github-actions[bot]
commited on
Commit
·
6ec5093
1
Parent(s):
811726c
Add built binary [skip-build]
Browse files- build/torch28-cxx11-cu126-x86_64-linux/optimizer/_ops.py +3 -3
- build/torch28-cxx11-cu126-x86_64-linux/optimizer/{_optimizer_b0230e7_dirty.abi3.so → _optimizer_811726c_dirty.abi3.so} +2 -2
- build/torch28-cxx11-cu126-x86_64-linux/optimizer/muon.py +5 -0
- build/torch28-cxx11-cu128-x86_64-linux/optimizer/_ops.py +3 -3
- build/torch28-cxx11-cu128-x86_64-linux/optimizer/{_optimizer_b0230e7_dirty.abi3.so → _optimizer_811726c_dirty.abi3.so} +2 -2
- build/torch28-cxx11-cu128-x86_64-linux/optimizer/muon.py +5 -0
- build/torch28-cxx11-cu129-x86_64-linux/optimizer/_ops.py +3 -3
- build/torch28-cxx11-cu129-x86_64-linux/optimizer/{_optimizer_b0230e7_dirty.abi3.so → _optimizer_811726c_dirty.abi3.so} +2 -2
- build/torch28-cxx11-cu129-x86_64-linux/optimizer/muon.py +5 -0
- build/torch28-cxx11-rocm63-x86_64-linux/optimizer/_ops.py +3 -3
- build/torch28-cxx11-rocm63-x86_64-linux/optimizer/{_optimizer_b0230e7_dirty.abi3.so → _optimizer_811726c_dirty.abi3.so} +2 -2
- build/torch28-cxx11-rocm63-x86_64-linux/optimizer/muon.py +5 -0
- build/torch28-cxx11-rocm64-x86_64-linux/optimizer/_ops.py +3 -3
- build/torch28-cxx11-rocm64-x86_64-linux/optimizer/_optimizer_811726c_dirty.abi3.so +3 -0
- build/torch28-cxx11-rocm64-x86_64-linux/optimizer/_optimizer_b0230e7_dirty.abi3.so +0 -3
- build/torch28-cxx11-rocm64-x86_64-linux/optimizer/muon.py +5 -0
- build/torch29-cxx11-cu126-x86_64-linux/optimizer/__init__.py +5 -0
- build/torch29-cxx11-cu126-x86_64-linux/optimizer/_ops.py +9 -0
- build/torch29-cxx11-cu126-x86_64-linux/optimizer/_optimizer_811726c_dirty.abi3.so +3 -0
- build/torch29-cxx11-cu126-x86_64-linux/optimizer/matmul_transpose_triton.py +128 -0
- build/torch29-cxx11-cu126-x86_64-linux/optimizer/muon.py +1069 -0
- build/torch29-cxx11-cu128-x86_64-linux/optimizer/__init__.py +5 -0
- build/torch29-cxx11-cu128-x86_64-linux/optimizer/_ops.py +9 -0
- build/torch29-cxx11-cu128-x86_64-linux/optimizer/_optimizer_811726c_dirty.abi3.so +3 -0
- build/torch29-cxx11-cu128-x86_64-linux/optimizer/matmul_transpose_triton.py +128 -0
- build/torch29-cxx11-cu128-x86_64-linux/optimizer/muon.py +1069 -0
- build/torch29-cxx11-cu130-x86_64-linux/optimizer/__init__.py +5 -0
- build/torch29-cxx11-cu130-x86_64-linux/optimizer/_ops.py +9 -0
- build/torch29-cxx11-cu130-x86_64-linux/optimizer/_optimizer_811726c_dirty.abi3.so +3 -0
- build/torch29-cxx11-cu130-x86_64-linux/optimizer/matmul_transpose_triton.py +128 -0
- build/torch29-cxx11-cu130-x86_64-linux/optimizer/muon.py +1069 -0
- build/torch29-cxx11-rocm63-x86_64-linux/optimizer/__init__.py +5 -0
- build/torch29-cxx11-rocm63-x86_64-linux/optimizer/_ops.py +9 -0
- build/torch29-cxx11-rocm63-x86_64-linux/optimizer/_optimizer_811726c_dirty.abi3.so +3 -0
- build/torch29-cxx11-rocm63-x86_64-linux/optimizer/matmul_transpose_triton.py +128 -0
- build/torch29-cxx11-rocm63-x86_64-linux/optimizer/muon.py +1069 -0
- build/torch29-cxx11-rocm64-x86_64-linux/optimizer/__init__.py +5 -0
- build/torch29-cxx11-rocm64-x86_64-linux/optimizer/_ops.py +9 -0
- build/torch29-cxx11-rocm64-x86_64-linux/optimizer/_optimizer_811726c_dirty.abi3.so +3 -0
- build/torch29-cxx11-rocm64-x86_64-linux/optimizer/matmul_transpose_triton.py +128 -0
- build/torch29-cxx11-rocm64-x86_64-linux/optimizer/muon.py +1069 -0
build/torch28-cxx11-cu126-x86_64-linux/optimizer/_ops.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import torch
|
| 2 |
-
from . import
|
| 3 |
-
ops = torch.ops.
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
-
return f"
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from . import _optimizer_811726c_dirty
|
| 3 |
+
ops = torch.ops._optimizer_811726c_dirty
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
+
return f"_optimizer_811726c_dirty::{op_name}"
|
build/torch28-cxx11-cu126-x86_64-linux/optimizer/{_optimizer_b0230e7_dirty.abi3.so → _optimizer_811726c_dirty.abi3.so}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:511199ac2ae46febc8aeeb96e843a748da7d6fdea4922572ccf27ee5eabe312d
|
| 3 |
+
size 1816064
|
build/torch28-cxx11-cu126-x86_64-linux/optimizer/muon.py
CHANGED
|
@@ -606,6 +606,11 @@ class Muon(torch.optim.Optimizer):
|
|
| 606 |
|
| 607 |
if p.placements == (Shard(dim=0), ):
|
| 608 |
# Case for FSDP
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 609 |
return p.device_mesh.mesh, p.device_mesh.get_group(mesh_dim=0)
|
| 610 |
elif p.placements == (Replicate(), Shard(dim=0)):
|
| 611 |
# Case for HSDP
|
|
|
|
| 606 |
|
| 607 |
if p.placements == (Shard(dim=0), ):
|
| 608 |
# Case for FSDP
|
| 609 |
+
process_group = p.device_mesh.get_group(mesh_dim=0)
|
| 610 |
+
if self.rank is None:
|
| 611 |
+
self.rank = dist.get_rank(group=process_group)
|
| 612 |
+
else:
|
| 613 |
+
assert self.rank == dist.get_rank(group=process_group)
|
| 614 |
return p.device_mesh.mesh, p.device_mesh.get_group(mesh_dim=0)
|
| 615 |
elif p.placements == (Replicate(), Shard(dim=0)):
|
| 616 |
# Case for HSDP
|
build/torch28-cxx11-cu128-x86_64-linux/optimizer/_ops.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import torch
|
| 2 |
-
from . import
|
| 3 |
-
ops = torch.ops.
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
-
return f"
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from . import _optimizer_811726c_dirty
|
| 3 |
+
ops = torch.ops._optimizer_811726c_dirty
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
+
return f"_optimizer_811726c_dirty::{op_name}"
|
build/torch28-cxx11-cu128-x86_64-linux/optimizer/{_optimizer_b0230e7_dirty.abi3.so → _optimizer_811726c_dirty.abi3.so}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b3cdb515b6c56204224cc307b66d34fcee1cd5e27b4117197a71b784d34fadc5
|
| 3 |
+
size 1871056
|
build/torch28-cxx11-cu128-x86_64-linux/optimizer/muon.py
CHANGED
|
@@ -606,6 +606,11 @@ class Muon(torch.optim.Optimizer):
|
|
| 606 |
|
| 607 |
if p.placements == (Shard(dim=0), ):
|
| 608 |
# Case for FSDP
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 609 |
return p.device_mesh.mesh, p.device_mesh.get_group(mesh_dim=0)
|
| 610 |
elif p.placements == (Replicate(), Shard(dim=0)):
|
| 611 |
# Case for HSDP
|
|
|
|
| 606 |
|
| 607 |
if p.placements == (Shard(dim=0), ):
|
| 608 |
# Case for FSDP
|
| 609 |
+
process_group = p.device_mesh.get_group(mesh_dim=0)
|
| 610 |
+
if self.rank is None:
|
| 611 |
+
self.rank = dist.get_rank(group=process_group)
|
| 612 |
+
else:
|
| 613 |
+
assert self.rank == dist.get_rank(group=process_group)
|
| 614 |
return p.device_mesh.mesh, p.device_mesh.get_group(mesh_dim=0)
|
| 615 |
elif p.placements == (Replicate(), Shard(dim=0)):
|
| 616 |
# Case for HSDP
|
build/torch28-cxx11-cu129-x86_64-linux/optimizer/_ops.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import torch
|
| 2 |
-
from . import
|
| 3 |
-
ops = torch.ops.
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
-
return f"
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from . import _optimizer_811726c_dirty
|
| 3 |
+
ops = torch.ops._optimizer_811726c_dirty
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
+
return f"_optimizer_811726c_dirty::{op_name}"
|
build/torch28-cxx11-cu129-x86_64-linux/optimizer/{_optimizer_b0230e7_dirty.abi3.so → _optimizer_811726c_dirty.abi3.so}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b957f60eab442d3ff5a5525d16a1b4b71e8c6be32edb874d9a5681953c61f0c2
|
| 3 |
+
size 1871056
|
build/torch28-cxx11-cu129-x86_64-linux/optimizer/muon.py
CHANGED
|
@@ -606,6 +606,11 @@ class Muon(torch.optim.Optimizer):
|
|
| 606 |
|
| 607 |
if p.placements == (Shard(dim=0), ):
|
| 608 |
# Case for FSDP
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 609 |
return p.device_mesh.mesh, p.device_mesh.get_group(mesh_dim=0)
|
| 610 |
elif p.placements == (Replicate(), Shard(dim=0)):
|
| 611 |
# Case for HSDP
|
|
|
|
| 606 |
|
| 607 |
if p.placements == (Shard(dim=0), ):
|
| 608 |
# Case for FSDP
|
| 609 |
+
process_group = p.device_mesh.get_group(mesh_dim=0)
|
| 610 |
+
if self.rank is None:
|
| 611 |
+
self.rank = dist.get_rank(group=process_group)
|
| 612 |
+
else:
|
| 613 |
+
assert self.rank == dist.get_rank(group=process_group)
|
| 614 |
return p.device_mesh.mesh, p.device_mesh.get_group(mesh_dim=0)
|
| 615 |
elif p.placements == (Replicate(), Shard(dim=0)):
|
| 616 |
# Case for HSDP
|
build/torch28-cxx11-rocm63-x86_64-linux/optimizer/_ops.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import torch
|
| 2 |
-
from . import
|
| 3 |
-
ops = torch.ops.
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
-
return f"
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from . import _optimizer_811726c_dirty
|
| 3 |
+
ops = torch.ops._optimizer_811726c_dirty
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
+
return f"_optimizer_811726c_dirty::{op_name}"
|
build/torch28-cxx11-rocm63-x86_64-linux/optimizer/{_optimizer_b0230e7_dirty.abi3.so → _optimizer_811726c_dirty.abi3.so}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:898ff08457f77c2f6ef504c73570cc87c5c5fd9a144528dbf8af4c03ffc21049
|
| 3 |
+
size 1749232
|
build/torch28-cxx11-rocm63-x86_64-linux/optimizer/muon.py
CHANGED
|
@@ -606,6 +606,11 @@ class Muon(torch.optim.Optimizer):
|
|
| 606 |
|
| 607 |
if p.placements == (Shard(dim=0), ):
|
| 608 |
# Case for FSDP
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 609 |
return p.device_mesh.mesh, p.device_mesh.get_group(mesh_dim=0)
|
| 610 |
elif p.placements == (Replicate(), Shard(dim=0)):
|
| 611 |
# Case for HSDP
|
|
|
|
| 606 |
|
| 607 |
if p.placements == (Shard(dim=0), ):
|
| 608 |
# Case for FSDP
|
| 609 |
+
process_group = p.device_mesh.get_group(mesh_dim=0)
|
| 610 |
+
if self.rank is None:
|
| 611 |
+
self.rank = dist.get_rank(group=process_group)
|
| 612 |
+
else:
|
| 613 |
+
assert self.rank == dist.get_rank(group=process_group)
|
| 614 |
return p.device_mesh.mesh, p.device_mesh.get_group(mesh_dim=0)
|
| 615 |
elif p.placements == (Replicate(), Shard(dim=0)):
|
| 616 |
# Case for HSDP
|
build/torch28-cxx11-rocm64-x86_64-linux/optimizer/_ops.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import torch
|
| 2 |
-
from . import
|
| 3 |
-
ops = torch.ops.
