Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +982 -0
- config.json +26 -0
- config_sentence_transformers.json +12 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +62 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,982 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Snowflake/snowflake-arctic-embed-m
|
3 |
+
datasets: []
|
4 |
+
language: []
|
5 |
+
library_name: sentence-transformers
|
6 |
+
metrics:
|
7 |
+
- cosine_accuracy@1
|
8 |
+
- cosine_accuracy@3
|
9 |
+
- cosine_accuracy@5
|
10 |
+
- cosine_accuracy@10
|
11 |
+
- cosine_precision@1
|
12 |
+
- cosine_precision@3
|
13 |
+
- cosine_precision@5
|
14 |
+
- cosine_precision@10
|
15 |
+
- cosine_recall@1
|
16 |
+
- cosine_recall@3
|
17 |
+
- cosine_recall@5
|
18 |
+
- cosine_recall@10
|
19 |
+
- cosine_ndcg@10
|
20 |
+
- cosine_mrr@10
|
21 |
+
- cosine_map@100
|
22 |
+
- dot_accuracy@1
|
23 |
+
- dot_accuracy@3
|
24 |
+
- dot_accuracy@5
|
25 |
+
- dot_accuracy@10
|
26 |
+
- dot_precision@1
|
27 |
+
- dot_precision@3
|
28 |
+
- dot_precision@5
|
29 |
+
- dot_precision@10
|
30 |
+
- dot_recall@1
|
31 |
+
- dot_recall@3
|
32 |
+
- dot_recall@5
|
33 |
+
- dot_recall@10
|
34 |
+
- dot_ndcg@10
|
35 |
+
- dot_mrr@10
|
36 |
+
- dot_map@100
|
37 |
+
pipeline_tag: sentence-similarity
|
38 |
+
tags:
|
39 |
+
- sentence-transformers
|
40 |
+
- sentence-similarity
|
41 |
+
- feature-extraction
|
42 |
+
- generated_from_trainer
|
43 |
+
- dataset_size:678
|
44 |
+
- loss:MatryoshkaLoss
|
45 |
+
- loss:MultipleNegativesRankingLoss
|
46 |
+
widget:
|
47 |
+
- source_sentence: What are some of the content types mentioned in the context?
|
48 |
+
sentences:
|
49 |
+
- 'and/or use cases that were not evaluated in initial testing. \\
|
50 |
+
|
51 |
+
\end{tabular} & \begin{tabular}{l}
|
52 |
+
|
53 |
+
Value Chain and Component \\
|
54 |
+
|
55 |
+
Integration \\
|
56 |
+
|
57 |
+
\end{tabular} \\
|
58 |
+
|
59 |
+
\hline
|
60 |
+
|
61 |
+
MG-3.1-004 & \begin{tabular}{l}
|
62 |
+
|
63 |
+
Take reasonable measures to review training data for CBRN information, and \\
|
64 |
+
|
65 |
+
intellectual property, and where appropriate, remove it. Implement reasonable
|
66 |
+
\\
|
67 |
+
|
68 |
+
measures to prevent, flag, or take other action in response to outputs that \\
|
69 |
+
|
70 |
+
reproduce particular training data (e.g., plagiarized, trademarked, patented,
|
71 |
+
\\
|
72 |
+
|
73 |
+
licensed content or trade secret material). \\
|
74 |
+
|
75 |
+
\end{tabular} & \begin{tabular}{l}
|
76 |
+
|
77 |
+
Intellectual Property; CBRN \\
|
78 |
+
|
79 |
+
Information or Capabilities \\
|
80 |
+
|
81 |
+
\end{tabular} \\
|
82 |
+
|
83 |
+
\hline
|
84 |
+
|
85 |
+
\end{tabular}
|
86 |
+
|
87 |
+
\end{center}'
|
88 |
+
- 'Bias and Homogenization \\
|
89 |
+
|
90 |
+
\end{tabular} \\
|
91 |
+
|
92 |
+
\hline
|
93 |
+
|
94 |
+
GV-6.2-004 & \begin{tabular}{l}
|
95 |
+
|
96 |
+
Establish policies and procedures for continuous monitoring of third-party GAI
|
97 |
+
\\
|
98 |
+
|
99 |
+
systems in deployment. \\
|
100 |
+
|
101 |
+
\end{tabular} & \begin{tabular}{l}
|
102 |
+
|
103 |
+
Value Chain and Component \\
|
104 |
+
|
105 |
+
Integration \\
|
106 |
+
|
107 |
+
\end{tabular} \\
|
108 |
+
|
109 |
+
\hline
|
110 |
+
|
111 |
+
GV-6.2-005 & \begin{tabular}{l}
|
112 |
+
|
113 |
+
Establish policies and procedures that address GAI data redundancy, including
|
114 |
+
\\
|
115 |
+
|
116 |
+
model weights and other system artifacts. \\
|
117 |
+
|
118 |
+
\end{tabular} & Harmful Bias and Homogenization \\
|
119 |
+
|
120 |
+
\hline
|
121 |
+
|
122 |
+
GV-6.2-006 & \begin{tabular}{l}
|
123 |
+
|
124 |
+
Establish policies and procedures to test and manage risks related to rollover
|
125 |
+
and \\
|
126 |
+
|
127 |
+
fallback technologies for GAI systems, acknowledging that rollover and fallback
|
128 |
+
\\
|
129 |
+
|
130 |
+
may include manual processing. \\
|
131 |
+
|
132 |
+
\end{tabular} & Information Integrity \\
|
133 |
+
|
134 |
+
\hline
|
135 |
+
|
136 |
+
GV-6.2-007 & \begin{tabular}{l}
|
137 |
+
|
138 |
+
Review vendor contracts and avoid arbitrary or capricious termination of critical
|
139 |
+
\\
|
140 |
+
|
141 |
+
GAI technologies or vendor services and non-standard terms that may amplify or
|
142 |
+
\\'
|
143 |
+
- 'time. \\
|
144 |
+
|
145 |
+
\end{tabular} & \begin{tabular}{l}
|
146 |
+
|
147 |
+
Information Integrity; Obscene, \\
|
148 |
+
|
149 |
+
Degrading, and/or Abusive \\
|
150 |
+
|
151 |
+
Content; Value Chain and \\
