
+
780
+ - `eval_strategy`: steps
781
+ - `per_device_train_batch_size`: 20
782
+ - `per_device_eval_batch_size`: 20
783
+ - `num_train_epochs`: 5
784
+ - `multi_dataset_batch_sampler`: round_robin
785
+
786
+ #### All Hyperparameters
787
+ <details><summary>Click to expand</summary>
788
+
789
+ - `overwrite_output_dir`: False
790
+ - `do_predict`: False
791
+ - `eval_strategy`: steps
792
+ - `prediction_loss_only`: True
793
+ - `per_device_train_batch_size`: 20
794
+ - `per_device_eval_batch_size`: 20
795
+ - `per_gpu_train_batch_size`: None
796
+ - `per_gpu_eval_batch_size`: None
797
+ - `gradient_accumulation_steps`: 1
798
+ - `eval_accumulation_steps`: None
799
+ - `torch_empty_cache_steps`: None
800
+ - `learning_rate`: 5e-05
801
+ - `weight_decay`: 0.0
802
+ - `adam_beta1`: 0.9
803
+ - `adam_beta2`: 0.999
804
+ - `adam_epsilon`: 1e-08
805
+ - `max_grad_norm`: 1
806
+ - `num_train_epochs`: 5
807
+ - `max_steps`: -1
808
+ - `lr_scheduler_type`: linear
809
+ - `lr_scheduler_kwargs`: {}
810
+ - `warmup_ratio`: 0.0
811
+ - `warmup_steps`: 0
812
+ - `log_level`: passive
813
+ - `log_level_replica`: warning
814
+ - `log_on_each_node`: True
815
+ - `logging_nan_inf_filter`: True
816
+ - `save_safetensors`: True
817
+ - `save_on_each_node`: False
818
+ - `save_only_model`: False
819
+ - `restore_callback_states_from_checkpoint`: False
820
+ - `no_cuda`: False
821
+ - `use_cpu`: False
822
+ - `use_mps_device`: False
823
+ - `seed`: 42
824
+ - `data_seed`: None
825
+ - `jit_mode_eval`: False
826
+ - `use_ipex`: False
827
+ - `bf16`: False
828
+ - `fp16`: False
829
+ - `fp16_opt_level`: O1
830
+ - `half_precision_backend`: auto
831
+ - `bf16_full_eval`: False
832
+ - `fp16_full_eval`: False
833
+ - `tf32`: None
834
+ - `local_rank`: 0
835
+ - `ddp_backend`: None
836
+ - `tpu_num_cores`: None
837
+ - `tpu_metrics_debug`: False
838
+ - `debug`: []
839
+ - `dataloader_drop_last`: False
840
+ - `dataloader_num_workers`: 0
841
+ - `dataloader_prefetch_factor`: None
842
+ - `past_index`: -1
843
+ - `disable_tqdm`: False
844
+ - `remove_unused_columns`: True
845
+ - `label_names`: None
846
+ - `load_best_model_at_end`: False
847
+ - `ignore_data_skip`: False
848
+ - `fsdp`: []
849
+ - `fsdp_min_num_params`: 0
850
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
851
+ - `fsdp_transformer_layer_cls_to_wrap`: None
852
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
853
+ - `deepspeed`: None
854
+ - `label_smoothing_factor`: 0.0
855
+ - `optim`: adamw_torch
856
+ - `optim_args`: None
857
+ - `adafactor`: False
858
+ - `group_by_length`: False
859
+ - `length_column_name`: length
860
+ - `ddp_find_unused_parameters`: None
861
+ - `ddp_bucket_cap_mb`: None
862
+ - `ddp_broadcast_buffers`: False
863
+ - `dataloader_pin_memory`: True
864
+ - `dataloader_persistent_workers`: False
865
+ - `skip_memory_metrics`: True
866
+ - `use_legacy_prediction_loop`: False
867
+ - `push_to_hub`: False
868
+ - `resume_from_checkpoint`: None
869
+ - `hub_model_id`: None
870
+ - `hub_strategy`: every_save
871
+ - `hub_private_repo`: False
872
+ - `hub_always_push`: False
873
+ - `gradient_checkpointing`: False
874
+ - `gradient_checkpointing_kwargs`: None
875
+ - `include_inputs_for_metrics`: False
876
+ - `eval_do_concat_batches`: True
877
+ - `fp16_backend`: auto
878