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
-
return f"
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from . import _optimizer_811726c_dirty
|
| 3 |
+
ops = torch.ops._optimizer_811726c_dirty
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
+
return f"_optimizer_811726c_dirty::{op_name}"
|
build/torch28-cxx11-rocm64-x86_64-linux/optimizer/_optimizer_811726c_dirty.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:72d100180fd73094f7b1c6e765eb4a77f103ad392fdee571687cb0c66d304177
|
| 3 |
+
size 1749320
|
build/torch28-cxx11-rocm64-x86_64-linux/optimizer/_optimizer_b0230e7_dirty.abi3.so
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:42b60753dab0948f4009893fcf3a8b080ad00e0436cbdaf0995dc29ae066c0c7
|
| 3 |
-
size 1750088
|
|
|
|
|
|
|
|
|
|
|
|
build/torch28-cxx11-rocm64-x86_64-linux/optimizer/muon.py
CHANGED
|
@@ -606,6 +606,11 @@ class Muon(torch.optim.Optimizer):
|
|
| 606 |
|
| 607 |
if p.placements == (Shard(dim=0), ):
|
| 608 |
# Case for FSDP
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 609 |
return p.device_mesh.mesh, p.device_mesh.get_group(mesh_dim=0)
|
| 610 |
elif p.placements == (Replicate(), Shard(dim=0)):
|
| 611 |
# Case for HSDP
|
|
|
|
| 606 |
|
| 607 |
if p.placements == (Shard(dim=0), ):
|
| 608 |
# Case for FSDP
|
| 609 |
+
process_group = p.device_mesh.get_group(mesh_dim=0)
|
| 610 |
+
if self.rank is None:
|
| 611 |
+
self.rank = dist.get_rank(group=process_group)
|
| 612 |
+
else:
|
| 613 |
+
assert self.rank == dist.get_rank(group=process_group)
|
| 614 |
return p.device_mesh.mesh, p.device_mesh.get_group(mesh_dim=0)
|
| 615 |
elif p.placements == (Replicate(), Shard(dim=0)):
|
| 616 |
# Case for HSDP
|
build/torch29-cxx11-cu126-x86_64-linux/optimizer/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .muon import Muon
|
| 2 |
+
|
| 3 |
+
__all__ = [
|
| 4 |
+
"Muon",
|
| 5 |
+
]
|
build/torch29-cxx11-cu126-x86_64-linux/optimizer/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _optimizer_811726c_dirty
|
| 3 |
+
ops = torch.ops._optimizer_811726c_dirty
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_optimizer_811726c_dirty::{op_name}"
|
build/torch29-cxx11-cu126-x86_64-linux/optimizer/_optimizer_811726c_dirty.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:87c8e75ead1c831dabfce1abbd7c100aa72c9b2988dfc0e1554216ca8005267c
|
| 3 |
+
size 1816064
|
build/torch29-cxx11-cu126-x86_64-linux/optimizer/matmul_transpose_triton.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MIT License
|
| 2 |
+
#
|
| 3 |
+
# Copyright (c) 2025 Tianyang Lin
|
| 4 |
+
#
|
| 5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
# in the Software without restriction, including without limitation the rights
|
| 8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
# furnished to do so, subject to the following conditions:
|
| 11 |
+
#
|
| 12 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
# copies or substantial portions of the Software.
|
| 14 |
+
#
|
| 15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
# SOFTWARE.
|
| 22 |
+
|
| 23 |
+
import torch
|
| 24 |
+
import triton
|
| 25 |
+
import triton.language as tl
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def get_autotune_config():
|
| 29 |
+
return [
|
| 30 |
+
triton.Config(
|
| 31 |
+
{
|
| 32 |
+
'BLOCK_SIZE_M': blk_m,
|
| 33 |
+
'BLOCK_SIZE_K': blk_k,
|
| 34 |
+
'GROUP_SIZE_M': grp_sz
|
| 35 |
+
},
|
| 36 |
+
num_stages=n_stages,
|
| 37 |
+
num_warps=n_warps) for blk_m in [32, 64, 128]
|
| 38 |
+
for blk_k in [32, 64] for grp_sz in [8] for n_stages in [3, 4, 5]
|
| 39 |
+
for n_warps in [4, 8]
|
| 40 |
+
]
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
@triton.autotune(
|
| 44 |
+
configs=get_autotune_config(),
|
| 45 |
+
key=['M', 'K'],
|
| 46 |
+
)
|
| 47 |
+
@triton.jit
|
| 48 |
+
def mmt_kernel(x, y, M, K, stride_xm, stride_xk, stride_ym, stride_yn,
|
| 49 |
+
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
|
| 50 |
+
GROUP_SIZE_M: tl.constexpr):
|
| 51 |
+
"""
|
| 52 |
+
Core kernel jit function of matmul_transpose that computes y = x @ x.T
|
| 53 |
+
The code is a simple adaptation from the triton `matmul` tutorial:
|
| 54 |
+
https://triton-lang.org/main/getting-started/tutorials/03-matrix-multiplication.html
|
| 55 |
+
"""
|
| 56 |
+
pid = tl.program_id(axis=0)
|
| 57 |
+
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
|
| 58 |
+
num_pid_n = tl.cdiv(M, BLOCK_SIZE_M)
|
| 59 |
+
num_pid_in_group = GROUP_SIZE_M * num_pid_n
|
| 60 |
+
group_id = pid // num_pid_in_group
|
| 61 |
+
first_pid_m = group_id * GROUP_SIZE_M
|
| 62 |
+
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
| 63 |
+
pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m)
|
| 64 |
+
pid_n = (pid % num_pid_in_group) // group_size_m
|
| 65 |
+
if pid_m > pid_n:
|
| 66 |
+
return
|
| 67 |
+
|
| 68 |
+
offs_xm = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
|
| 69 |
+
offs_xn = (pid_n * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
|
| 70 |
+
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
| 71 |
+
# we use a & b ptrs to denote different rows of x.
|
| 72 |
+
a_ptrs = x + (offs_xm[:, None] * stride_xm + offs_k[None, :] * stride_xk)
|
| 73 |
+
b_ptrs = x + (offs_xn[:, None] * stride_xm + offs_k[None, :] * stride_xk)
|
| 74 |
+
|
| 75 |
+
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_M), dtype=tl.float32)
|
| 76 |
+
|
| 77 |
+
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
|
| 78 |
+
a = tl.load(a_ptrs,
|
| 79 |
+
mask=offs_k[None, :] < K - k * BLOCK_SIZE_K,
|
| 80 |
+
other=0.0)
|
| 81 |
+
b = tl.load(b_ptrs,
|
| 82 |
+
mask=offs_k[None, :] < K - k * BLOCK_SIZE_K,
|
| 83 |
+
other=0.0)
|
| 84 |
+
accumulator = tl.dot(a, tl.permute(b, (1, 0)), accumulator)
|
| 85 |
+
a_ptrs += BLOCK_SIZE_K * stride_xk
|
| 86 |
+
b_ptrs += BLOCK_SIZE_K * stride_xk
|
| 87 |
+
# use dtype.element_ty to accommodate different input datatypes as in cpp templates
|
| 88 |
+
# https://github.com/triton-lang/triton/issues/2252
|
| 89 |
+
c = accumulator.to(x.dtype.element_ty)
|
| 90 |
+
|
| 91 |
+
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
| 92 |
+
offs_cn = pid_n * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
| 93 |
+
c_ptrs = y + stride_ym * offs_cm[:, None] + stride_yn * offs_cn[None, :]
|
| 94 |
+
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < M)
|
| 95 |
+
tl.store(c_ptrs, c, mask=c_mask)
|
| 96 |
+
|
| 97 |
+
# transpose and copy
|
| 98 |
+
if pid_m < pid_n:
|
| 99 |
+
ct_ptrs = y + stride_ym * offs_cn[:,
|
| 100 |
+
None] + stride_yn * offs_cm[None, :]
|
| 101 |
+
ct_mask = (offs_cn[:, None] < M) & (offs_cm[None, :] < M)
|
| 102 |
+
tl.store(ct_ptrs, tl.permute(c, (1, 0)), mask=ct_mask)
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def matmul_transpose_assign(d_in, d_out):
|
| 106 |
+
assert d_in.is_cuda, "Input `d_in` must be a CUDA tensor"
|
| 107 |
+
assert d_out.is_cuda, "Input `d_out` must be a CUDA tensor"
|
| 108 |
+
assert d_in.device == d_out.device, "Inputs `d_in` and `d_out` must be on the same CUDA device"
|
| 109 |
+
assert d_in.dtype == d_out.dtype, "Inputs must have the same data type"
|
| 110 |
+
assert d_in.ndim == 2, "Input `d_in` must be a 2D tensor"
|
| 111 |
+
assert d_out.ndim == 2, "Input `d_out` must be a 2D tensor"
|
| 112 |
+
assert d_in.size(0) == d_out.size(0) == d_out.size(0), \
|
| 113 |
+
"First dimension of `d_in` must match first and second dimension of `d_out`"
|
| 114 |
+
|
| 115 |
+
d_in = d_in.contiguous()
|
| 116 |
+
M, K = d_in.shape
|
| 117 |
+
grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(
|
| 118 |
+
M, META['BLOCK_SIZE_M']), )
|
| 119 |
+
with torch.cuda.device(d_in.device.index):
|
| 120 |
+
mmt_kernel[grid](d_in, d_out, M, K, d_in.stride(0), d_in.stride(1),
|
| 121 |
+
d_out.stride(0), d_out.stride(1))
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def matmul_transpose(d_in):
|
| 125 |
+
M, _ = d_in.shape
|
| 126 |
+
d_out = torch.empty((M, M), device=d_in.device, dtype=d_in.dtype)
|
| 127 |
+
matmul_transpose_assign(d_in, d_out)
|
| 128 |
+
return d_out
|
build/torch29-cxx11-cu126-x86_64-linux/optimizer/muon.py
ADDED
|
@@ -0,0 +1,1069 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import math
|
| 3 |
+
import types
|
| 4 |
+
from dataclasses import dataclass
|
| 5 |
+
from typing import List, Optional, Union, cast
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.distributed as dist
|
| 9 |
+
from torch.distributed._tensor import DTensor, Replicate, Shard
|
| 10 |
+
|
| 11 |
+
from .matmul_transpose_triton import matmul_transpose_assign
|
| 12 |
+
|
| 13 |
+
logger = logging.getLogger(__name__)
|
| 14 |
+
|
| 15 |
+
COMM_DTYPE = torch.bfloat16
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# This code snippet is a modified version adapted from the following GitHub repositories:
|
| 19 |
+
# https://github.com/KellerJordan/Muon/blob/master/muon.py
|
| 20 |
+
# Muon's Newton–Schulz iteration causes high variance in singular values
|
| 21 |
+
# Idea: give each iteration its own 3 coefficients and optimize them via gradient descent.
|
| 22 |
+
@torch.no_grad()
|
| 23 |
+
# matmul_transpose_assign from : https://github.com/nil0x9/flash-muon
|
| 24 |
+
def _zeropower_via_newtonschulz5(G, steps):
|
| 25 |
+
"""
|
| 26 |
+
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
|
| 27 |
+
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
|
| 28 |
+
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
|
| 29 |
+
zero even beyond the point where the iteration no longer converges all the way to one everywhere
|
| 30 |
+
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
|
| 31 |
+
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
|
| 32 |
+
performance at all relative to UV^T, where USV^T = G is the SVD.
|
| 33 |
+
"""
|
| 34 |
+
assert len(G.shape) == 2
|
| 35 |
+
assert G.dtype == COMM_DTYPE
|
| 36 |
+
X = G # no manual typecast
|
| 37 |
+
|
| 38 |
+
if G.size(0) > G.size(1):
|
| 39 |
+
X = X.T
|
| 40 |
+
# Ensure spectral norm is at most 1
|
| 41 |
+
X = X / (X.norm() + 1e-7)
|
| 42 |
+
buf1 = torch.empty(X.size(0), X.size(0), dtype=X.dtype, device=X.device)
|
| 43 |
+
buf2 = torch.empty(X.size(0), X.size(0), dtype=X.dtype, device=X.device)
|
| 44 |
+
# Perform the NS iterations
|
| 45 |
+
for a, b, c in [
|
| 46 |
+
(4.0848, -6.8946, 2.9270),
|
| 47 |
+
(3.9505, -6.3029, 2.6377),
|
| 48 |
+
(3.7418, -5.5913, 2.3037),
|
| 49 |
+
(2.8769, -3.1427, 1.2046),
|
| 50 |
+
(2.8366, -3.0525, 1.2012),
|
| 51 |
+
]:
|
| 52 |
+
matmul_transpose_assign(X, buf1)
|
| 53 |
+
matmul_transpose_assign(buf1, buf2)
|
| 54 |
+
buf1.mul_(b).add_(buf2, alpha=c)
|
| 55 |
+
X = torch.addmm(X, buf1, X, alpha=1.0, beta=a)
|
| 56 |
+
|
| 57 |
+
if G.size(0) > G.size(1):
|
| 58 |
+
X = X.T
|
| 59 |
+
return X
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
@dataclass
|
| 63 |
+
class _muon_state:
|
| 64 |
+
# TODO: use Optional
|
| 65 |
+
worker_rank: int | None = None
|
| 66 |
+
gathered_grad: torch.Tensor | None = None
|
| 67 |
+
scattered_u: DTensor | None = None
|
| 68 |
+
computed_u: torch.Tensor | None = None
|
| 69 |
+
gather_event: torch.cuda.Event | None = None
|
| 70 |
+
compute_event: torch.cuda.Event | None = None
|
| 71 |
+
scatter_event: torch.cuda.Event | None = None
|
| 72 |
+
process_group = None
|
| 73 |
+
qk_clip_state = None
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def split_elems_for_src(param, src_rank, num_ranks) -> int:
|
| 77 |
+
rows = param.shape[0]
|
| 78 |
+
cols = int(param.numel() // rows)
|
| 79 |
+
base, rem = divmod(rows, num_ranks)
|
| 80 |
+
my_rows = base + (1 if src_rank < rem else 0)
|
| 81 |
+
return my_rows * cols
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
@torch.no_grad()
|
| 85 |
+
def _alloc_gathered_grad(params, param_to_state, rank, compute_stream):
|
| 86 |
+
"""
|
| 87 |
+
Pre-allocate gathered_grad buffer on compute_stream
|
| 88 |
+
before launching all2all gather
|
| 89 |
+
"""
|
| 90 |
+
with torch.cuda.stream(compute_stream):
|
| 91 |
+
for p in params:
|
| 92 |
+
state = param_to_state[id(p)]
|
| 93 |
+
if rank == state.worker_rank:
|
| 94 |
+
num_ranks = dist.get_world_size(group=state.process_group)
|
| 95 |
+
state.gathered_grad = torch.empty(p.grad.numel(),
|
| 96 |
+
dtype=COMM_DTYPE,
|
| 97 |
+
device="cuda")
|
| 98 |
+
else:
|
| 99 |
+
state.gathered_grad = None
|
| 100 |
+
|
| 101 |
+
alloc_event = torch.cuda.Event()
|
| 102 |
+
alloc_event.record(compute_stream)
|
| 103 |
+
return alloc_event
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
@torch.no_grad()
|
| 107 |
+
def _all2all_gather(params, param_to_state, rank, comm_stream, none_grad,
|
| 108 |
+
alloc_event):
|
| 109 |
+
"""
|
| 110 |
+
All2all gathers shards so each owner rank reconstructs its full gradient
|
| 111 |
+
"""
|
| 112 |
+
with torch.cuda.stream(comm_stream):
|
| 113 |
+
process_group = param_to_state[id(params[0])].process_group
|
| 114 |
+
num_ranks = dist.get_world_size(group=process_group)
|
| 115 |
+
|
| 116 |
+
# Construct sending buffers
|
| 117 |
+
per_dst = [[] for _ in range(num_ranks)]
|
| 118 |
+
send_counts = [0] * num_ranks
|
| 119 |
+
|
| 120 |
+
for p in params:
|
| 121 |
+
state = param_to_state[id(p)]
|
| 122 |
+
dst = state.worker_rank
|
| 123 |
+
assert dst < num_ranks
|
| 124 |
+
shard_elems = split_elems_for_src(p, rank, num_ranks)
|
| 125 |
+
g = p.grad
|
| 126 |
+
g = g.to_local().to(COMM_DTYPE).contiguous().view(-1)
|
| 127 |
+
assert g.numel() == shard_elems
|
| 128 |
+
per_dst[dst].append(g)
|
| 129 |
+
send_counts[dst] += shard_elems
|
| 130 |
+
|
| 131 |
+
assert any(
|
| 132 |
+
len(v) > 0 for v in per_dst
|
| 133 |
+
), "At least one destination rank must receive a sharded tensor"
|
| 134 |
+
# list[list[Tensor]] -> list[Tensor]
|
| 135 |
+
per_dst = [t for dst in per_dst for t in dst]
|
| 136 |
+
|
| 137 |
+
send_buf = torch.cat(per_dst, dim=0)
|
| 138 |
+
|
| 139 |
+
owned_params = [
|
| 140 |
+
p for p in params if param_to_state[id(p)].worker_rank == rank
|
| 141 |
+
]
|
| 142 |
+
|
| 143 |
+
# Compute receive sizes and allocate receiving buffers
|
| 144 |
+
recv_counts = [0] * num_ranks
|
| 145 |
+
|
| 146 |
+
for src in range(num_ranks):
|
| 147 |
+
total = 0
|
| 148 |
+
for p in owned_params:
|
| 149 |
+
state = param_to_state[id(p)]
|
| 150 |
+
assert state.worker_rank == rank
|
| 151 |
+
total += split_elems_for_src(p, src, num_ranks)
|
| 152 |
+
recv_counts[src] = total
|
| 153 |
+
|
| 154 |
+
recv_total = sum(recv_counts)
|
| 155 |
+
recv_buf = torch.empty(recv_total, dtype=COMM_DTYPE, device="cuda")
|
| 156 |
+
|
| 157 |
+
#All2All
|
| 158 |
+
dist.all_to_all_single(
|
| 159 |
+
recv_buf,
|
| 160 |
+
send_buf,
|
| 161 |
+
output_split_sizes=recv_counts,
|
| 162 |
+
input_split_sizes=send_counts,
|
| 163 |
+
group=process_group,
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
# Reconstructs gathered grad from the received buffer
|
| 167 |
+
#
|
| 168 |
+
# recv_buf (num ranks = 3)
|
| 169 |
+
#
|
| 170 |
+
# From rank 0 From rank 1 From rank 2
|
| 171 |
+
# | p1_0, p2_0, p3_0 | p1_1, p2_1, p3_1 | p1_2, p2_2, p3_2 |
|
| 172 |
+
#
|
| 173 |
+
# Outer loop:
|
| 174 |
+
# rank 0 -> rank 1 -> rank2
|
| 175 |
+
#
|
| 176 |
+
# Inner loop:
|
| 177 |
+
# p1_n -> p2_n -> p3_n
|
| 178 |
+
|
| 179 |
+
comm_stream.wait_event(alloc_event)
|
| 180 |
+
|
| 181 |
+
off = 0
|
| 182 |
+
write_offsets = {id(p): 0 for p in owned_params}
|
| 183 |
+
for src in range(num_ranks):
|
| 184 |
+
if recv_counts[src] == 0:
|
| 185 |
+
continue
|
| 186 |
+
|
| 187 |
+
block = recv_counts[src]
|
| 188 |
+
inner_off = 0
|
| 189 |
+
for p in owned_params:
|
| 190 |
+
state = param_to_state[id(p)]
|
| 191 |
+
assert state.worker_rank == rank
|
| 192 |
+
n = split_elems_for_src(p, src, num_ranks)
|
| 193 |
+
assert n > 0
|
| 194 |
+
|
| 195 |
+
sg = recv_buf.narrow(0, off + inner_off, n)
|
| 196 |
+
woff = write_offsets[id(p)]
|
| 197 |
+
dst = state.gathered_grad.narrow(0, woff, n)
|
| 198 |
+
dst.copy_(sg)
|
| 199 |
+
|
| 200 |
+
write_offsets[id(p)] += n
|
| 201 |
+
inner_off += n
|
| 202 |
+
off += block
|
| 203 |
+
|
| 204 |
+
for p in params:
|
| 205 |
+
state = param_to_state[id(p)]
|
| 206 |
+
if state.worker_rank == rank:
|
| 207 |
+
state.gathered_grad = state.gathered_grad.view_as(p)
|
| 208 |
+
state.gather_event = torch.cuda.Event()
|
| 209 |
+
state.gather_event.record(comm_stream)
|
| 210 |
+
else:
|
| 211 |
+
state.gathered_grad = None
|
| 212 |
+
state.gather_event = None
|
| 213 |
+
if none_grad:
|
| 214 |
+
p.grad = None
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
@torch.no_grad()
|
| 218 |
+
def _compute_u(p, state, steps, rank, compute_stream):
|
| 219 |
+
"""
|
| 220 |
+
On worker_rank, compute the orthogonalized update using Newton-Schulz iteration.
|
| 221 |
+
"""
|
| 222 |
+
with torch.cuda.stream(compute_stream):
|
| 223 |
+
if rank == state.worker_rank:
|
| 224 |
+
if state.gather_event is None:
|
| 225 |
+
raise RuntimeError("Gather event must be set before compute.")
|
| 226 |
+
compute_stream.wait_event(state.gather_event)
|
| 227 |
+
u = _zeropower_via_newtonschulz5(state.gathered_grad, steps)
|
| 228 |
+
state.gathered_grad = None
|
| 229 |
+
state.computed_u = u
|
| 230 |
+
state.compute_event = torch.cuda.Event()
|
| 231 |
+
state.compute_event.record()
|
| 232 |
+
else:
|
| 233 |
+
state.computed_u = None
|
| 234 |
+
state.compute_event = None
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
@torch.no_grad()
|
| 238 |
+
def _alloc_scattered_u(params, param_to_state, rank, compute_stream):
|
| 239 |
+
"""
|
| 240 |
+
Pre-allocate scattered_u buffer on compute_stream
|
| 241 |
+
before launching all2all gather
|
| 242 |
+
"""
|
| 243 |
+
with torch.cuda.stream(compute_stream):
|
| 244 |
+
for p in params:
|
| 245 |
+
state = param_to_state[id(p)]
|
| 246 |
+
state.scattered_u = torch.empty_like(p.to_local(),
|
| 247 |
+
dtype=COMM_DTYPE)
|
| 248 |
+
|
| 249 |
+
alloc_event = torch.cuda.Event()
|
| 250 |
+
alloc_event.record(compute_stream)
|
| 251 |
+
return alloc_event
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
def _all2all_scatter(params, param_to_state, rank, comm_stream, alloc_event):
|
| 255 |
+
"""
|
| 256 |
+
All2all scatters full gradients to all ranks
|
| 257 |
+
"""
|
| 258 |
+
with torch.cuda.stream(comm_stream):
|
| 259 |
+
process_group = param_to_state[id(params[0])].process_group
|
| 260 |
+
num_ranks = dist.get_world_size(group=process_group)
|
| 261 |
+
owned_params = [
|
| 262 |
+
p for p in params if param_to_state[id(p)].worker_rank == rank
|
| 263 |
+
]
|
| 264 |
+
|
| 265 |
+
# Construct sending buffer
|
| 266 |
+
per_dst = [[] for _ in range(num_ranks)]
|
| 267 |
+
send_counts = [0] * num_ranks
|
| 268 |
+
|
| 269 |
+
if owned_params:
|
| 270 |
+
for p in owned_params:
|
| 271 |
+
state = param_to_state[id(p)]
|
| 272 |
+
if state.compute_event is None:
|
| 273 |
+
raise RuntimeError(
|
| 274 |
+
"Compute event must be set before scatter.")
|
| 275 |
+
comm_stream.wait_event(state.compute_event)
|
| 276 |
+
state.gathered_grad = None
|
| 277 |
+
|
| 278 |
+
assert state.computed_u is not None
|
| 279 |
+
|
| 280 |
+
u_full = state.computed_u.to(COMM_DTYPE).contiguous().view(-1)
|
| 281 |
+
|
| 282 |
+
offset = 0
|
| 283 |
+
for dst in range(num_ranks):
|
| 284 |
+
n = split_elems_for_src(p, dst, num_ranks)
|
| 285 |
+
assert n > 0
|
| 286 |
+
|
| 287 |
+
su = u_full.narrow(0, offset, n)
|
| 288 |
+
per_dst[dst].append(su)
|
| 289 |
+
send_counts[dst] += n
|
| 290 |
+
offset += n
|
| 291 |
+
|
| 292 |
+
assert offset == u_full.numel()
|
| 293 |
+
|
| 294 |
+
lengths = [len(v) for v in per_dst]
|
| 295 |
+
if all(l > 0 for l in lengths):
|
| 296 |
+
assert all(
|
| 297 |
+
l == lengths[0] for l in lengths
|
| 298 |
+
), "All destination ranks must have the same number of sharded tensor"
|
| 299 |
+
# list[list[Tensor]] -> list[Tensor]
|
| 300 |
+
per_dst = [t for dst in per_dst for t in dst]
|
| 301 |
+
send_buf = torch.cat(per_dst, dim=0)
|
| 302 |
+
else:
|
| 303 |
+
# all_to_all requires participation from all ranks
|
| 304 |
+
# Even non-owner ranks must join the collective call
|
| 305 |
+
send_buf = torch.empty(0, dtype=COMM_DTYPE, device="cuda")
|
| 306 |
+
|
| 307 |
+
# Compute receive sizes and allocate receiving buffers
|
| 308 |
+
recv_counts = [0] * num_ranks
|
| 309 |
+
|
| 310 |
+
for src in range(num_ranks):
|
| 311 |
+
total = 0
|
| 312 |
+
for p in params:
|
| 313 |
+
state = param_to_state[id(p)]
|
| 314 |
+
if state.worker_rank != src:
|
| 315 |
+
continue
|
| 316 |
+
total += split_elems_for_src(p, rank, num_ranks)
|
| 317 |
+
recv_counts[src] = total
|
| 318 |
+
|
| 319 |
+
recv_total = sum(recv_counts)
|
| 320 |
+
assert recv_total > 0
|
| 321 |
+
recv_buf = torch.empty(recv_total, dtype=COMM_DTYPE, device="cuda")
|
| 322 |
+
|
| 323 |
+
#All2All
|
| 324 |
+
dist.all_to_all_single(
|
| 325 |
+
recv_buf,
|
| 326 |
+
send_buf,
|
| 327 |
+
output_split_sizes=recv_counts,
|
| 328 |
+
input_split_sizes=send_counts,
|
| 329 |
+
group=process_group,
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
# Copy to pre-allocated scattered_u buffer from the received buffer
|
| 333 |
+
#
|
| 334 |
+
# recv_buf (num ranks = 3, local_rank = 0)
|
| 335 |
+
#
|
| 336 |
+
# From rank 0 From rank 1 From rank 2
|
| 337 |
+
# | p1_0, p2_0, p3_0 | p4_0 | p5_0, p6_0 |
|
| 338 |
+
#
|
| 339 |
+
# Outer loop:
|
| 340 |
+
# rank 0 -> rank 1 -> rank2
|
| 341 |
+
#
|
| 342 |
+
# Inner loop:
|
| 343 |
+
# src(0) : p1_0 -> p2_0 -> p3_0
|
| 344 |
+
# src(1) : p4_0
|
| 345 |
+
# src(2) : p5_0 -> p6_0
|
| 346 |
+
|
| 347 |
+
comm_stream.wait_event(alloc_event)
|
| 348 |
+
|
| 349 |
+
off = 0
|
| 350 |
+
for src in range(num_ranks):
|
| 351 |
+
block = recv_counts[src]
|
| 352 |
+
if block == 0:
|
| 353 |
+
continue
|
| 354 |
+
|
| 355 |
+
inner_off = 0
|
| 356 |
+
for p in params:
|
| 357 |
+
state = param_to_state[id(p)]
|
| 358 |
+
if state.worker_rank != src:
|
| 359 |
+
continue
|
| 360 |
+
n = split_elems_for_src(p, rank, num_ranks)
|
| 361 |
+
assert n > 0
|
| 362 |
+
|
| 363 |
+
flat_local = recv_buf.narrow(0, off + inner_off,
|
| 364 |
+
n).view_as(p.to_local())
|
| 365 |
+
state.scattered_u.copy_(flat_local)
|
| 366 |
+
|
| 367 |
+
state.scatter_event = torch.cuda.Event()
|
| 368 |
+
state.scatter_event.record(comm_stream)
|
| 369 |
+
inner_off += n
|
| 370 |
+
|
| 371 |
+
assert inner_off == block
|
| 372 |
+
off += block
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
def _update_param(p, state, lr, adjusted_lr, weight_decay, rank,
|
| 376 |
+
compute_stream):
|
| 377 |
+
"""
|
| 378 |
+
Update sharded parameter p with the scattered_u.
|
| 379 |
+
Only worker_rank frees computed_u.
|
| 380 |
+
"""
|
| 381 |
+
with torch.cuda.stream(compute_stream):
|
| 382 |
+
if state.scatter_event is None:
|
| 383 |
+
raise RuntimeError("Scatter event must be set before update")
|
| 384 |
+
compute_stream.wait_event(state.scatter_event)
|
| 385 |
+
u_dtensor = DTensor.from_local(
|
| 386 |
+
state.scattered_u,
|
| 387 |
+
placements=p.placements,
|
| 388 |
+
device_mesh=p.device_mesh,
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
state.scattered_u = u_dtensor
|
| 392 |
+
|
| 393 |
+
if rank == state.worker_rank:
|
| 394 |
+
# Free computed_u
|
| 395 |
+
state.computed_u = None
|
| 396 |
+
|
| 397 |
+
Muon._update_p(p, state.scattered_u, lr, adjusted_lr, weight_decay)
|
| 398 |
+
state.scattered_u = None
|
| 399 |
+
u_dtensor = None
|
| 400 |
+
|
| 401 |
+
scales_full = Muon._compute_scales(p, state.qk_clip_state)
|
| 402 |
+
if scales_full is not None:
|
| 403 |
+
num_ranks = dist.get_world_size(group=state.process_group)
|
| 404 |
+
local_rank = dist.get_rank(group=state.process_group)
|
| 405 |
+
scales_local = scales_full.chunk(num_ranks, dim=0)[local_rank]
|
| 406 |
+
scales_local = DTensor.from_local(
|
| 407 |
+
scales_local,
|
| 408 |
+
placements=p.placements,
|
| 409 |
+
device_mesh=p.device_mesh,
|
| 410 |
+
)
|
| 411 |
+
Muon._qk_clip(p, scales_local, state.qk_clip_state.head_dim)
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
def default_is_muon(name, x):
|
| 415 |
+
skip_keys = ["embed_tokens", "lm_head", "tok_embeddings", "output"]
|
| 416 |
+
return x.ndim >= 2 and not any(key in name for key in skip_keys)
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
def get_default_muon_param_groups(model, is_muon_func=default_is_muon):
|
| 420 |
+
muon_params, muon_names = [], []
|
| 421 |
+
non_muon_params = []
|
| 422 |
+
|
| 423 |
+
for n, p in model.named_parameters():
|
| 424 |
+
if not p.requires_grad:
|
| 425 |
+
continue
|
| 426 |
+
if is_muon_func(n, p):
|
| 427 |
+
muon_params.append(p)
|
| 428 |
+
muon_names.append(n)
|
| 429 |
+
else:
|
| 430 |
+
non_muon_params.append(p)
|
| 431 |
+
|
| 432 |
+
return [
|
| 433 |
+
{
|
| 434 |
+
"params": muon_params,
|
| 435 |
+
"names": muon_names,
|
| 436 |
+
"use_muon": True,
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"params": non_muon_params,
|
| 440 |
+
"use_muon": False,
|
| 441 |
+
},
|
| 442 |
+
]
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
def parse_qk_layer(name: str) -> tuple[str | None, int]:
|
| 446 |
+
"""
|
| 447 |
+
Parse a parameter name to check if it is a query/key projection layer
|
| 448 |
+
('wq', 'wk', 'q_proj', 'k_proj') and return (kind, layer_index).
|
| 449 |
+
|
| 450 |
+
Returns:
|
| 451 |
+
(kind, layer_idx) or (None, -1) if not matched.
|
| 452 |
+
|
| 453 |
+
Example:
|
| 454 |
+
'model.3.attn.wq.weight' -> ('wq', 3)
|
| 455 |
+
'model.5.attn.wk.weight' -> ('wk', 5)
|
| 456 |
+
'model.2.attn.q_proj.weight' -> ('q_proj', 2)
|
| 457 |
+
'model.7.attn.k_proj.weight' -> ('k_proj', 7)
|
| 458 |
+
'model.4.attn.v_proj.weight' -> (None, -1)
|
| 459 |
+
"""
|
| 460 |
+
parts = name.split('.')
|
| 461 |
+
if len(parts) < 3:
|
| 462 |
+
return None, -1
|
| 463 |
+
|
| 464 |
+
kind = parts[-2]
|
| 465 |
+
|
| 466 |
+
layer_idx = -1
|
| 467 |
+
for part in reversed(parts):
|
| 468 |
+
if part.isdigit():
|
| 469 |
+
layer_idx = int(part)
|
| 470 |
+
break
|
| 471 |
+
|
| 472 |
+
if kind in ('wq', 'wk', 'q_proj', 'k_proj'):
|
| 473 |
+
return kind, layer_idx
|
| 474 |
+
|
| 475 |
+
return None, -1
|
| 476 |
+
|
| 477 |
+
|
| 478 |
+
@dataclass
|
| 479 |
+
class QKClipInfo:
|
| 480 |
+
"""Per-parameter dynamic info computed from config + runtime logits."""
|
| 481 |
+
kind: Optional[str] # 'wq'/'q_proj' or 'wk'/'k_proj' or None
|
| 482 |
+
indices: List[int] # which heads to consider for clipping
|
| 483 |
+
head_dim: int # from config
|
| 484 |
+
threshold: float # from config
|
| 485 |
+
logit: Optional[torch.Tensor]
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
class Muon(torch.optim.Optimizer):
|
| 489 |
+
"""
|
| 490 |
+
Muon - MomentUm Orthogonalized by Newton-schulz
|
| 491 |
+
|
| 492 |
+
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
|
| 493 |
+
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
|
| 494 |
+
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
|
| 495 |
+
the advantage that it can be stably run in bfloat16 on the GPU.
|
| 496 |
+
|
| 497 |
+
Some warnings:
|
| 498 |
+
- We believe this optimizer is unlikely to work well for training with small batch size.
|
| 499 |
+
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
|
| 500 |
+
|
| 501 |
+
Arguments:
|
| 502 |
+
model: The model to be optimized by Muon.
|
| 503 |
+
is_muon_func: A function that takes a parameter and its name, and returns whether the parameter should be optimized by Muon.
|
| 504 |
+
lr: The learning rate. The updates will have spectral norm of `lr`. (0.02 is a good default)
|
| 505 |
+
momentum: The momentum used by the internal SGD. (0.95 is a good default)
|
| 506 |
+
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
|
| 507 |
+
ns_steps: The number of Newton-Schulz iterations to run. (6 is probably always enough)
|
| 508 |
+
weight_decay: The weight decay for Muon and AdamW.
|
| 509 |
+
{0, 1}-D or are detected as being the embed or lm_head will be optimized by AdamW as well.
|
| 510 |
+
adamw_lr: The learning rate for the internal AdamW.
|
| 511 |
+
adamw_betas: The betas for the internal AdamW.
|
| 512 |
+
adamw_eps: The epsilon for the internal AdamW.
|
| 513 |
+
none_grad: Whether to set p.grad to None after gathering the gradients. This can save memory.
|
| 514 |
+
debug: Whether to print debug information.
|
| 515 |
+
clip_info : Configuration for QK clipping. Expected keys:
|
| 516 |
+
- "q_indices" (list[int]): Indices of query heads to consider.
|
| 517 |
+
- "k_indices" (list[int]): Indices of key heads to consider.
|
| 518 |
+
- "head_dim" (int): Dimensionality of each attention head.
|
| 519 |
+
- "threshold" (float): Threshold value; heads whose QK logits exceed
|
| 520 |
+
this value will be scaled down.
|
| 521 |
+
Default is:
|
| 522 |
+
{
|
| 523 |
+
"q_indices": [],
|
| 524 |
+
"k_indices": [],
|
| 525 |
+
"head_dim": 128,
|
| 526 |
+
"threshold": 100
|
| 527 |
+
}
|
| 528 |
+
overlap_step : How many all2all gather, compute operations are launched in advance
|
| 529 |
+
before the corresponding all2all scatter steps begin.
|
| 530 |
+
A higher overlap_step increases memory usage but can improve
|
| 531 |
+
performance by overlapping communication.
|
| 532 |
+
Parallel muon only.
|
| 533 |
+
"""
|
| 534 |
+
|
| 535 |
+
def __init__(self,
|
| 536 |
+
params,
|
| 537 |
+
lr=1e-3,
|
| 538 |
+
momentum=0.95,
|
| 539 |
+
nesterov=True,
|
| 540 |
+
ns_steps=5,
|
| 541 |
+
weight_decay=0.1,
|
| 542 |
+
adamw_betas=(0.9, 0.95),
|
| 543 |
+
adamw_eps=1e-8,
|
| 544 |
+
none_grad=True,
|
| 545 |
+
debug=False,
|
| 546 |
+
clip_config={
|
| 547 |
+
"q_indices": [],
|
| 548 |
+
"k_indices": [],
|
| 549 |
+
"head_dim": 128,
|
| 550 |
+
"threshold": 100
|
| 551 |
+
},
|
| 552 |
+
overlap_step=5):
|
| 553 |
+
defaults = dict(
|
| 554 |
+
lr=lr,
|
| 555 |
+
weight_decay=weight_decay,
|
| 556 |
+
momentum=momentum,
|
| 557 |
+
nesterov=nesterov,
|
| 558 |
+
ns_steps=ns_steps,
|
| 559 |
+
adamw_betas=adamw_betas,
|
| 560 |
+
adamw_eps=adamw_eps,
|
| 561 |
+
none_grad=none_grad,
|
| 562 |
+
use_muon=True,
|
| 563 |
+
)
|
| 564 |
+
error_message = "The key 'use_muon' is not set in parameter group {idx}. Assuming all parameters in the group will use muon optimization, which may lead to unexpected behavior."
|
| 565 |
+
instruction_code = "\n\n please follow this code snippet \n```optimizer = get_kernel('motif-technologies/optimizer')\n\n\nparams = optimizer.muon.get_default_muon_param_groups(model)\n\noptim = optimizer.Muon(params, ...)```"
|
| 566 |
+
|
| 567 |
+
if isinstance(params, types.GeneratorType):
|
| 568 |
+
raise ValueError(error_message.format(idx=0) + instruction_code)
|
| 569 |
+
for _idx, param_group in enumerate(params):
|
| 570 |
+
if param_group.get("use_muon", None) is None:
|
| 571 |
+
raise ValueError(
|
| 572 |
+
error_message.format(idx=_idx) + instruction_code)
|
| 573 |
+
|
| 574 |
+
super().__init__(params, defaults)
|
| 575 |
+
|
| 576 |
+
self.rank = None
|
| 577 |
+
|
| 578 |
+
self.comm_stream = torch.cuda.Stream()
|
| 579 |
+
self.compute_stream = torch.cuda.Stream()
|
| 580 |
+
self.debug = debug
|
| 581 |
+
self.clip_config = clip_config
|
| 582 |
+
self.overlap_step = overlap_step
|
| 583 |
+
|
| 584 |
+
def _calc_flops(self, G, steps):
|
| 585 |
+
assert len(G.shape) == 2
|
| 586 |
+
M, N = G.shape
|
| 587 |
+
if M > N:
|
| 588 |
+
M, N = N, M
|
| 589 |
+
|
| 590 |
+
return steps * ((M**3) * 2 + (M**2 * N) * 4 + M * N * 2 + M**2 * 3)
|
| 591 |
+
|
| 592 |
+
def adjust_lr_for_muon(self, lr, param_shape):
|
| 593 |
+
A, B = param_shape[:2]
|
| 594 |
+
# We adjust the learning rate and weight decay based on the size of the parameter matrix
|
| 595 |
+
# as describted in the paper
|
| 596 |
+
adjusted_ratio = 0.2 * math.sqrt(max(A, B))
|
| 597 |
+
adjusted_lr = lr * adjusted_ratio
|
| 598 |
+
return adjusted_lr
|
| 599 |
+
|
| 600 |
+
def get_shard_mesh(self, p):
|
| 601 |
+
"""
|
| 602 |
+
Get the shard mesh for a parameter p on the given rank.
|
| 603 |
+
"""
|
| 604 |
+
assert isinstance(
|
| 605 |
+
p, DTensor), "Parallel Muon only supports DTensor parameters."
|
| 606 |
+
|
| 607 |
+
if p.placements == (Shard(dim=0), ):
|
| 608 |
+
# Case for FSDP
|
| 609 |
+
process_group = p.device_mesh.get_group(mesh_dim=0)
|
| 610 |
+
if self.rank is None:
|
| 611 |
+
self.rank = dist.get_rank(group=process_group)
|
| 612 |
+
else:
|
| 613 |
+
assert self.rank == dist.get_rank(group=process_group)
|
| 614 |
+
return p.device_mesh.mesh, p.device_mesh.get_group(mesh_dim=0)
|
| 615 |
+
elif p.placements == (Replicate(), Shard(dim=0)):
|
| 616 |
+
# Case for HSDP
|
| 617 |
+
process_group = p.device_mesh.get_group(mesh_dim=1)
|
| 618 |
+
if self.rank is None:
|
| 619 |
+
self.rank = dist.get_rank(group=process_group)
|
| 620 |
+
else:
|
| 621 |
+
assert self.rank == dist.get_rank(group=process_group)
|
| 622 |
+
for i, shard_mesh in enumerate(p.device_mesh.mesh):
|
| 623 |
+
if self.rank in shard_mesh:
|
| 624 |
+
return shard_mesh, p.device_mesh.get_group(mesh_dim=1)
|
| 625 |
+
else:
|
| 626 |
+
raise ValueError(f"Unsupported placements ({p.placements}).")
|
| 627 |
+
|
| 628 |
+
def init_state_and_assign_params(self, names, params, group, qk_logits):
|
| 629 |
+
param_to_state = {}
|
| 630 |
+
param_to_flops = {}
|
| 631 |
+
|
| 632 |
+
total_flops = 0
|
| 633 |
+
for p in params:
|
| 634 |
+
g = p.grad
|
| 635 |
+
if g is None:
|
| 636 |
+
continue
|
| 637 |
+
assert g.ndim == 2, "Muon only supports 2D parameters."
|
| 638 |
+
|
| 639 |
+
flops = self._calc_flops(g, group["ns_steps"])
|
| 640 |
+
param_to_flops[id(p)] = flops
|
| 641 |
+
total_flops += flops
|
| 642 |
+
|
| 643 |
+
if self.debug:
|
| 644 |
+
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs",
|
| 645 |
+
flush=True)
|
| 646 |
+
|
| 647 |
+
paired = list(zip(names, params))
|
| 648 |
+
|
| 649 |
+
paired_sorted = sorted(paired,
|
| 650 |
+
key=lambda x: param_to_flops[id(x[1])],
|
| 651 |
+
reverse=True)
|
| 652 |
+
|
| 653 |
+
names_sorted, params_sorted = zip(*paired_sorted)
|
| 654 |
+
ordered_names = list(names_sorted)
|
| 655 |
+
ordered_params = list(params_sorted)
|
| 656 |
+
|
| 657 |
+
round_robin = 0
|
| 658 |
+
mesh = None
|
| 659 |
+
shard_mesh = None
|
| 660 |
+
process_group = None
|
| 661 |
+
for n, p in zip(ordered_names, ordered_params):
|
| 662 |
+
if mesh is None:
|
| 663 |
+
mesh = p.device_mesh
|
| 664 |
+
shard_mesh, process_group = self.get_shard_mesh(p)
|
| 665 |
+
elif mesh != p.device_mesh:
|
| 666 |
+
raise ValueError("All parameters must be on the same mesh.")
|
| 667 |
+
num_ranks = dist.get_world_size(group=process_group)
|
| 668 |
+
param_to_state[id(p)] = _muon_state()
|
| 669 |
+
param_to_state[id(
|
| 670 |
+
p)].worker_rank = shard_mesh[round_robin].item() % num_ranks
|
| 671 |
+
param_to_state[id(p)].process_group = process_group
|
| 672 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 673 |
+
param_to_state[id(p)].qk_clip_state = qk_clip_state
|
| 674 |
+
round_robin = (round_robin + 1) % len(shard_mesh)
|
| 675 |
+
|
| 676 |
+
return param_to_state, ordered_params
|
| 677 |
+
|
| 678 |
+
def base(self, names, params, group, lr, weight_decay, momentum,
|
| 679 |
+
qk_logits):
|
| 680 |
+
# generate weight updates in distributed fashion
|
| 681 |
+
for n, p in zip(names, params):
|
| 682 |
+
g = p.grad
|
| 683 |
+
if g is None:
|
| 684 |
+
continue
|
| 685 |
+
if g.ndim > 2:
|
| 686 |
+
g = g.view(g.size(0), -1)
|
| 687 |
+
assert g is not None
|
| 688 |
+
|
| 689 |
+
# calc update
|
| 690 |
+
state = self.state[p]
|
| 691 |
+
if "momentum_buffer" not in state:
|
| 692 |
+
state["momentum_buffer"] = torch.zeros_like(g)
|
| 693 |
+
buf = state["momentum_buffer"]
|
| 694 |
+
buf.mul_(momentum).add_(g)
|
| 695 |
+
if group["nesterov"]:
|
| 696 |
+
g = g.add(buf, alpha=momentum)
|
| 697 |
+
else:
|
| 698 |
+
g = buf
|
| 699 |
+
|
| 700 |
+
u = _zeropower_via_newtonschulz5(g.to(COMM_DTYPE),
|
| 701 |
+
steps=group["ns_steps"])
|
| 702 |
+
|
| 703 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 704 |
+
Muon._update_p(p, u, lr, adjusted_lr, weight_decay)
|
| 705 |
+
|
| 706 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 707 |
+
|
| 708 |
+
scales_full = self._compute_scales(p, qk_clip_state)
|
| 709 |
+
if scales_full is not None:
|
| 710 |
+
Muon._qk_clip(p, scales_full, qk_clip_state.head_dim)
|
| 711 |
+
|
| 712 |
+
def _update_g(self, p, g, group, momentum):
|
| 713 |
+
# calc update
|
| 714 |
+
state = self.state[p]
|
| 715 |
+
buf = state.setdefault("momentum_buffer", torch.zeros_like(g))
|
| 716 |
+
torch.add(g, buf, alpha=momentum, out=buf)
|
| 717 |
+
if group["nesterov"]:
|
| 718 |
+
g.add_(buf, alpha=momentum)
|
| 719 |
+
return g
|
| 720 |
+
return buf
|
| 721 |
+
|
| 722 |
+
@staticmethod
|
| 723 |
+
def _update_p(p, u, lr, adjusted_lr, weight_decay):
|
| 724 |
+
# apply weight decay
|
| 725 |
+
p.data.mul_(1 - lr * weight_decay)
|
| 726 |
+
# apply update
|
| 727 |
+
p.data.add_(u, alpha=-adjusted_lr)
|
| 728 |
+
|
| 729 |
+
def get_qk_clip_info(self, n, qk_logits):
|
| 730 |
+
head_dim = self.clip_config.get('head_dim')
|
| 731 |
+
threshold = self.clip_config.get('threshold')
|
| 732 |
+
kind, layer_idx = parse_qk_layer(n)
|
| 733 |
+
|
| 734 |
+
logit, indices = None, []
|
| 735 |
+
if qk_logits is not None and kind is not None:
|
| 736 |
+
logit = qk_logits[layer_idx]
|
| 737 |
+
indices_key = 'q_indices' if 'q' in kind else 'k_indices'
|
| 738 |
+
indices = self.clip_config.get(indices_key, []) or []
|
| 739 |
+
|
| 740 |
+
return QKClipInfo(
|
| 741 |
+
kind=kind,
|
| 742 |
+
indices=indices,
|
| 743 |
+
head_dim=head_dim,
|
| 744 |
+
threshold=threshold,
|
| 745 |
+
logit=logit,
|
| 746 |
+
)
|
| 747 |
+
|
| 748 |
+
@staticmethod
|
| 749 |
+
def _compute_scales(p, qk_clip_state):
|
| 750 |
+
kind = qk_clip_state.kind
|
| 751 |
+
indices = qk_clip_state.indices
|
| 752 |
+
head_dim = qk_clip_state.head_dim
|
| 753 |
+
threshold = qk_clip_state.threshold
|
| 754 |
+
logit = qk_clip_state.logit
|
| 755 |
+
|
| 756 |
+
H_global = p.shape[0] // head_dim
|
| 757 |
+
scales_full = torch.ones(H_global, device=p.data.device)
|
| 758 |
+
scaling = 0
|
| 759 |
+
|
| 760 |
+
for logit_idx, head_idx in enumerate(indices):
|
| 761 |
+
v_ele = float(logit[logit_idx])
|
| 762 |
+
if v_ele > threshold:
|
| 763 |
+
new_scale = math.sqrt(threshold / v_ele)
|
| 764 |
+
if new_scale < scales_full[head_idx]:
|
| 765 |
+
scales_full[head_idx] = new_scale
|
| 766 |
+
logger.info(
|
| 767 |
+
f"[{kind}] Head {head_idx} exceeded threshold "
|
| 768 |
+
f"(value={v_ele:.4f}, threshold={threshold:.4f}) -> applying scale={new_scale:.4f}"
|
| 769 |
+
)
|
| 770 |
+
scaling += 1
|
| 771 |
+
|
| 772 |
+
return scales_full if scaling > 0 else None
|
| 773 |
+
|
| 774 |
+
@staticmethod
|
| 775 |
+
def _qk_clip(p, scales, head_dim):
|
| 776 |
+
W = p.data.view(-1, head_dim, p.data.shape[1])
|
| 777 |
+
W.mul_(scales.view(-1, 1, 1))
|
| 778 |
+
|
| 779 |
+
def parallel(self, names, params, group, lr, weight_decay, momentum,
|
| 780 |
+
qk_logits):
|
| 781 |
+
"""
|
| 782 |
+
Perform a parallel optimization step using Muon.
|
| 783 |
+
"""
|
| 784 |
+
|
| 785 |
+
for p in params:
|
| 786 |
+
g = p.grad
|
| 787 |
+
if g is None:
|
| 788 |
+
continue
|
| 789 |
+
if g.ndim > 2:
|
| 790 |
+
g = g.view(g.size(0), -1)
|
| 791 |
+
|
| 792 |
+
# Update g in the local rank
|
| 793 |
+
g = self._update_g(
|
| 794 |
+
p,
|
| 795 |
+
g,
|
| 796 |
+
group,
|
| 797 |
+
momentum=momentum,
|
| 798 |
+
)
|
| 799 |
+
p.grad = g
|
| 800 |
+
|
| 801 |
+
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 802 |
+
names, params, group, qk_logits)
|
| 803 |
+
|
| 804 |
+
assert self.rank is not None
|
| 805 |
+
|
| 806 |
+
def enqueue_all2all_gather(start_idx, chunk_size):
|
| 807 |
+
target_params = ordered_params[start_idx:start_idx + chunk_size]
|
| 808 |
+
if target_params:
|
| 809 |
+
alloc_event = _alloc_gathered_grad(target_params,
|
| 810 |
+
param_to_state, self.rank,
|
| 811 |
+
self.compute_stream)
|
| 812 |
+
_all2all_gather(target_params, param_to_state, self.rank,
|
| 813 |
+
self.comm_stream, group["none_grad"],
|
| 814 |
+
alloc_event)
|
| 815 |
+
|
| 816 |
+
def enqueue_computes(start_idx, chunk_size):
|
| 817 |
+
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
| 818 |
+
state = param_to_state[id(p)]
|
| 819 |
+
_compute_u(p, state, group["ns_steps"], self.rank,
|
| 820 |
+
self.compute_stream)
|
| 821 |
+
|
| 822 |
+
def enqueue_all2all_scatter(start_idx, chunk_size):
|
| 823 |
+
target_params = ordered_params[start_idx:start_idx + chunk_size]
|
| 824 |
+
if target_params:
|
| 825 |
+
alloc_event = _alloc_scattered_u(target_params, param_to_state,
|
| 826 |
+
self.rank,
|
| 827 |
+
self.compute_stream)
|
| 828 |
+
_all2all_scatter(target_params, param_to_state, self.rank,
|
| 829 |
+
self.comm_stream, alloc_event)
|
| 830 |
+
|
| 831 |
+
def enqueue_update_param(start_idx, chunk_size):
|
| 832 |
+
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
| 833 |
+
state = param_to_state[id(p)]
|
| 834 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 835 |
+
_update_param(p, state, lr, adjusted_lr, weight_decay,
|
| 836 |
+
self.rank, self.compute_stream)
|
| 837 |
+
|
| 838 |
+
chunk_size = dist.get_world_size(param_to_state[id(
|
| 839 |
+
params[0])].process_group)
|
| 840 |
+
|
| 841 |
+
# Wait grad update
|
| 842 |
+
self.comm_stream.wait_stream(torch.cuda.current_stream())
|
| 843 |
+
|
| 844 |
+
overlap_step = self.overlap_step
|
| 845 |
+
for i in range(0, overlap_step):
|
| 846 |
+
enqueue_all2all_gather(i * chunk_size, chunk_size)
|
| 847 |
+
enqueue_computes(i * chunk_size, chunk_size)
|
| 848 |
+
|
| 849 |
+
for i in range(0, len(params) + chunk_size - 1, chunk_size):
|
| 850 |
+
enqueue_all2all_scatter(i, chunk_size)
|
| 851 |
+
enqueue_all2all_gather(i + overlap_step * chunk_size, chunk_size)
|
| 852 |
+
enqueue_update_param(i, chunk_size)
|
| 853 |
+
enqueue_computes(i + overlap_step * chunk_size, chunk_size)
|
| 854 |
+
|
| 855 |
+
# Wait the last update_param to finish
|
| 856 |
+
torch.cuda.current_stream().wait_stream(self.compute_stream)
|
| 857 |
+
|
| 858 |
+
@staticmethod
|
| 859 |
+
def _fused_adamw(
|
| 860 |
+
params: list[torch.Tensor],
|
| 861 |
+
grads: list[torch.Tensor],
|
| 862 |
+
exp_avgs: list[torch.Tensor],
|
| 863 |
+
exp_avg_sqs: list[torch.Tensor],
|
| 864 |
+
max_exp_avg_sqs: list[torch.Tensor],
|
| 865 |
+
state_steps: list[torch.Tensor],
|
| 866 |
+
amsgrad: bool,
|
| 867 |
+
beta1: float,
|
| 868 |
+
beta2: float,
|
| 869 |
+
lr: Union[float, torch.Tensor],
|
| 870 |
+
weight_decay: float,
|
| 871 |
+
eps: float,
|
| 872 |
+
maximize: bool,
|
| 873 |
+
) -> None:
|
| 874 |
+
if not params:
|
| 875 |
+
return
|
| 876 |
+
|
| 877 |
+
# We only shuffle around the lr when it is a Tensor and on CUDA, otherwise, we prefer
|
| 878 |
+
# treating it as a scalar.
|
| 879 |
+
lr_dict: Optional[DeviceDict] = ({
|
| 880 |
+
lr.device: lr
|
| 881 |
+
} if isinstance(lr, torch.Tensor) and str(lr.device) != "cpu" else
|
| 882 |
+
None)
|
| 883 |
+
grouped_tensors = torch.optim.Optimizer._group_tensors_by_device_and_dtype(
|
| 884 |
+
[
|
| 885 |
+
params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs,
|
| 886 |
+
state_steps
|
| 887 |
+
] # type: ignore[list-item]
|
| 888 |
+
)
|
| 889 |
+
for (device, _), (
|
| 890 |
+
(
|
| 891 |
+
device_params_,
|
| 892 |
+
device_grads_,
|
| 893 |
+
device_exp_avgs_,
|
| 894 |
+
device_exp_avg_sqs_,
|
| 895 |
+
device_max_exp_avg_sqs,
|
| 896 |
+
device_state_steps_,
|
| 897 |
+
),
|
| 898 |
+
_,
|
| 899 |
+
) in grouped_tensors.items():
|
| 900 |
+
device_params = cast(list[torch.Tensor], device_params_)
|
| 901 |
+
device_grads = cast(list[torch.Tensor], device_grads_)
|
| 902 |
+
device_exp_avgs = cast(list[torch.Tensor], device_exp_avgs_)
|
| 903 |
+
device_exp_avg_sqs = cast(list[torch.Tensor], device_exp_avg_sqs_)
|
| 904 |
+
device_state_steps = cast(list[torch.Tensor], device_state_steps_)
|
| 905 |
+
|
| 906 |
+
if lr_dict is not None and device not in lr_dict:
|
| 907 |
+
lr_dict[device] = lr.to(
|
| 908 |
+
device=device,
|
| 909 |
+
non_blocking=True) # type: ignore[union-attr]
|
| 910 |
+
lr = lr_dict[device]
|
| 911 |
+
torch._foreach_add_(device_state_steps, 1)
|
| 912 |
+
func = torch._fused_adamw_
|
| 913 |
+
func(
|
| 914 |
+
device_params,
|
| 915 |
+
device_grads,
|
| 916 |
+
device_exp_avgs,
|
| 917 |
+
device_exp_avg_sqs,
|
| 918 |
+
device_max_exp_avg_sqs, # type: ignore[arg-type]
|
| 919 |
+
device_state_steps,
|
| 920 |
+
amsgrad=amsgrad,
|
| 921 |
+
lr=lr, # type: ignore[arg-type]
|
| 922 |
+
beta1=beta1,
|
| 923 |
+
beta2=beta2,
|
| 924 |
+
weight_decay=weight_decay,
|
| 925 |
+
eps=eps,
|
| 926 |
+
maximize=maximize,
|
| 927 |
+
)
|
| 928 |
+
|
| 929 |
+
def step(self, closure=None, qk_logits=None):
|
| 930 |
+
"""Perform a single optimization step.
|
| 931 |
+
|
| 932 |
+
Args:
|
| 933 |
+
closure (Callable, optional): A closure that reevaluates the model
|
| 934 |
+
and returns the loss.
|
| 935 |
+
qk_logits (dict[int, Tensor], optional): A dictionary mapping layer indices
|
| 936 |
+
to 1D tensors of shape (num_heads,), representing the maximum
|
| 937 |
+
QK logits across all tokens, computed as
|
| 938 |
+
(1 / sqrt(head_dim)) * (Q @ K^T).
|
| 939 |
+
"""
|
| 940 |
+
loss = None
|
| 941 |
+
if closure is not None:
|
| 942 |
+
with torch.enable_grad():
|
| 943 |
+
loss = closure()
|
| 944 |
+
|
| 945 |
+
for group in self.param_groups:
|
| 946 |
+
params = group["params"]
|
| 947 |
+
|
| 948 |
+
if group["use_muon"]:
|
| 949 |
+
############################
|
| 950 |
+
# Muon #
|
| 951 |
+
############################
|
| 952 |
+
lr = group["lr"]
|
| 953 |
+
weight_decay = group["weight_decay"]
|
| 954 |
+
momentum = group["momentum"]
|
| 955 |
+
names = group["names"]
|
| 956 |
+
|
| 957 |
+
param_dtensors = []
|
| 958 |
+
param_tensors = []
|
| 959 |
+
name_dtensors = []
|
| 960 |
+
name_tensors = []
|
| 961 |
+
|
| 962 |
+
for n, p in zip(names, params):
|
| 963 |
+
if p is None or p.grad is None:
|
| 964 |
+
continue
|
| 965 |
+
if isinstance(p.data, DTensor):
|
| 966 |
+
if all(
|
| 967 |
+
isinstance(placement, Replicate)
|
| 968 |
+
for placement in p.placements):
|
| 969 |
+
param_tensors.append(p)
|
| 970 |
+
name_tensors.append(n)
|
| 971 |
+
else:
|
| 972 |
+
param_dtensors.append(p)
|
| 973 |
+
name_dtensors.append(n)
|
| 974 |
+
elif isinstance(p.data, torch.Tensor):
|
| 975 |
+
param_tensors.append(p)
|
| 976 |
+
name_tensors.append(n)
|
| 977 |
+
else:
|
| 978 |
+
raise TypeError(
|
| 979 |
+
f"Unsupported parameter type: {type(p.data)}")
|
| 980 |
+
|
| 981 |
+
if self.debug:
|
| 982 |
+
print(
|
| 983 |
+
f"[Muon] {len(param_dtensors)} DTensors, {len(param_tensors)} Tensors",
|
| 984 |
+
flush=True,
|
| 985 |
+
)
|
| 986 |
+
|
| 987 |
+
if len(param_dtensors) > 0:
|
| 988 |
+
if not dist.is_initialized():
|
| 989 |
+
raise RuntimeError(
|
| 990 |
+
"Parallel Muon requires torch.distributed to be initialized."
|
| 991 |
+
)
|
| 992 |
+
|
| 993 |
+
self.parallel(
|
| 994 |
+
name_dtensors,
|
| 995 |
+
param_dtensors,
|
| 996 |
+
group,
|
| 997 |
+
lr=lr,
|
| 998 |
+
weight_decay=weight_decay,
|
| 999 |
+
momentum=momentum,
|
| 1000 |
+
qk_logits=qk_logits,
|
| 1001 |
+
)
|
| 1002 |
+
|
| 1003 |
+
if len(param_tensors) > 0:
|
| 1004 |
+
self.base(
|
| 1005 |
+
name_tensors,
|
| 1006 |
+
param_tensors,
|
| 1007 |
+
group,
|
| 1008 |
+
lr=lr,
|
| 1009 |
+
weight_decay=weight_decay,
|
| 1010 |
+
momentum=momentum,
|
| 1011 |
+
qk_logits=qk_logits,
|
| 1012 |
+
)
|
| 1013 |
+
|
| 1014 |
+
else:
|
| 1015 |
+
############################
|
| 1016 |
+
# AdamW backup #
|
| 1017 |
+
############################
|
| 1018 |
+
|
| 1019 |
+
params_with_grads = []
|
| 1020 |
+
grads = []
|
| 1021 |
+
moment1 = []
|
| 1022 |
+
moment2 = []
|
| 1023 |
+
max_exp_avg_sqs = []
|
| 1024 |
+
state_steps = []
|
| 1025 |
+
lr = group["lr"]
|
| 1026 |
+
beta1, beta2 = group["adamw_betas"]
|
| 1027 |
+
eps = group["adamw_eps"]
|
| 1028 |
+
weight_decay = group["weight_decay"]
|
| 1029 |
+
|
| 1030 |
+
for p in params:
|
| 1031 |
+
g = p.grad
|
| 1032 |
+
if g is None:
|
| 1033 |
+
continue
|
| 1034 |
+
state = self.state[p]
|
| 1035 |
+
params_with_grads.append(p)
|
| 1036 |
+
grads.append(g)
|
| 1037 |
+
if "step" not in state:
|
| 1038 |
+
state["step"] = (torch.zeros((),
|
| 1039 |
+
dtype=torch.float32,
|
| 1040 |
+
device=p.device))
|
| 1041 |
+
state["moment1"] = torch.zeros_like(g)
|
| 1042 |
+
state["moment2"] = torch.zeros_like(g)
|
| 1043 |
+
moment1.append(state["moment1"])
|
| 1044 |
+
moment2.append(state["moment2"])
|
| 1045 |
+
if not isinstance(state["step"], torch.Tensor):
|
| 1046 |
+
step_tensor = torch.tensor(state["step"],
|
| 1047 |
+
dtype=torch.float32,
|
| 1048 |
+
device=p.device)
|
| 1049 |
+
else:
|
| 1050 |
+
step_tensor = state["step"]
|
| 1051 |
+
state_steps.append(step_tensor)
|
| 1052 |
+
|
| 1053 |
+
self._fused_adamw(
|
| 1054 |
+
params_with_grads,
|
| 1055 |
+
grads,
|
| 1056 |
+
moment1,
|
| 1057 |
+
moment2,
|
| 1058 |
+
max_exp_avg_sqs,
|
| 1059 |
+
state_steps,
|
| 1060 |
+
amsgrad=False,
|
| 1061 |
+
beta1=beta1,
|
| 1062 |
+
beta2=beta2,
|
| 1063 |
+
lr=lr,
|
| 1064 |
+
weight_decay=weight_decay,
|
| 1065 |
+
eps=eps,
|
| 1066 |
+
maximize=False,
|
| 1067 |
+
)
|
| 1068 |
+
|
| 1069 |
+
return loss
|
build/torch29-cxx11-cu128-x86_64-linux/optimizer/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .muon import Muon
|
| 2 |
+
|
| 3 |
+
__all__ = [
|
| 4 |
+
"Muon",
|
| 5 |
+
]
|
build/torch29-cxx11-cu128-x86_64-linux/optimizer/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _optimizer_811726c_dirty
|
| 3 |
+
ops = torch.ops._optimizer_811726c_dirty
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_optimizer_811726c_dirty::{op_name}"
|
build/torch29-cxx11-cu128-x86_64-linux/optimizer/_optimizer_811726c_dirty.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ab1875be65811d88c407f36077aced58056a4feeb9946d7cd40ec55c7e1025c8
|
| 3 |
+
size 1871056
|
build/torch29-cxx11-cu128-x86_64-linux/optimizer/matmul_transpose_triton.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MIT License
|
| 2 |
+
#
|
| 3 |
+
# Copyright (c) 2025 Tianyang Lin
|
| 4 |
+
#
|
| 5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
# in the Software without restriction, including without limitation the rights
|
| 8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
# furnished to do so, subject to the following conditions:
|
| 11 |
+
#
|
| 12 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
# copies or substantial portions of the Software.
|
| 14 |
+
#
|
| 15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
# SOFTWARE.
|
| 22 |
+
|
| 23 |
+
import torch
|
| 24 |
+
import triton
|
| 25 |
+
import triton.language as tl
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def get_autotune_config():
|
| 29 |
+
return [
|
| 30 |
+
triton.Config(
|
| 31 |
+
{
|
| 32 |
+
'BLOCK_SIZE_M': blk_m,
|
| 33 |
+
'BLOCK_SIZE_K': blk_k,
|
| 34 |
+
'GROUP_SIZE_M': grp_sz
|
| 35 |
+
},
|
| 36 |
+
num_stages=n_stages,
|
| 37 |
+
num_warps=n_warps) for blk_m in [32, 64, 128]
|
| 38 |
+
for blk_k in [32, 64] for grp_sz in [8] for n_stages in [3, 4, 5]
|
| 39 |
+
for n_warps in [4, 8]
|
| 40 |
+
]
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
@triton.autotune(
|
| 44 |
+
configs=get_autotune_config(),
|
| 45 |
+
key=['M', 'K'],
|
| 46 |
+
)
|
| 47 |
+
@triton.jit
|
| 48 |
+
def mmt_kernel(x, y, M, K, stride_xm, stride_xk, stride_ym, stride_yn,
|
| 49 |
+
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
|
| 50 |
+
GROUP_SIZE_M: tl.constexpr):
|
| 51 |
+
"""
|
| 52 |
+
Core kernel jit function of matmul_transpose that computes y = x @ x.T
|
| 53 |
+
The code is a simple adaptation from the triton `matmul` tutorial:
|
| 54 |
+
https://triton-lang.org/main/getting-started/tutorials/03-matrix-multiplication.html
|
| 55 |
+
"""
|
| 56 |
+
pid = tl.program_id(axis=0)
|
| 57 |
+
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
|
| 58 |
+
num_pid_n = tl.cdiv(M, BLOCK_SIZE_M)
|
| 59 |
+
num_pid_in_group = GROUP_SIZE_M * num_pid_n
|
| 60 |
+
group_id = pid // num_pid_in_group
|
| 61 |
+
first_pid_m = group_id * GROUP_SIZE_M
|
| 62 |
+
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
| 63 |
+
pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m)
|
| 64 |
+
pid_n = (pid % num_pid_in_group) // group_size_m
|
| 65 |
+
if pid_m > pid_n:
|
| 66 |
+
return
|
| 67 |
+
|
| 68 |
+
offs_xm = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
|
| 69 |
+
offs_xn = (pid_n * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
|
| 70 |
+
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
| 71 |
+
# we use a & b ptrs to denote different rows of x.
|
| 72 |
+
a_ptrs = x + (offs_xm[:, None] * stride_xm + offs_k[None, :] * stride_xk)
|
| 73 |
+
b_ptrs = x + (offs_xn[:, None] * stride_xm + offs_k[None, :] * stride_xk)
|
| 74 |
+
|
| 75 |
+
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_M), dtype=tl.float32)
|
| 76 |
+
|
| 77 |
+
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
|
| 78 |
+
a = tl.load(a_ptrs,
|
| 79 |
+
mask=offs_k[None, :] < K - k * BLOCK_SIZE_K,
|
| 80 |
+
other=0.0)
|
| 81 |
+
b = tl.load(b_ptrs,
|
| 82 |
+
mask=offs_k[None, :] < K - k * BLOCK_SIZE_K,
|
| 83 |
+
other=0.0)
|
| 84 |
+
accumulator = tl.dot(a, tl.permute(b, (1, 0)), accumulator)
|
| 85 |
+
a_ptrs += BLOCK_SIZE_K * stride_xk
|
| 86 |
+
b_ptrs += BLOCK_SIZE_K * stride_xk
|
| 87 |
+
# use dtype.element_ty to accommodate different input datatypes as in cpp templates
|
| 88 |
+
# https://github.com/triton-lang/triton/issues/2252
|
| 89 |
+
c = accumulator.to(x.dtype.element_ty)
|
| 90 |
+
|
| 91 |
+
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
| 92 |
+
offs_cn = pid_n * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
| 93 |
+
c_ptrs = y + stride_ym * offs_cm[:, None] + stride_yn * offs_cn[None, :]
|
| 94 |
+
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < M)
|
| 95 |
+
tl.store(c_ptrs, c, mask=c_mask)
|
| 96 |
+
|
| 97 |
+
# transpose and copy
|
| 98 |
+
if pid_m < pid_n:
|
| 99 |
+
ct_ptrs = y + stride_ym * offs_cn[:,
|
| 100 |
+
None] + stride_yn * offs_cm[None, :]
|
| 101 |
+
ct_mask = (offs_cn[:, None] < M) & (offs_cm[None, :] < M)
|
| 102 |
+
tl.store(ct_ptrs, tl.permute(c, (1, 0)), mask=ct_mask)
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def matmul_transpose_assign(d_in, d_out):
|
| 106 |
+
assert d_in.is_cuda, "Input `d_in` must be a CUDA tensor"
|
| 107 |
+
assert d_out.is_cuda, "Input `d_out` must be a CUDA tensor"
|
| 108 |
+
assert d_in.device == d_out.device, "Inputs `d_in` and `d_out` must be on the same CUDA device"
|
| 109 |
+
assert d_in.dtype == d_out.dtype, "Inputs must have the same data type"
|
| 110 |
+
assert d_in.ndim == 2, "Input `d_in` must be a 2D tensor"
|
| 111 |
+
assert d_out.ndim == 2, "Input `d_out` must be a 2D tensor"
|
| 112 |
+
assert d_in.size(0) == d_out.size(0) == d_out.size(0), \
|
| 113 |
+
"First dimension of `d_in` must match first and second dimension of `d_out`"
|
| 114 |
+
|
| 115 |
+
d_in = d_in.contiguous()
|
| 116 |
+
M, K = d_in.shape
|
| 117 |
+
grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(
|
| 118 |
+
M, META['BLOCK_SIZE_M']), )
|
| 119 |
+
with torch.cuda.device(d_in.device.index):
|
| 120 |
+
mmt_kernel[grid](d_in, d_out, M, K, d_in.stride(0), d_in.stride(1),
|
| 121 |
+
d_out.stride(0), d_out.stride(1))
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def matmul_transpose(d_in):
|
| 125 |
+
M, _ = d_in.shape
|
| 126 |
+
d_out = torch.empty((M, M), device=d_in.device, dtype=d_in.dtype)
|
| 127 |
+
matmul_transpose_assign(d_in, d_out)
|
| 128 |
+
return d_out
|
build/torch29-cxx11-cu128-x86_64-linux/optimizer/muon.py
ADDED
|
@@ -0,0 +1,1069 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import math
|
| 3 |
+
import types
|
| 4 |
+
from dataclasses import dataclass
|
| 5 |
+
from typing import List, Optional, Union, cast
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.distributed as dist
|
| 9 |
+
from torch.distributed._tensor import DTensor, Replicate, Shard
|
| 10 |
+
|
| 11 |
+
from .matmul_transpose_triton import matmul_transpose_assign
|
| 12 |
+
|
| 13 |
+
logger = logging.getLogger(__name__)
|
| 14 |
+
|
| 15 |
+
COMM_DTYPE = torch.bfloat16
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# This code snippet is a modified version adapted from the following GitHub repositories:
|
| 19 |
+
# https://github.com/KellerJordan/Muon/blob/master/muon.py
|
| 20 |
+
# Muon's Newton–Schulz iteration causes high variance in singular values
|
| 21 |
+
# Idea: give each iteration its own 3 coefficients and optimize them via gradient descent.
|
| 22 |
+
@torch.no_grad()
|
| 23 |
+
# matmul_transpose_assign from : https://github.com/nil0x9/flash-muon
|
| 24 |
+
def _zeropower_via_newtonschulz5(G, steps):
|
| 25 |
+
"""
|
| 26 |
+
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
|
| 27 |
+
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
|
| 28 |
+
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
|
| 29 |
+
zero even beyond the point where the iteration no longer converges all the way to one everywhere
|
| 30 |
+
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
|
| 31 |
+
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
|
| 32 |
+
performance at all relative to UV^T, where USV^T = G is the SVD.
|
| 33 |
+
"""
|
| 34 |
+
assert len(G.shape) == 2
|
| 35 |
+
assert G.dtype == COMM_DTYPE
|
| 36 |
+
X = G # no manual typecast
|
| 37 |
+
|
| 38 |
+
if G.size(0) > G.size(1):
|
| 39 |
+
X = X.T
|
| 40 |
+
# Ensure spectral norm is at most 1
|
| 41 |
+
X = X / (X.norm() + 1e-7)
|
| 42 |
+
buf1 = torch.empty(X.size(0), X.size(0), dtype=X.dtype, device=X.device)
|
| 43 |
+
buf2 = torch.empty(X.size(0), X.size(0), dtype=X.dtype, device=X.device)
|
| 44 |
+
# Perform the NS iterations
|
| 45 |
+
for a, b, c in [
|
| 46 |
+
(4.0848, -6.8946, 2.9270),
|
| 47 |
+
(3.9505, -6.3029, 2.6377),
|
| 48 |
+
(3.7418, -5.5913, 2.3037),
|
| 49 |
+
(2.8769, -3.1427, 1.2046),
|
| 50 |
+
(2.8366, -3.0525, 1.2012),
|
| 51 |
+
]:
|
| 52 |
+
matmul_transpose_assign(X, buf1)
|
| 53 |
+
matmul_transpose_assign(buf1, buf2)
|
| 54 |
+
buf1.mul_(b).add_(buf2, alpha=c)
|
| 55 |
+
X = torch.addmm(X, buf1, X, alpha=1.0, beta=a)
|
| 56 |
+
|
| 57 |
+
if G.size(0) > G.size(1):
|
| 58 |
+
X = X.T
|
| 59 |
+
return X
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
@dataclass
|
| 63 |
+
class _muon_state:
|
| 64 |
+
# TODO: use Optional
|
| 65 |
+
worker_rank: int | None = None
|
| 66 |
+
gathered_grad: torch.Tensor | None = None
|
| 67 |
+
scattered_u: DTensor | None = None
|
| 68 |
+
computed_u: torch.Tensor | None = None
|
| 69 |
+
gather_event: torch.cuda.Event | None = None
|
| 70 |
+
compute_event: torch.cuda.Event | None = None
|
| 71 |
+
scatter_event: torch.cuda.Event | None = None
|
| 72 |
+
process_group = None
|
| 73 |
+
qk_clip_state = None
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def split_elems_for_src(param, src_rank, num_ranks) -> int:
|
| 77 |
+
rows = param.shape[0]
|
| 78 |
+
cols = int(param.numel() // rows)
|
| 79 |
+
base, rem = divmod(rows, num_ranks)
|
| 80 |
+
my_rows = base + (1 if src_rank < rem else 0)
|
| 81 |
+
return my_rows * cols
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
@torch.no_grad()
|
| 85 |
+
def _alloc_gathered_grad(params, param_to_state, rank, compute_stream):
|
| 86 |
+
"""
|
| 87 |
+
Pre-allocate gathered_grad buffer on compute_stream
|
| 88 |
+
before launching all2all gather
|
| 89 |
+
"""
|
| 90 |
+
with torch.cuda.stream(compute_stream):
|
| 91 |
+
for p in params:
|
| 92 |
+
state = param_to_state[id(p)]
|
| 93 |
+
if rank == state.worker_rank:
|
| 94 |
+
num_ranks = dist.get_world_size(group=state.process_group)
|
| 95 |
+
state.gathered_grad = torch.empty(p.grad.numel(),
|
| 96 |
+
dtype=COMM_DTYPE,
|
| 97 |
+
device="cuda")
|
| 98 |
+
else:
|
| 99 |
+
state.gathered_grad = None
|
| 100 |
+
|
| 101 |
+
alloc_event = torch.cuda.Event()
|
| 102 |
+
alloc_event.record(compute_stream)
|
| 103 |
+
return alloc_event
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
@torch.no_grad()
|
| 107 |
+
def _all2all_gather(params, param_to_state, rank, comm_stream, none_grad,
|
| 108 |
+
alloc_event):
|
| 109 |
+
"""
|
| 110 |
+
All2all gathers shards so each owner rank reconstructs its full gradient
|
| 111 |
+
"""
|
| 112 |
+
with torch.cuda.stream(comm_stream):
|
| 113 |
+
process_group = param_to_state[id(params[0])].process_group
|
| 114 |
+
num_ranks = dist.get_world_size(group=process_group)
|
| 115 |
+
|
| 116 |
+
# Construct sending buffers
|
| 117 |
+
per_dst = [[] for _ in range(num_ranks)]
|
| 118 |
+
send_counts = [0] * num_ranks
|
| 119 |
+
|
| 120 |
+
for p in params:
|
| 121 |
+
state = param_to_state[id(p)]
|
| 122 |
+
dst = state.worker_rank
|
| 123 |
+
assert dst < num_ranks
|
| 124 |
+
shard_elems = split_elems_for_src(p, rank, num_ranks)
|
| 125 |
+
g = p.grad
|
| 126 |
+
g = g.to_local().to(COMM_DTYPE).contiguous().view(-1)
|
| 127 |
+
assert g.numel() == shard_elems
|
| 128 |
+
per_dst[dst].append(g)
|
| 129 |
+
send_counts[dst] += shard_elems
|
| 130 |
+
|
| 131 |
+
assert any(
|
| 132 |
+
len(v) > 0 for v in per_dst
|
| 133 |
+
), "At least one destination rank must receive a sharded tensor"
|
| 134 |
+
# list[list[Tensor]] -> list[Tensor]
|
| 135 |
+
per_dst = [t for dst in per_dst for t in dst]
|
| 136 |
+
|
| 137 |
+
send_buf = torch.cat(per_dst, dim=0)
|
| 138 |
+
|
| 139 |
+
owned_params = [
|
| 140 |
+
p for p in params if param_to_state[id(p)].worker_rank == rank
|
| 141 |
+
]
|
| 142 |
+
|
| 143 |
+
# Compute receive sizes and allocate receiving buffers
|
| 144 |
+
recv_counts = [0] * num_ranks
|
| 145 |
+
|
| 146 |
+
for src in range(num_ranks):
|
| 147 |
+
total = 0
|
| 148 |
+
for p in owned_params:
|
| 149 |
+
state = param_to_state[id(p)]
|
| 150 |
+
assert state.worker_rank == rank
|
| 151 |
+
total += split_elems_for_src(p, src, num_ranks)
|
| 152 |
+
recv_counts[src] = total
|
| 153 |
+
|
| 154 |
+
recv_total = sum(recv_counts)
|
| 155 |
+
recv_buf = torch.empty(recv_total, dtype=COMM_DTYPE, device="cuda")
|
| 156 |
+
|
| 157 |
+
#All2All
|
| 158 |
+
dist.all_to_all_single(
|
| 159 |
+
recv_buf,
|
| 160 |
+
send_buf,
|
| 161 |
+
output_split_sizes=recv_counts,
|
| 162 |
+
input_split_sizes=send_counts,
|
| 163 |
+
group=process_group,
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
# Reconstructs gathered grad from the received buffer
|
| 167 |
+
#
|
| 168 |
+
# recv_buf (num ranks = 3)
|
| 169 |
+
#
|
| 170 |
+
# From rank 0 From rank 1 From rank 2
|
| 171 |
+
# | p1_0, p2_0, p3_0 | p1_1, p2_1, p3_1 | p1_2, p2_2, p3_2 |
|
| 172 |
+
#
|
| 173 |
+
# Outer loop:
|
| 174 |
+
# rank 0 -> rank 1 -> rank2
|
| 175 |
+
#
|
| 176 |
+
# Inner loop:
|
| 177 |
+
# p1_n -> p2_n -> p3_n
|
| 178 |
+
|
| 179 |
+
comm_stream.wait_event(alloc_event)
|
| 180 |
+
|
| 181 |
+
off = 0
|
| 182 |
+
write_offsets = {id(p): 0 for p in owned_params}
|
| 183 |
+
for src in range(num_ranks):
|
| 184 |
+
if recv_counts[src] == 0:
|
| 185 |
+
continue
|
| 186 |
+
|
| 187 |
+
block = recv_counts[src]
|
| 188 |
+
inner_off = 0
|
| 189 |
+
for p in owned_params:
|
| 190 |
+
state = param_to_state[id(p)]
|
| 191 |
+
assert state.worker_rank == rank
|
| 192 |
+
n = split_elems_for_src(p, src, num_ranks)
|
| 193 |
+
assert n > 0
|
| 194 |
+
|
| 195 |
+
sg = recv_buf.narrow(0, off + inner_off, n)
|
| 196 |
+
woff = write_offsets[id(p)]
|
| 197 |
+
dst = state.gathered_grad.narrow(0, woff, n)
|
| 198 |
+
dst.copy_(sg)
|
| 199 |
+
|
| 200 |
+
write_offsets[id(p)] += n
|
| 201 |
+
inner_off += n
|
| 202 |
+
off += block
|
| 203 |
+
|
| 204 |
+
for p in params:
|
| 205 |
+
state = param_to_state[id(p)]
|
| 206 |
+
if state.worker_rank == rank:
|
| 207 |
+
state.gathered_grad = state.gathered_grad.view_as(p)
|
| 208 |
+
state.gather_event = torch.cuda.Event()
|
| 209 |
+
state.gather_event.record(comm_stream)
|
| 210 |
+
else:
|
| 211 |
+
state.gathered_grad = None
|
| 212 |
+
state.gather_event = None
|
| 213 |
+
if none_grad:
|
| 214 |
+
p.grad = None
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
@torch.no_grad()
|
| 218 |
+
def _compute_u(p, state, steps, rank, compute_stream):
|
| 219 |
+
"""
|
| 220 |
+
On worker_rank, compute the orthogonalized update using Newton-Schulz iteration.
|
| 221 |
+
"""
|
| 222 |
+
with torch.cuda.stream(compute_stream):
|
| 223 |
+
if rank == state.worker_rank:
|
| 224 |
+
if state.gather_event is None:
|
| 225 |
+
raise RuntimeError("Gather event must be set before compute.")
|
| 226 |
+
compute_stream.wait_event(state.gather_event)
|
| 227 |
+
u = _zeropower_via_newtonschulz5(state.gathered_grad, steps)
|
| 228 |
+
state.gathered_grad = None
|
| 229 |
+
state.computed_u = u
|
| 230 |
+
state.compute_event = torch.cuda.Event()
|
| 231 |
+
state.compute_event.record()
|
| 232 |
+
else:
|
| 233 |
+
state.computed_u = None
|
| 234 |
+
state.compute_event = None
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
@torch.no_grad()
|
| 238 |
+
def _alloc_scattered_u(params, param_to_state, rank, compute_stream):
|
| 239 |
+
"""
|
| 240 |
+
Pre-allocate scattered_u buffer on compute_stream
|
| 241 |
+
before launching all2all gather
|
| 242 |
+
"""
|
| 243 |
+
with torch.cuda.stream(compute_stream):
|
| 244 |
+
for p in params:
|
| 245 |
+
state = param_to_state[id(p)]
|
| 246 |
+
state.scattered_u = torch.empty_like(p.to_local(),
|
| 247 |
+
dtype=COMM_DTYPE)
|
| 248 |
+
|
| 249 |
+
alloc_event = torch.cuda.Event()
|
| 250 |
+
alloc_event.record(compute_stream)
|
| 251 |
+
return alloc_event
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
def _all2all_scatter(params, param_to_state, rank, comm_stream, alloc_event):
|
| 255 |
+
"""
|
| 256 |
+
All2all scatters full gradients to all ranks
|
| 257 |
+
"""
|
| 258 |
+
with torch.cuda.stream(comm_stream):
|
| 259 |
+
process_group = param_to_state[id(params[0])].process_group
|
| 260 |
+
num_ranks = dist.get_world_size(group=process_group)
|
| 261 |
+
owned_params = [
|
| 262 |
+
p for p in params if param_to_state[id(p)].worker_rank == rank
|
| 263 |
+
]
|
| 264 |
+
|
| 265 |
+
# Construct sending buffer
|
| 266 |
+
per_dst = [[] for _ in range(num_ranks)]
|
| 267 |
+
send_counts = [0] * num_ranks
|
| 268 |
+
|
| 269 |
+
if owned_params:
|
| 270 |
+
for p in owned_params:
|
| 271 |
+
state = param_to_state[id(p)]
|
| 272 |
+
if state.compute_event is None:
|
| 273 |
+
raise RuntimeError(
|
| 274 |
+
"Compute event must be set before scatter.")