|
152 |
+
|
153 |
+
Component Integration; Harmful \\
|
154 |
+
|
155 |
+
Bias and Homogenization; \\
|
156 |
+
|
157 |
+
Dangerous, Violent, or Hateful \\
|
158 |
+
|
159 |
+
Content; CBRN Information or \\
|
160 |
+
|
161 |
+
Capabilities \\
|
162 |
+
|
163 |
+
\end{tabular} \\
|
164 |
+
|
165 |
+
\hline
|
166 |
+
|
167 |
+
GV-1.3-002 & \begin{tabular}{l}
|
168 |
+
|
169 |
+
Establish minimum thresholds for performance or assurance criteria and review
|
170 |
+
as \\
|
171 |
+
|
172 |
+
part of deployment approval ("go/"no-go") policies, procedures, and processes,
|
173 |
+
\\
|
174 |
+
|
175 |
+
with reviewed processes and approval thresholds reflecting measurement of GAI
|
176 |
+
\\
|
177 |
+
|
178 |
+
capabilities and risks. \\
|
179 |
+
|
180 |
+
\end{tabular} & \begin{tabular}{l}
|
181 |
+
|
182 |
+
CBRN Information or Capabilities; \\
|
183 |
+
|
184 |
+
Confabulation; Dangerous, \\
|
185 |
+
|
186 |
+
Violent, or Hateful Content \\
|
187 |
+
|
188 |
+
\end{tabular} \\
|
189 |
+
|
190 |
+
\hline
|
191 |
+
|
192 |
+
GV-1.3-003 & \begin{tabular}{l}
|
193 |
+
|
194 |
+
Establish a test plan and response policy, before developing highly capable models,
|
195 |
+
\\
|
196 |
+
|
197 |
+
to periodically evaluate whether the model may misuse CBRN information or \\'
|
198 |
+
- source_sentence: What are the legal and regulatory requirements involving AI that
|
199 |
+
need to be understood, managed, and documented?
|
200 |
+
sentences:
|
201 |
+
- 'GOVERN 1.1: Legal and regulatory requirements involving Al are understood, managed,
|
202 |
+
and documented.
|
203 |
+
|
204 |
+
|
205 |
+
\begin{center}
|
206 |
+
|
207 |
+
\begin{tabular}{|l|l|l|}
|
208 |
+
|
209 |
+
\hline
|
210 |
+
|
211 |
+
Action ID & Suggested Action & GAI Risks \\
|
212 |
+
|
213 |
+
\hline
|
214 |
+
|
215 |
+
GV-1.1-001 & \begin{tabular}{l}
|
216 |
+
|
217 |
+
Align GAI development and use with applicable laws and regulations, including
|
218 |
+
\\
|
219 |
+
|
220 |
+
those related to data privacy, copyright and intellectual property law. \\
|
221 |
+
|
222 |
+
\end{tabular} & \begin{tabular}{l}
|
223 |
+
|
224 |
+
Data Privacy; Harmful Bias and \\
|
225 |
+
|
226 |
+
Homogenization; Intellectual \\
|
227 |
+
|
228 |
+
Property \\
|
229 |
+
|
230 |
+
\end{tabular} \\
|
231 |
+
|
232 |
+
\hline
|
233 |
+
|
234 |
+
\end{tabular}
|
235 |
+
|
236 |
+
\end{center}
|
237 |
+
|
238 |
+
|
239 |
+
Al Actor Tasks: Governance and Oversight\\
|
240 |
+
|
241 |
+
${ }^{14} \mathrm{AI}$ Actors are defined by the OECD as "those who play an active
|
242 |
+
role in the AI system lifecycle, including organizations and individuals that
|
243 |
+
deploy or operate AI." See Appendix A of the AI RMF for additional descriptions
|
244 |
+
of Al Actors and AI Actor Tasks.'
|
245 |
+
- '\begin{center}
|
246 |
+
|
247 |
+
\begin{tabular}{|c|c|c|}
|
248 |
+
|
249 |
+
\hline
|
250 |
+
|
251 |
+
Action ID & Suggested Action & GAI Risks \\
|
252 |
+
|
253 |
+
\hline
|
254 |
+
|
255 |
+
GV-1.6-001 & \begin{tabular}{l}
|
256 |
+
|
257 |
+
Enumerate organizational GAI systems for incorporation into AI system inventory
|
258 |
+
\\
|
259 |
+
|
260 |
+
and adjust AI system inventory requirements to account for GAI risks. \\
|
261 |
+
|
262 |
+
\end{tabular} & Information Security \\
|
263 |
+
|
264 |
+
\hline
|
265 |
+
|
266 |
+
GV-1.6-002 & \begin{tabular}{l}
|
267 |
+
|
268 |
+
Define any inventory exemptions in organizational policies for GAI systems \\
|
269 |
+
|
270 |
+
embedded into application software. \\
|
271 |
+
|
272 |
+
\end{tabular} & \begin{tabular}{l}
|
273 |
+
|
274 |
+
Value Chain and Component \\
|
275 |
+
|
276 |
+
Integration \\
|
277 |
+
|
278 |
+
\end{tabular} \\
|
279 |
+
|
280 |
+
\hline
|
281 |
+
|
282 |
+
GV-1.6-003 & \begin{tabular}{l}
|
283 |
+
|
284 |
+
In addition to general model, governance, and risk information, consider the \\
|
285 |
+
|
286 |
+
following items in GAI system inventory entries: Data provenance information \\
|
287 |
+
|
288 |
+
(e.g., source, signatures, versioning, watermarks); Known issues reported from
|
289 |
+
\\
|
290 |
+
|
291 |
+
internal bug tracking or external information sharing resources (e.g., Al incident
|
292 |
+
\\'
|
293 |
+
- 'Wei, J. et al. (2024) Long Form Factuality in Large Language Models. arXiv. \href{https://arxiv.org/pdf/2403.18802}{https://arxiv.org/pdf/2403.18802}
|
294 |
+
|
295 |
+
|
296 |
+
Weidinger, L. et al. (2021) Ethical and social risks of harm from Language Models.