+ - `push_to_hub_model_id`: None
879
+ - `push_to_hub_organization`: None
880
+ - `mp_parameters`:
881
+ - `auto_find_batch_size`: False
882
+ - `full_determinism`: False
883
+ - `torchdynamo`: None
884
+ - `ray_scope`: last
885
+ - `ddp_timeout`: 1800
886
+ - `torch_compile`: False
887
+ - `torch_compile_backend`: None
888
+ - `torch_compile_mode`: None
889
+ - `dispatch_batches`: None
890
+ - `split_batches`: None
891
+ - `include_tokens_per_second`: False
892
+ - `include_num_input_tokens_seen`: False
893
+ - `neftune_noise_alpha`: None
894
+ - `optim_target_modules`: None
895
+ - `batch_eval_metrics`: False
896
+ - `eval_on_start`: False
897
+ - `eval_use_gather_object`: False
898
+ - `batch_sampler`: batch_sampler
899
+ - `multi_dataset_batch_sampler`: round_robin
900
+
901
+ </details>
902
+
903
+ ### Training Logs
904
+ | Epoch | Step | cosine_map@100 |
905
+ |:------:|:----:|:--------------:|
906
+ | 1.0 | 34 | 0.0250 |
907
+ | 1.4706 | 50 | 0.0258 |
908
+ | 2.0 | 68 | 0.0257 |
909
+ | 2.9412 | 100 | 0.0258 |
910
+ | 3.0 | 102 | 0.0258 |
911
+ | 4.0 | 136 | 0.0258 |
912
+ | 4.4118 | 150 | 0.0258 |
913
+ | 5.0 | 170 | 0.0258 |
914
+
915
+
916
+ ### Framework Versions
917
+ - Python: 3.12.3
918
+ - Sentence Transformers: 3.0.1
919
+ - Transformers: 4.44.2
920
+ - PyTorch: 2.6.0.dev20240922+cu121
921
+ - Accelerate: 0.34.2
922
+ - Datasets: 3.0.0
923
+ - Tokenizers: 0.19.1
924
+
925
+ ## Citation
926
+
927
+ ### BibTeX
928
+
929
+ #### Sentence Transformers
930
+ ```bibtex
931
+ @inproceedings{reimers-2019-sentence-bert,
932
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
933
+ author = "Reimers, Nils and Gurevych, Iryna",
934
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
935
+ month = "11",
936
+ year = "2019",
937
+ publisher = "Association for Computational Linguistics",
938
+ url = "https://arxiv.org/abs/1908.10084",
939
+ }
940
+ ```
941
+
942
+ #### MatryoshkaLoss
943
+ ```bibtex
944
+ @misc{kusupati2024matryoshka,
945
+ title={Matryoshka Representation Learning},
946
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
947
+ year={2024},
948
+ eprint={2205.13147},
949
+ archivePrefix={arXiv},
950
+ primaryClass={cs.LG}
951
+ }
952
+ ```
953
+
954
+ #### MultipleNegativesRankingLoss
955
+ ```bibtex
956
+ @misc{henderson2017efficient,
957
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
958
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
959
+ year={2017},
960
+ eprint={1705.00652},
961
+ archivePrefix={arXiv},
962
+ primaryClass={cs.CL}
963
+ }
964
+ ```
965
+
966
+ <!--
967
+ ## Glossary
968
+
969
+ *Clearly define terms in order to be accessible across audiences.*
970
+ -->
971
+
972
+ <!--
973
+ ## Model Card Authors
974
+
975
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
976
+ -->
977
+
978
+ <!--
979
+ ## Model Card Contact
980
+
981
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
982
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Snowflake/snowflake-arctic-embed-m",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.6.0.dev20240922+cu121"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": null
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f522fcd942f9887a83b12368d5a76d875cf43a70120e74ecb87288a987d8d52
3
+ size 435588776
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff