Mou11209203 commited on
Commit
fb63999
·
verified ·
1 Parent(s): 74c7c7f

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +12 -9
README.md CHANGED
@@ -65,18 +65,21 @@ from diffusers import UNet2DModel, DDPMScheduler
65
  import tqdm
66
 
67
  # 1. Initialize the model
 
68
  repo_id = "google/ddpm-celebahq-256"
69
- model = UNet2DModel.from_pretrained(repo_id, use_safetensors=True)
 
70
  model.to("cuda") # Move the model to GPU
71
- display(model.config)
72
 
73
  # 2. Initialize the scheduler
74
- scheduler = DDPMScheduler.from_pretrained(repo_id)
 
75
 
76
  # 3. Create an image with Gaussian noise
77
- torch.manual_seed(0) # Set random seed for reproducibility
78
  noisy_sample = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size).to("cuda")
79
- display(f"Noisy sample shape: {noisy_sample.shape}")
80
 
81
  # 4. Define a function to display the image
82
  def display_sample(sample, i):
@@ -85,13 +88,13 @@ def display_sample(sample, i):
85
  image_processed = image_processed.numpy().astype(np.uint8)
86
 
87
  image_pil = PIL.Image.fromarray(image_processed[0])
88
- display(f"Image at step {i}")
89
- display(image_pil)
90
 
91
  # 5. Reverse diffusion process
92
  sample = noisy_sample
93
  for i, t in enumerate(tqdm.tqdm(scheduler.timesteps)):
94
- # 1. Predict noise residual
95
  with torch.no_grad():
96
  residual = model(sample, t).sample
97
 
@@ -102,7 +105,7 @@ for i, t in enumerate(tqdm.tqdm(scheduler.timesteps)):
102
  if (i + 1) % 50 == 0:
103
  display_sample(sample, i + 1)
104
 
105
- display("Denoising complete.")
106
  ```
107
 
108
  ## Training
 
65
  import tqdm
66
 
67
  # 1. Initialize the model
68
+ # Choose a model ID, use google's with use_safetensors=False, use Mou11209203's with use_safetensors=True
69
  repo_id = "google/ddpm-celebahq-256"
70
+ repo_id1 = "Mou11209203/ddpm-celebahq-256"
71
+ model = UNet2DModel.from_pretrained(repo_id1, use_safetensors=True)
72
  model.to("cuda") # Move the model to GPU
73
+ print("model.config: ", model.config)
74
 
75
  # 2. Initialize the scheduler
76
+ scheduler = DDPMScheduler.from_pretrained(repo_id1)
77
+ print("scheduler.config: ", scheduler.config)
78
 
79
  # 3. Create an image with Gaussian noise
80
+ torch.manual_seed(0) # Fix the random seed for reproducibility
81
  noisy_sample = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size).to("cuda")
82
+ print(f"Noisy sample shape: {noisy_sample.shape}")
83
 
84
  # 4. Define a function to display the image
85
  def display_sample(sample, i):
 
88
  image_processed = image_processed.numpy().astype(np.uint8)
89
 
90
  image_pil = PIL.Image.fromarray(image_processed[0])
91
+ print(f"Image at step {i}")
92
+ image_pil.show()
93
 
94
  # 5. Reverse diffusion process
95
  sample = noisy_sample
96
  for i, t in enumerate(tqdm.tqdm(scheduler.timesteps)):
97
+ # 1. Predict the noise residual
98
  with torch.no_grad():
99
  residual = model(sample, t).sample
100
 
 
105
  if (i + 1) % 50 == 0:
106
  display_sample(sample, i + 1)
107
 
108
+ print("Denoising complete.")
109
  ```
110
 
111
  ## Training