|
297 |
+
arXiv. \href{https://arxiv.org/pdf/2112.04359}{https://arxiv.org/pdf/2112.04359}
|
298 |
+
|
299 |
+
|
300 |
+
Weidinger, L. et al. (2023) Sociotechnical Safety Evaluation of Generative AI
|
301 |
+
Systems. arXiv. \href{https://arxiv.org/pdf/2310.11986}{https://arxiv.org/pdf/2310.11986}
|
302 |
+
|
303 |
+
|
304 |
+
Weidinger, L. et al. (2022) Taxonomy of Risks posed by Language Models. FAccT''
|
305 |
+
22. \href{https://dl.acm.org/doi/pdf/10.1145/3531146.3533088}{https://dl.acm.org/doi/pdf/10.1145/3531146.3533088}
|
306 |
+
|
307 |
+
|
308 |
+
West, D. (2023) Al poses disproportionate risks to women. Brookings. \href{https://www.brookings.edu/articles/ai-poses-disproportionate-risks-to-women/}{https://www.brookings.edu/articles/ai-poses-disproportionate-risks-to-women/}'
|
309 |
+
- source_sentence: What are some known issues reported from internal bug tracking
|
310 |
+
or external information sharing resources?
|
311 |
+
sentences:
|
312 |
+
- 'Kirchenbauer, J. et al. (2023) A Watermark for Large Language Models. OpenReview.
|
313 |
+
\href{https://openreview.net/forum?id=aX8ig9X2a7}{https://openreview.net/forum?id=aX8ig9X2a7}
|
314 |
+
|
315 |
+
|
316 |
+
Kleinberg, J. et al. (May 2021) Algorithmic monoculture and social welfare. PNAS.\\
|
317 |
+
|
318 |
+
\href{https://www.pnas.org/doi/10.1073/pnas}{https://www.pnas.org/doi/10.1073/pnas}.
|
319 |
+
2018340118\\
|
320 |
+
|
321 |
+
Lakatos, S. (2023) A Revealing Picture. Graphika. \href{https://graphika.com/reports/a-revealing-picture}{https://graphika.com/reports/a-revealing-picture}\\
|
322 |
+
|
323 |
+
Lee, H. et al. (2024) Deepfakes, Phrenology, Surveillance, and More! A Taxonomy
|
324 |
+
of AI Privacy Risks. arXiv. \href{https://arxiv.org/pdf/2310.07879}{https://arxiv.org/pdf/2310.07879}
|
325 |
+
|
326 |
+
|
327 |
+
Lenaerts-Bergmans, B. (2024) Data Poisoning: The Exploitation of Generative AI.
|
328 |
+
Crowdstrike. \href{https://www.crowdstrike.com/cybersecurity-101/cyberattacks/data-poisoning/}{https://www.crowdstrike.com/cybersecurity-101/cyberattacks/data-poisoning/}'
|
329 |
+
- '(e.g., source, signatures, versioning, watermarks); Known issues reported from
|
330 |
+
\\
|
331 |
+
|
332 |
+
internal bug tracking or external information sharing resources (e.g., Al incident
|
333 |
+
\\
|
334 |
+
|
335 |
+
database, AVID, CVE, NVD, or OECD AI incident monitor); Human oversight roles
|
336 |
+
\\
|
337 |
+
|
338 |
+
and responsibilities; Special rights and considerations for intellectual property,
|
339 |
+
\\
|
340 |
+
|
341 |
+
licensed works, or personal, privileged, proprietary or sensitive data; Underlying
|
342 |
+
\\
|
343 |
+
|
344 |
+
foundation models, versions of underlying models, and access modes. \\
|
345 |
+
|
346 |
+
\end{tabular} & \begin{tabular}{l}
|
347 |
+
|
348 |
+
Data Privacy; Human-AI \\
|
349 |
+
|
350 |
+
Configuration; Information \\
|
351 |
+
|
352 |
+
Integrity; Intellectual Property; \\
|
353 |
+
|
354 |
+
Value Chain and Component \\
|
355 |
+
|
356 |
+
Integration \\
|
357 |
+
|
358 |
+
\end{tabular} \\
|
359 |
+
|
360 |
+
\hline
|
361 |
+
|
362 |
+
\multicolumn{3}{|l|}{AI Actor Tasks: Governance and Oversight} \\
|
363 |
+
|
364 |
+
\hline
|
365 |
+
|
366 |
+
\end{tabular}
|
367 |
+
|
368 |
+
\end{center}'
|
369 |
+
- 'Trustworthy AI Characteristic: Safe, Explainable and Interpretable
|
370 |
+
|
371 |
+
\subsection*{2.2. Confabulation}
|
372 |
+
|
373 |
+
"Confabulation" refers to a phenomenon in which GAI systems generate and confidently
|
374 |
+
present erroneous or false content in response to prompts. Confabulations also
|
375 |
+
include generated outputs that diverge from the prompts or other input or that
|
376 |
+
contradict previously generated statements in the same context. These phenomena
|
377 |
+
are colloquially also referred to as "hallucinations" or "fabrications."'
|
378 |
+
- source_sentence: Why do image generator models struggle to produce non-stereotyped
|
379 |
+
content even when prompted?
|
380 |
+
sentences:
|
381 |
+
- Bias exists in many forms and can become ingrained in automated systems. Al systems,
|
382 |
+
including GAI systems, can increase the speed and scale at which harmful biases
|
383 |
+
manifest and are acted upon, potentially perpetuating and amplifying harms to
|
384 |
+
individuals, groups, communities, organizations, and society. For example, when
|
385 |
+
prompted to generate images of CEOs, doctors, lawyers, and judges, current text-to-image
|
386 |
+
models underrepresent women and/or racial minorities, and people with disabilities.
|
387 |
+
Image generator models have also produced biased or stereotyped output for various
|
388 |
+
demographic groups and have difficulty producing non-stereotyped content even
|
389 |
+
when the prompt specifically requests image features that are inconsistent with
|
390 |
+
the stereotypes. Harmful bias in GAI models, which may stem from their training
|
391 |
+
data, can also cause representational harms or perpetuate or exacerbate bias based
|
392 |
+
on race, gender, disability, or other protected classes.
|
393 |
+
- 'The White House (2016) Circular No. A-130, Managing Information as a Strategic
|
394 |
+
Resource. \href{https://www.whitehouse.gov/wp-}{https://www.whitehouse.gov/wp-}\\
|
395 |
+
|
396 |
+
content/uploads/legacy drupal files/omb/circulars/A130/a130revised.pdf\\
|
397 |
+
|
398 |
+
The White House (2023) Executive Order on the Safe, Secure, and Trustworthy Development
|
399 |
+
and Use of Artificial Intelligence. \href{https://www.whitehouse.gov/briefing-room/presidentialactions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-ofartificial-intelligence/}{https://www.whitehouse.gov/briefing-room/presidentialactions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-ofartificial-intelligence/}'
|
400 |
+
- "%Overriding the \\footnotetext command to hide the marker if its value is `0`\n\
|
401 |
+
\\let\\svfootnotetext\\footnotetext\n\\renewcommand\\footnotetext[2][?]{%\n \\\
|
402 |
+
if\\relax#1\\relax%\n \\ifnum\\value{footnote}=0\\blfootnotetext{#2}\\else\\\
|
403 |
+
svfootnotetext{#2}\\fi%\n \\else%\n \\if?#1\\ifnum\\value{footnote}=0\\blfootnotetext{#2}\\\
|
404 |
+
else\\svfootnotetext{#2}\\fi%\n \\else\\svfootnotetext[#1]{#2}\\fi%\n \\fi\n\
|
405 |
+
}\n\n\\begin{document}\n\\maketitle\n\\section*{Artificial Intelligence Risk Management\
|
406 |
+
\ Framework: Generative Artificial Intelligence Profile}\n\\section*{NIST Trustworthy\
|
407 |
+
\ and Responsible AI NIST AI 600-1}\n\\section*{Artificial Intelligence Risk Management\
|
408 |
+
\ Framework: Generative Artificial Intelligence Profile}\nThis publication is\
|
409 |
+
\ available free of charge from:\\\\\n\\href{https://doi.org/10.6028/NIST.Al.600-1}{https://doi.org/10.6028/NIST.Al.600-1}\n\
|
410 |
+
\nJuly 2024\n\n\\includegraphics[max width=\\textwidth, center]{2024_09_22_1b8d52aa873ff5f60066g-02}\\\
|
411 |
+
\\\nU.S. Department of Commerce Gina M. Raimondo, Secretary"
|
412 |
+
- source_sentence: What processes should be updated for GAI acquisition and procurement
|
413 |
+
vendor assessments?
|
414 |
+
sentences:
|
415 |
+
- 'Inventory all third-party entities with access to organizational content and
|
416 |
+
\\
|
417 |
+
|
418 |
+
establish approved GAI technology and service provider lists. \\
|
419 |
+
|
420 |
+
\end{tabular} & \begin{tabular}{l}
|
421 |
+
|
422 |
+
Value Chain and Component \\
|
423 |
+
|
424 |
+
Integration \\
|
425 |
+
|
426 |
+
\end{tabular} \\
|
427 |
+
|
428 |
+
\hline
|
429 |
+
|
430 |
+
GV-6.1-008 & \begin{tabular}{l}
|
431 |
+
|
432 |
+
Maintain records of changes to content made by third parties to promote content
|
433 |
+
\\
|
434 |
+
|
435 |
+
provenance, including sources, timestamps, metadata. \\
|
436 |
+
|
437 |
+
\end{tabular} & \begin{tabular}{l}
|
438 |
+
|
439 |
+
Information Integrity; Value Chain \\
|
440 |
+
|
441 |
+
and Component Integration; \\
|
442 |
+
|
443 |
+
Intellectual Property \\
|
444 |
+
|
445 |
+
\end{tabular} \\
|
446 |
+
|
447 |
+
\hline
|
448 |
+
|
449 |
+
GV-6.1-009 & \begin{tabular}{l}
|
450 |
+
|
451 |
+
Update and integrate due diligence processes for GAI acquisition and \\
|
452 |
+
|
453 |
+
procurement vendor assessments to include intellectual property, data privacy,
|
454 |
+
\\
|
455 |
+
|
456 |
+
security, and other risks. For example, update processes to: Address solutions
|
457 |
+
that \\
|
458 |
+
|
459 |
+
may rely on embedded GAI technologies; Address ongoing monitoring, \\
|
460 |
+
|
461 |
+
assessments, and alerting, dynamic risk assessments, and real-time reporting \\'
|
462 |
+
- "\\item Information Integrity: Lowered barrier to entry to generate and support\
|
463 |
+
\ the exchange and consumption of content which may not distinguish fact from\
|
464 |
+
\ opinion or fiction or acknowledge uncertainties, or could be leveraged for large-scale\
|
465 |
+
\ dis- and mis-information campaigns.\n \\item Information Security: Lowered\
|
466 |
+
\ barriers for offensive cyber capabilities, including via automated discovery\
|
467 |
+
\ and exploitation of vulnerabilities to ease hacking, malware, phishing, offensive\
|
468 |
+
\ cyber\n\\end{enumerate}\n\\footnotetext{${ }^{6}$ Some commenters have noted\
|
469 |
+
\ that the terms \"hallucination\" and \"fabrication\" anthropomorphize GAI, which\
|
470 |
+
\ itself is a risk related to GAI systems as it can inappropriately attribute\
|
471 |
+
\ human characteristics to non-human entities.\\\\"
|
472 |
+
- 'Evaluation data; Ethical considerations; Legal and regulatory requirements. \\
|
473 |
+
|
474 |
+
\end{tabular} & \begin{tabular}{l}
|
475 |
+
|
476 |
+
Information Integrity; Harmful Bias \\
|
477 |
+
|
478 |
+
and Homogenization \\
|
479 |
+
|
480 |
+
\end{tabular} \\
|
481 |
+
|
482 |
+
\hline
|
483 |
+
|
484 |
+
AI Actor Tasks: Al Deployment, Al Impact Assessment, Domain Experts, End-Users,
|
485 |
+
Operation and Monitoring, TEVV & & \\
|
486 |
+
|
487 |
+
\hline
|
488 |
+
|
489 |
+
\end{tabular}
|
490 |
+
|
491 |
+
\end{center}'
|
492 |
+
model-index:
|
493 |
+
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
|
494 |
+
results:
|
495 |
+
- task:
|
496 |
+
type: information-retrieval
|
497 |
+
name: Information Retrieval
|
498 |
+
dataset:
|
499 |
+
name: Unknown
|
500 |
+
type: unknown
|
501 |
+
metrics:
|
502 |
+
- type: cosine_accuracy@1
|
503 |
+
value: 0.8850574712643678
|
504 |
+
name: Cosine Accuracy@1
|
505 |
+
- type: cosine_accuracy@3
|
506 |
+
value: 0.9540229885057471
|
507 |
+
name: Cosine Accuracy@3
|
508 |
+
- type: cosine_accuracy@5
|
509 |
+
value: 1.0
|
510 |
+
name: Cosine Accuracy@5
|
511 |
+
- type: cosine_accuracy@10
|
512 |
+
value: 1.0
|
513 |
+
name: Cosine Accuracy@10
|
514 |
+
- type: cosine_precision@1
|
515 |
+
value: 0.8850574712643678
|
516 |
+
name: Cosine Precision@1
|
517 |
+
- type: cosine_precision@3
|
518 |
+
value: 0.31800766283524895
|
519 |
+
name: Cosine Precision@3
|
520 |
+
- type: cosine_precision@5
|
521 |
+
value: 0.19999999999999996
|
522 |
+
name: Cosine Precision@5
|
523 |
+
- type: cosine_precision@10
|
524 |
+
value: 0.09999999999999998
|
525 |
+
name: Cosine Precision@10
|
526 |
+
- type: cosine_recall@1
|
527 |
+
value: 0.02458492975734355
|
528 |
+
name: Cosine Recall@1
|
529 |
+
- type: cosine_recall@3
|
530 |
+
value: 0.026500638569604086
|
531 |
+
name: Cosine Recall@3
|
532 |
+
- type: cosine_recall@5
|
533 |
+
value: 0.027777777777777776
|
534 |
+
name: Cosine Recall@5
|
535 |
+
- type: cosine_recall@10
|
536 |
+
value: 0.027777777777777776
|
537 |
+
name: Cosine Recall@10
|
538 |
+
- type: cosine_ndcg@10
|
539 |
+
value: 0.20817571346541755
|
540 |
+
name: Cosine Ndcg@10
|
541 |
+
- type: cosine_mrr@10
|
542 |
+
value: 0.927969348659004
|
543 |
+
name: Cosine Mrr@10
|
544 |
+
- type: cosine_map@100
|
545 |
+
value: 0.025776926351638994
|
546 |
+
name: Cosine Map@100
|
547 |
+
- type: dot_accuracy@1
|
548 |
+
value: 0.8850574712643678
|
549 |
+
name: Dot Accuracy@1
|
550 |
+
- type: dot_accuracy@3
|
551 |
+
value: 0.9540229885057471
|
552 |
+
name: Dot Accuracy@3
|
553 |
+
- type: dot_accuracy@5
|
554 |
+
value: 1.0
|
555 |
+
name: Dot Accuracy@5
|
556 |
+
- type: dot_accuracy@10
|
557 |
+
value: 1.0
|
558 |
+
name: Dot Accuracy@10
|
559 |
+
- type: dot_precision@1
|
560 |
+
value: 0.8850574712643678
|
561 |
+
name: Dot Precision@1
|
562 |
+
- type: dot_precision@3
|
563 |
+
value: 0.31800766283524895
|
564 |
+
name: Dot Precision@3
|
565 |
+
- type: dot_precision@5
|
566 |
+
value: 0.19999999999999996
|
567 |
+
name: Dot Precision@5
|
568 |
+
- type: dot_precision@10
|
569 |
+
value: 0.09999999999999998
|
570 |
+
name: Dot Precision@10
|
571 |
+
- type: dot_recall@1
|
572 |
+
value: 0.02458492975734355
|
573 |
+
name: Dot Recall@1
|
574 |
+
- type: dot_recall@3
|
575 |
+
value: 0.026500638569604086
|
576 |
+
name: Dot Recall@3
|
577 |
+
- type: dot_recall@5
|
578 |
+
value: 0.027777777777777776
|
579 |
+
name: Dot Recall@5
|
580 |
+
- type: dot_recall@10
|
581 |
+
value: 0.027777777777777776
|
582 |
+
name: Dot Recall@10
|
583 |
+
- type: dot_ndcg@10
|
584 |
+
value: 0.20817571346541755
|
585 |
+
name: Dot Ndcg@10
|
586 |
+
- type: dot_mrr@10
|
587 |
+
value: 0.927969348659004
|
588 |
+
name: Dot Mrr@10
|
589 |
+
- type: dot_map@100
|
590 |
+
value: 0.025776926351638994
|
591 |
+
name: Dot Map@100
|
592 |
+
---
|
593 |
+
|
594 |
+
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
|
595 |
+
|
596 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
597 |
+
|
598 |
+
## Model Details
|
599 |
+
|
600 |
+
### Model Description
|
601 |
+
- **Model Type:** Sentence Transformer
|
602 |
+
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
|
603 |
+
- **Maximum Sequence Length:** 512 tokens
|
604 |
+
- **Output Dimensionality:** 768 tokens
|
605 |
+
- **Similarity Function:** Cosine Similarity
|
606 |
+
<!-- - **Training Dataset:** Unknown -->
|
607 |
+
<!-- - **Language:** Unknown -->
|
608 |
+
<!-- - **License:** Unknown -->
|
609 |
+
|
610 |
+
### Model Sources
|
611 |
+
|
612 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
613 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
614 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
615 |
+
|
616 |
+
### Full Model Architecture
|
617 |
+
|
618 |
+
```
|
619 |
+
SentenceTransformer(
|
620 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
621 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
622 |
+
(2): Normalize()
|
623 |
+
)
|
624 |
+
```
|
625 |
+
|
626 |
+
## Usage
|
627 |
+
|
628 |
+
### Direct Usage (Sentence Transformers)
|
629 |
+
|
630 |
+
First install the Sentence Transformers library:
|
631 |
+
|
632 |
+
```bash
|
633 |
+
pip install -U sentence-transformers
|
634 |
+
```
|
635 |
+
|
636 |
+
Then you can load this model and run inference.
|
637 |
+
```python
|
638 |
+
from sentence_transformers import SentenceTransformer
|
639 |
+
|
640 |
+
# Download from the 🤗 Hub
|
641 |
+
model = SentenceTransformer("Mr-Cool/midterm-finetuned-embedding")
|
642 |
+
# Run inference
|
643 |
+
sentences = [
|
644 |
+
'What processes should be updated for GAI acquisition and procurement vendor assessments?',
|
645 |
+
'Inventory all third-party entities with access to organizational content and \\\\\nestablish approved GAI technology and service provider lists. \\\\\n\\end{tabular} & \\begin{tabular}{l}\nValue Chain and Component \\\\\nIntegration \\\\\n\\end{tabular} \\\\\n\\hline\nGV-6.1-008 & \\begin{tabular}{l}\nMaintain records of changes to content made by third parties to promote content \\\\\nprovenance, including sources, timestamps, metadata. \\\\\n\\end{tabular} & \\begin{tabular}{l}\nInformation Integrity; Value Chain \\\\\nand Component Integration; \\\\\nIntellectual Property \\\\\n\\end{tabular} \\\\\n\\hline\nGV-6.1-009 & \\begin{tabular}{l}\nUpdate and integrate due diligence processes for GAI acquisition and \\\\\nprocurement vendor assessments to include intellectual property, data privacy, \\\\\nsecurity, and other risks. For example, update processes to: Address solutions that \\\\\nmay rely on embedded GAI technologies; Address ongoing monitoring, \\\\\nassessments, and alerting, dynamic risk assessments, and real-time reporting \\\\',
|
646 |
+
'Evaluation data; Ethical considerations; Legal and regulatory requirements. \\\\\n\\end{tabular} & \\begin{tabular}{l}\nInformation Integrity; Harmful Bias \\\\\nand Homogenization \\\\\n\\end{tabular} \\\\\n\\hline\nAI Actor Tasks: Al Deployment, Al Impact Assessment, Domain Experts, End-Users, Operation and Monitoring, TEVV & & \\\\\n\\hline\n\\end{tabular}\n\\end{center}',
|
647 |
+
]
|
648 |
+
embeddings = model.encode(sentences)
|
649 |
+
print(embeddings.shape)
|
650 |
+
# [3, 768]
|
651 |
+
|
652 |
+
# Get the similarity scores for the embeddings
|
653 |
+
similarities = model.similarity(embeddings, embeddings)
|
654 |
+
print(similarities.shape)
|
655 |
+
# [3, 3]
|
656 |
+
```
|
657 |
+
|
658 |
+
<!--
|
659 |
+
### Direct Usage (Transformers)
|
660 |
+
|
661 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
662 |
+
|
663 |
+
</details>
|
664 |
+
-->
|
665 |
+
|
666 |
+
<!--
|
667 |
+
### Downstream Usage (Sentence Transformers)
|
668 |
+
|
669 |
+
You can finetune this model on your own dataset.
|
670 |
+
|
671 |
+
<details><summary>Click to expand</summary>
|
672 |
+
|
673 |
+
</details>
|
674 |
+
-->
|
675 |
+
|
676 |
+
<!--
|
677 |
+
### Out-of-Scope Use
|
678 |
+
|
679 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
680 |
+
-->
|
681 |
+
|
682 |
+
## Evaluation
|
683 |
+
|
684 |
+
### Metrics
|
685 |
+
|
686 |
+
#### Information Retrieval
|
687 |
+
|
688 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
689 |
+
|
690 |
+
| Metric | Value |
|
691 |
+
|:--------------------|:-----------|
|
692 |
+
| cosine_accuracy@1 | 0.8851 |
|
693 |
+
| cosine_accuracy@3 | 0.954 |
|
694 |
+
| cosine_accuracy@5 | 1.0 |
|
695 |
+
| cosine_accuracy@10 | 1.0 |
|
696 |
+
| cosine_precision@1 | 0.8851 |
|
697 |
+
| cosine_precision@3 | 0.318 |
|
698 |
+
| cosine_precision@5 | 0.2 |
|
699 |
+
| cosine_precision@10 | 0.1 |
|
700 |
+
| cosine_recall@1 | 0.0246 |
|
701 |
+
| cosine_recall@3 | 0.0265 |
|
702 |
+
| cosine_recall@5 | 0.0278 |
|
703 |
+
| cosine_recall@10 | 0.0278 |
|
704 |
+
| cosine_ndcg@10 | 0.2082 |
|
705 |
+
| cosine_mrr@10 | 0.928 |
|
706 |
+
| **cosine_map@100** | **0.0258** |
|
707 |
+
| dot_accuracy@1 | 0.8851 |
|
708 |
+
| dot_accuracy@3 | 0.954 |
|
709 |
+
| dot_accuracy@5 | 1.0 |
|
710 |
+
| dot_accuracy@10 | 1.0 |
|
711 |
+
| dot_precision@1 | 0.8851 |
|
712 |
+
| dot_precision@3 | 0.318 |
|
713 |
+
| dot_precision@5 | 0.2 |
|
714 |
+
| dot_precision@10 | 0.1 |
|
715 |
+
| dot_recall@1 | 0.0246 |
|
716 |
+
| dot_recall@3 | 0.0265 |
|
717 |
+
| dot_recall@5 | 0.0278 |
|
718 |
+
| dot_recall@10 | 0.0278 |
|
719 |
+
| dot_ndcg@10 | 0.2082 |
|
720 |
+
| dot_mrr@10 | 0.928 |
|
721 |
+
| dot_map@100 | 0.0258 |
|
722 |
+
|
723 |
+
<!--
|
724 |
+
## Bias, Risks and Limitations
|
725 |
+
|
726 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
727 |
+
-->
|
728 |
+
|
729 |
+
<!--
|
730 |
+
### Recommendations
|
731 |
+
|
732 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
733 |
+
-->
|
734 |
+
|
735 |
+
## Training Details
|
736 |
+
|
737 |
+
### Training Dataset
|
738 |
+
|
739 |
+
#### Unnamed Dataset
|
740 |
+
|
741 |
+
|
742 |
+
* Size: 678 training samples
|
743 |
+
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
|
744 |
+
* Approximate statistics based on the first 1000 samples:
|
745 |
+
| | sentence_0 | sentence_1 |
|
746 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
747 |
+
| type | string | string |
|
748 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 18.37 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 188.5 tokens</li><li>max: 396 tokens</li></ul> |
|
749 |
+
* Samples:
|
750 |
+
| sentence_0 | sentence_1 |
|
751 |
+
|:------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------|
|
752 |
+
| <code>What are the characteristics of trustworthy AI?</code> | <code>GOVERN 1.2: The characteristics of trustworthy AI are integrated into organizational policies, processes, procedures, and practices.</code> |
|
753 |
+
| <code>How are the characteristics of trustworthy AI integrated into organizational policies?</code> | <code>GOVERN 1.2: The characteristics of trustworthy AI are integrated into organizational policies, processes, procedures, and practices.</code> |
|
754 |
+
| <code>Why is it important to integrate trustworthy AI characteristics into organizational processes?</code> | <code>GOVERN 1.2: The characteristics of trustworthy AI are integrated into organizational policies, processes, procedures, and practices.</code> |
|
755 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
756 |
+
```json
|
757 |
+
{
|
758 |
+
"loss": "MultipleNegativesRankingLoss",
|
759 |
+
"matryoshka_dims": [
|
760 |
+
768,
|
761 |
+
512,
|
762 |
+
256,
|
763 |
+
128,
|
764 |
+
64
|
765 |
+
],
|
766 |
+
"matryoshka_weights": [
|
767 |
+
1,
|
768 |
+
1,
|
769 |
+
1,
|
770 |
+
1,
|
771 |
+
1
|
772 |
+
],
|
773 |
+
"n_dims_per_step": -1
|
774 |
+
}
|
775 |
+
```
|
776 |
+
|
777 |
+
### Training Hyperparameters
|
778 |
+
#### Non-Default Hyperparameters
|
779 |
+
|
780 |
+
- `eval_strategy`: steps
|
781 |
+
- `per_device_train_batch_size`: 20
|
782 |
+
- `per_device_eval_batch_size`: 20
|
783 |
+
- `num_train_epochs`: 5
|
784 |
+
- `multi_dataset_batch_sampler`: round_robin
|
785 |
+
|
786 |
+
#### All Hyperparameters
|
787 |
+
<details><summary>Click to expand</summary>
|
788 |
+
|
789 |
+
- `overwrite_output_dir`: False
|
790 |
+
- `do_predict`: False
|
791 |
+
- `eval_strategy`: steps
|
792 |
+
- `prediction_loss_only`: True
|
793 |
+
- `per_device_train_batch_size`: 20
|
794 |
+
- `per_device_eval_batch_size`: 20
|
795 |
+
- `per_gpu_train_batch_size`: None
|
796 |
+
- `per_gpu_eval_batch_size`: None
|
797 |
+
- `gradient_accumulation_steps`: 1
|
798 |
+
- `eval_accumulation_steps`: None
|
799 |
+
- `torch_empty_cache_steps`: None
|
800 |
+
- `learning_rate`: 5e-05
|
801 |
+
- `weight_decay`: 0.0
|
802 |
+
- `adam_beta1`: 0.9
|
803 |
+
- `adam_beta2`: 0.999
|
804 |
+
- `adam_epsilon`: 1e-08
|
805 |
+
- `max_grad_norm`: 1
|
806 |
+
- `num_train_epochs`: 5
|
807 |
+
- `max_steps`: -1
|
808 |
+
- `lr_scheduler_type`: linear
|
809 |
+
- `lr_scheduler_kwargs`: {}
|
810 |
+
- `warmup_ratio`: 0.0
|
811 |
+
- `warmup_steps`: 0
|
812 |
+
- `log_level`: passive
|
813 |
+
- `log_level_replica`: warning
|
814 |
+
- `log_on_each_node`: True
|
815 |
+
- `logging_nan_inf_filter`: True
|
816 |
+
- `save_safetensors`: True
|
817 |
+
- `save_on_each_node`: False
|
818 |
+
- `save_only_model`: False
|
819 |
+
- `restore_callback_states_from_checkpoint`: False
|
820 |
+
- `no_cuda`: False
|
821 |
+
- `use_cpu`: False
|
822 |
+
- `use_mps_device`: False
|
823 |
+
- `seed`: 42
|
824 |
+
- `data_seed`: None
|
825 |
+
- `jit_mode_eval`: False
|
826 |
+
- `use_ipex`: False
|
827 |
+
- `bf16`: False
|
828 |
+
- `fp16`: False
|
829 |
+
- `fp16_opt_level`: O1
|
830 |
+
- `half_precision_backend`: auto
|
831 |
+
- `bf16_full_eval`: False
|
832 |
+
- `fp16_full_eval`: False
|
833 |
+
- `tf32`: None
|
834 |
+
- `local_rank`: 0
|
835 |
+
- `ddp_backend`: None
|
836 |
+
- `tpu_num_cores`: None
|
837 |
+
- `tpu_metrics_debug`: False
|
838 |
+
- `debug`: []
|
839 |
+
- `dataloader_drop_last`: False
|
840 |
+
- `dataloader_num_workers`: 0
|
841 |
+
- `dataloader_prefetch_factor`: None
|
842 |
+
- `past_index`: -1
|
843 |
+
- `disable_tqdm`: False
|
844 |
+
- `remove_unused_columns`: True
|
845 |
+
- `label_names`: None
|
846 |
+
- `load_best_model_at_end`: False
|
847 |
+
- `ignore_data_skip`: False
|
848 |
+
- `fsdp`: []
|
849 |
+
- `fsdp_min_num_params`: 0
|
850 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
851 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
852 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
853 |
+
- `deepspeed`: None
|
854 |
+
- `label_smoothing_factor`: 0.0
|
855 |
+
- `optim`: adamw_torch
|
856 |
+
- `optim_args`: None
|
857 |
+
- `adafactor`: False
|
858 |
+
- `group_by_length`: False
|
859 |
+
- `length_column_name`: length
|
860 |
+
- `ddp_find_unused_parameters`: None
|
861 |
+
- `ddp_bucket_cap_mb`: None
|
862 |
+
- `ddp_broadcast_buffers`: False
|
863 |
+
- `dataloader_pin_memory`: True
|
864 |
+
- `dataloader_persistent_workers`: False
|
865 |
+
- `skip_memory_metrics`: True
|
866 |
+
- `use_legacy_prediction_loop`: False
|
867 |
+
- `push_to_hub`: False
|
868 |
+
- `resume_from_checkpoint`: None
|
869 |
+
- `hub_model_id`: None
|
870 |
+
- `hub_strategy`: every_save
|
871 |
+
- `hub_private_repo`: False
|
872 |
+
- `hub_always_push`: False
|
873 |
+
- `gradient_checkpointing`: False
|
874 |
+
- `gradient_checkpointing_kwargs`: None
|
875 |
+
- `include_inputs_for_metrics`: False
|
876 |
+
- `eval_do_concat_batches`: True
|
877 |
+
- `fp16_backend`: auto
|
878 |
+
- `push_to_hub_model_id`: None
|
879 |
+
- `push_to_hub_organization`: None
|
880 |
+
- `mp_parameters`:
|
881 |
+
- `auto_find_batch_size`: False
|
882 |
+
- `full_determinism`: False
|
883 |
+
- `torchdynamo`: None
|
884 |
+
- `ray_scope`: last
|
885 |
+
- `ddp_timeout`: 1800
|
886 |
+
- `torch_compile`: False
|
887 |
+
- `torch_compile_backend`: None
|
888 |
+
- `torch_compile_mode`: None
|
889 |
+
- `dispatch_batches`: None
|
890 |
+
- `split_batches`: None
|
891 |
+
- `include_tokens_per_second`: False
|
892 |
+
- `include_num_input_tokens_seen`: False
|
893 |
+
- `neftune_noise_alpha`: None
|
894 |
+
- `optim_target_modules`: None
|
895 |
+
- `batch_eval_metrics`: False
|
896 |
+
- `eval_on_start`: False
|
897 |
+
- `eval_use_gather_object`: False
|
898 |
+
- `batch_sampler`: batch_sampler
|
899 |
+
- `multi_dataset_batch_sampler`: round_robin
|
900 |
+
|
901 |
+
</details>
|
902 |
+
|
903 |
+
### Training Logs
|
904 |
+
| Epoch | Step | cosine_map@100 |
|
905 |
+
|:------:|:----:|:--------------:|
|
906 |
+
| 1.0 | 34 | 0.0250 |
|
907 |
+
| 1.4706 | 50 | 0.0258 |
|
908 |
+
| 2.0 | 68 | 0.0257 |
|
909 |
+
| 2.9412 | 100 | 0.0258 |
|
910 |
+
| 3.0 | 102 | 0.0258 |
|
911 |
+
| 4.0 | 136 | 0.0258 |
|
912 |
+
| 4.4118 | 150 | 0.0258 |
|
913 |
+
| 5.0 | 170 | 0.0258 |
|
914 |
+
|
915 |
+
|
916 |
+
### Framework Versions
|
917 |
+
- Python: 3.12.3
|
918 |
+
- Sentence Transformers: 3.0.1
|
919 |
+
- Transformers: 4.44.2
|
920 |
+
- PyTorch: 2.6.0.dev20240922+cu121
|
921 |
+
- Accelerate: 0.34.2
|
922 |
+
- Datasets: 3.0.0
|
923 |
+
- Tokenizers: 0.19.1
|
924 |
+
|
925 |
+
## Citation
|
926 |
+
|
927 |
+
### BibTeX
|
928 |
+
|
929 |
+
#### Sentence Transformers
|
930 |
+
```bibtex
|
931 |
+
@inproceedings{reimers-2019-sentence-bert,
|
932 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
933 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
934 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
935 |
+
month = "11",
|
936 |
+
year = "2019",
|
937 |
+
publisher = "Association for Computational Linguistics",
|
938 |
+
url = "https://arxiv.org/abs/1908.10084",
|
939 |
+
}
|
940 |
+
```
|
941 |
+
|
942 |
+
#### MatryoshkaLoss
|
943 |
+
```bibtex
|
944 |
+
@misc{kusupati2024matryoshka,
|
945 |
+
title={Matryoshka Representation Learning},
|
946 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
947 |
+
year={2024},
|
948 |
+
eprint={2205.13147},
|
949 |
+
archivePrefix={arXiv},
|
950 |
+
primaryClass={cs.LG}
|
951 |
+
}
|
952 |
+
```
|
953 |
+
|
954 |
+
#### MultipleNegativesRankingLoss
|
955 |
+
```bibtex
|
956 |
+
@misc{henderson2017efficient,
|
957 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
958 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
959 |
+
year={2017},
|
960 |
+
eprint={1705.00652},
|
961 |
+
archivePrefix={arXiv},
|
962 |
+
primaryClass={cs.CL}
|
963 |
+
}
|
964 |
+
```
|
965 |
+
|
966 |
+
<!--
|
967 |
+
## Glossary
|
968 |
+
|
969 |
+
*Clearly define terms in order to be accessible across audiences.*
|
970 |
+
-->
|
971 |
+
|
972 |
+
<!--
|
973 |
+
## Model Card Authors
|
974 |
+
|
975 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
976 |
+
-->
|
977 |
+
|
978 |
+
<!--
|
979 |
+
## Model Card Contact
|
980 |
+
|
981 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
982 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Snowflake/snowflake-arctic-embed-m",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.44.2",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.44.2",
|
5 |
+
"pytorch": "2.6.0.dev20240922+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {
|
8 |
+
"query": "Represent this sentence for searching relevant passages: "
|
9 |
+
},
|
10 |
+
"default_prompt_name": null,
|
11 |
+
"similarity_fn_name": null
|
12 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f522fcd942f9887a83b12368d5a76d875cf43a70120e74ecb87288a987d8d52
|
3 |
+
size 435588776
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"max_length": 512,
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_to_multiple_of": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"pad_token_type_id": 0,
|
53 |
+
"padding_side": "right",
|
54 |
+
"sep_token": "[SEP]",
|
55 |
+
"stride": 0,
|
56 |
+
"strip_accents": null,
|
57 |
+
"tokenize_chinese_chars": true,
|
58 |
+
"tokenizer_class": "BertTokenizer",
|
59 |
+
"truncation_side": "right",
|
60 |
+
"truncation_strategy": "longest_first",
|
61 |
+
"unk_token": "[UNK]"
|
62 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|