|
| 275 |
+
comm_stream.wait_event(state.compute_event)
|
| 276 |
+
state.gathered_grad = None
|
| 277 |
+
|
| 278 |
+
assert state.computed_u is not None
|
| 279 |
+
|
| 280 |
+
u_full = state.computed_u.to(COMM_DTYPE).contiguous().view(-1)
|
| 281 |
+
|
| 282 |
+
offset = 0
|
| 283 |
+
for dst in range(num_ranks):
|
| 284 |
+
n = split_elems_for_src(p, dst, num_ranks)
|
| 285 |
+
assert n > 0
|
| 286 |
+
|
| 287 |
+
su = u_full.narrow(0, offset, n)
|
| 288 |
+
per_dst[dst].append(su)
|
| 289 |
+
send_counts[dst] += n
|
| 290 |
+
offset += n
|
| 291 |
+
|
| 292 |
+
assert offset == u_full.numel()
|
| 293 |
+
|
| 294 |
+
lengths = [len(v) for v in per_dst]
|
| 295 |
+
if all(l > 0 for l in lengths):
|
| 296 |
+
assert all(
|
| 297 |
+
l == lengths[0] for l in lengths
|
| 298 |
+
), "All destination ranks must have the same number of sharded tensor"
|
| 299 |
+
# list[list[Tensor]] -> list[Tensor]
|
| 300 |
+
per_dst = [t for dst in per_dst for t in dst]
|
| 301 |
+
send_buf = torch.cat(per_dst, dim=0)
|
| 302 |
+
else:
|
| 303 |
+
# all_to_all requires participation from all ranks
|
| 304 |
+
# Even non-owner ranks must join the collective call
|
| 305 |
+
send_buf = torch.empty(0, dtype=COMM_DTYPE, device="cuda")
|
| 306 |
+
|
| 307 |
+
# Compute receive sizes and allocate receiving buffers
|
| 308 |
+
recv_counts = [0] * num_ranks
|
| 309 |
+
|
| 310 |
+
for src in range(num_ranks):
|
| 311 |
+
total = 0
|
| 312 |
+
for p in params:
|
| 313 |
+
state = param_to_state[id(p)]
|
| 314 |
+
if state.worker_rank != src:
|
| 315 |
+
continue
|
| 316 |
+
total += split_elems_for_src(p, rank, num_ranks)
|
| 317 |
+
recv_counts[src] = total
|
| 318 |
+
|
| 319 |
+
recv_total = sum(recv_counts)
|
| 320 |
+
assert recv_total > 0
|
| 321 |
+
recv_buf = torch.empty(recv_total, dtype=COMM_DTYPE, device="cuda")
|
| 322 |
+
|
| 323 |
+
#All2All
|
| 324 |
+
dist.all_to_all_single(
|
| 325 |
+
recv_buf,
|
| 326 |
+
send_buf,
|
| 327 |
+
output_split_sizes=recv_counts,
|
| 328 |
+
input_split_sizes=send_counts,
|
| 329 |
+
group=process_group,
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
# Copy to pre-allocated scattered_u buffer from the received buffer
|
| 333 |
+
#
|
| 334 |
+
# recv_buf (num ranks = 3, local_rank = 0)
|
| 335 |
+
#
|
| 336 |
+
# From rank 0 From rank 1 From rank 2
|
| 337 |
+
# | p1_0, p2_0, p3_0 | p4_0 | p5_0, p6_0 |
|
| 338 |
+
#
|
| 339 |
+
# Outer loop:
|
| 340 |
+
# rank 0 -> rank 1 -> rank2
|
| 341 |
+
#
|
| 342 |
+
# Inner loop:
|
| 343 |
+
# src(0) : p1_0 -> p2_0 -> p3_0
|
| 344 |
+
# src(1) : p4_0
|
| 345 |
+
# src(2) : p5_0 -> p6_0
|
| 346 |
+
|
| 347 |
+
comm_stream.wait_event(alloc_event)
|
| 348 |
+
|
| 349 |
+
off = 0
|
| 350 |
+
for src in range(num_ranks):
|
| 351 |
+
block = recv_counts[src]
|
| 352 |
+
if block == 0:
|
| 353 |
+
continue
|
| 354 |
+
|
| 355 |
+
inner_off = 0
|
| 356 |
+
for p in params:
|
| 357 |
+
state = param_to_state[id(p)]
|
| 358 |
+
if state.worker_rank != src:
|
| 359 |
+
continue
|
| 360 |
+
n = split_elems_for_src(p, rank, num_ranks)
|
| 361 |
+
assert n > 0
|
| 362 |
+
|
| 363 |
+
flat_local = recv_buf.narrow(0, off + inner_off,
|
| 364 |
+
n).view_as(p.to_local())
|
| 365 |
+
state.scattered_u.copy_(flat_local)
|
| 366 |
+
|
| 367 |
+
state.scatter_event = torch.cuda.Event()
|
| 368 |
+
state.scatter_event.record(comm_stream)
|
| 369 |
+
inner_off += n
|
| 370 |
+
|
| 371 |
+
assert inner_off == block
|
| 372 |
+
off += block
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
def _update_param(p, state, lr, adjusted_lr, weight_decay, rank,
|
| 376 |
+
compute_stream):
|
| 377 |
+
"""
|
| 378 |
+
Update sharded parameter p with the scattered_u.
|
| 379 |
+
Only worker_rank frees computed_u.
|
| 380 |
+
"""
|
| 381 |
+
with torch.cuda.stream(compute_stream):
|
| 382 |
+
if state.scatter_event is None:
|
| 383 |
+
raise RuntimeError("Scatter event must be set before update")
|
| 384 |
+
compute_stream.wait_event(state.scatter_event)
|
| 385 |
+
u_dtensor = DTensor.from_local(
|
| 386 |
+
state.scattered_u,
|
| 387 |
+
placements=p.placements,
|
| 388 |
+
device_mesh=p.device_mesh,
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
state.scattered_u = u_dtensor
|
| 392 |
+
|
| 393 |
+
if rank == state.worker_rank:
|
| 394 |
+
# Free computed_u
|
| 395 |
+
state.computed_u = None
|
| 396 |
+
|
| 397 |
+
Muon._update_p(p, state.scattered_u, lr, adjusted_lr, weight_decay)
|
| 398 |
+
state.scattered_u = None
|
| 399 |
+
u_dtensor = None
|
| 400 |
+
|
| 401 |
+
scales_full = Muon._compute_scales(p, state.qk_clip_state)
|
| 402 |
+
if scales_full is not None:
|
| 403 |
+
num_ranks = dist.get_world_size(group=state.process_group)
|
| 404 |
+
local_rank = dist.get_rank(group=state.process_group)
|
| 405 |
+
scales_local = scales_full.chunk(num_ranks, dim=0)[local_rank]
|
| 406 |
+
scales_local = DTensor.from_local(
|
| 407 |
+
scales_local,
|
| 408 |
+
placements=p.placements,
|
| 409 |
+
device_mesh=p.device_mesh,
|
| 410 |
+
)
|
| 411 |
+
Muon._qk_clip(p, scales_local, state.qk_clip_state.head_dim)
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
def default_is_muon(name, x):
|
| 415 |
+
skip_keys = ["embed_tokens", "lm_head", "tok_embeddings", "output"]
|
| 416 |
+
return x.ndim >= 2 and not any(key in name for key in skip_keys)
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
def get_default_muon_param_groups(model, is_muon_func=default_is_muon):
|
| 420 |
+
muon_params, muon_names = [], []
|
| 421 |
+
non_muon_params = []
|
| 422 |
+
|
| 423 |
+
for n, p in model.named_parameters():
|
| 424 |
+
if not p.requires_grad:
|
| 425 |
+
continue
|
| 426 |
+
if is_muon_func(n, p):
|
| 427 |
+
muon_params.append(p)
|
| 428 |
+
muon_names.append(n)
|
| 429 |
+
else:
|
| 430 |
+
non_muon_params.append(p)
|
| 431 |
+
|
| 432 |
+
return [
|
| 433 |
+
{
|
| 434 |
+
"params": muon_params,
|
| 435 |
+
"names": muon_names,
|
| 436 |
+
"use_muon": True,
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"params": non_muon_params,
|
| 440 |
+
"use_muon": False,
|
| 441 |
+
},
|
| 442 |
+
]
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
def parse_qk_layer(name: str) -> tuple[str | None, int]:
|
| 446 |
+
"""
|
| 447 |
+
Parse a parameter name to check if it is a query/key projection layer
|
| 448 |
+
('wq', 'wk', 'q_proj', 'k_proj') and return (kind, layer_index).
|
| 449 |
+
|
| 450 |
+
Returns:
|
| 451 |
+
(kind, layer_idx) or (None, -1) if not matched.
|
| 452 |
+
|
| 453 |
+
Example:
|
| 454 |
+
'model.3.attn.wq.weight' -> ('wq', 3)
|
| 455 |
+
'model.5.attn.wk.weight' -> ('wk', 5)
|
| 456 |
+
'model.2.attn.q_proj.weight' -> ('q_proj', 2)
|
| 457 |
+
'model.7.attn.k_proj.weight' -> ('k_proj', 7)
|
| 458 |
+
'model.4.attn.v_proj.weight' -> (None, -1)
|
| 459 |
+
"""
|
| 460 |
+
parts = name.split('.')
|
| 461 |
+
if len(parts) < 3:
|
| 462 |
+
return None, -1
|
| 463 |
+
|
| 464 |
+
kind = parts[-2]
|
| 465 |
+
|
| 466 |
+
layer_idx = -1
|
| 467 |
+
for part in reversed(parts):
|
| 468 |
+
if part.isdigit():
|
| 469 |
+
layer_idx = int(part)
|
| 470 |
+
break
|
| 471 |
+
|
| 472 |
+
if kind in ('wq', 'wk', 'q_proj', 'k_proj'):
|
| 473 |
+
return kind, layer_idx
|
| 474 |
+
|
| 475 |
+
return None, -1
|
| 476 |
+
|
| 477 |
+
|
| 478 |
+
@dataclass
|
| 479 |
+
class QKClipInfo:
|
| 480 |
+
"""Per-parameter dynamic info computed from config + runtime logits."""
|
| 481 |
+
kind: Optional[str] # 'wq'/'q_proj' or 'wk'/'k_proj' or None
|
| 482 |
+
indices: List[int] # which heads to consider for clipping
|
| 483 |
+
head_dim: int # from config
|
| 484 |
+
threshold: float # from config
|
| 485 |
+
logit: Optional[torch.Tensor]
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
class Muon(torch.optim.Optimizer):
|
| 489 |
+
"""
|
| 490 |
+
Muon - MomentUm Orthogonalized by Newton-schulz
|
| 491 |
+
|
| 492 |
+
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
|
| 493 |
+
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
|
| 494 |
+
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
|
| 495 |
+
the advantage that it can be stably run in bfloat16 on the GPU.
|
| 496 |
+
|
| 497 |
+
Some warnings:
|
| 498 |
+
- We believe this optimizer is unlikely to work well for training with small batch size.
|
| 499 |
+
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
|
| 500 |
+
|
| 501 |
+
Arguments:
|
| 502 |
+
model: The model to be optimized by Muon.
|
| 503 |
+
is_muon_func: A function that takes a parameter and its name, and returns whether the parameter should be optimized by Muon.
|
| 504 |
+
lr: The learning rate. The updates will have spectral norm of `lr`. (0.02 is a good default)
|
| 505 |
+
momentum: The momentum used by the internal SGD. (0.95 is a good default)
|
| 506 |
+
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
|
| 507 |
+
ns_steps: The number of Newton-Schulz iterations to run. (6 is probably always enough)
|
| 508 |
+
weight_decay: The weight decay for Muon and AdamW.
|
| 509 |
+
{0, 1}-D or are detected as being the embed or lm_head will be optimized by AdamW as well.
|
| 510 |
+
adamw_lr: The learning rate for the internal AdamW.
|
| 511 |
+
adamw_betas: The betas for the internal AdamW.
|
| 512 |
+
adamw_eps: The epsilon for the internal AdamW.
|
| 513 |
+
none_grad: Whether to set p.grad to None after gathering the gradients. This can save memory.
|
| 514 |
+
debug: Whether to print debug information.
|
| 515 |
+
clip_info : Configuration for QK clipping. Expected keys:
|
| 516 |
+
- "q_indices" (list[int]): Indices of query heads to consider.
|
| 517 |
+
- "k_indices" (list[int]): Indices of key heads to consider.
|
| 518 |
+
- "head_dim" (int): Dimensionality of each attention head.
|
| 519 |
+
- "threshold" (float): Threshold value; heads whose QK logits exceed
|
| 520 |
+
this value will be scaled down.
|
| 521 |
+
Default is:
|
| 522 |
+
{
|
| 523 |
+
"q_indices": [],
|
| 524 |
+
"k_indices": [],
|
| 525 |
+
"head_dim": 128,
|
| 526 |
+
"threshold": 100
|
| 527 |
+
}
|
| 528 |
+
overlap_step : How many all2all gather, compute operations are launched in advance
|
| 529 |
+
before the corresponding all2all scatter steps begin.
|
| 530 |
+
A higher overlap_step increases memory usage but can improve
|
| 531 |
+
performance by overlapping communication.
|
| 532 |
+
Parallel muon only.
|
| 533 |
+
"""
|
| 534 |
+
|
| 535 |
+
def __init__(self,
|
| 536 |
+
params,
|
| 537 |
+
lr=1e-3,
|
| 538 |
+
momentum=0.95,
|
| 539 |
+
nesterov=True,
|
| 540 |
+
ns_steps=5,
|
| 541 |
+
weight_decay=0.1,
|
| 542 |
+
adamw_betas=(0.9, 0.95),
|
| 543 |
+
adamw_eps=1e-8,
|
| 544 |
+
none_grad=True,
|
| 545 |
+
debug=False,
|
| 546 |
+
clip_config={
|
| 547 |
+
"q_indices": [],
|
| 548 |
+
"k_indices": [],
|
| 549 |
+
"head_dim": 128,
|
| 550 |
+
"threshold": 100
|
| 551 |
+
},
|
| 552 |
+
overlap_step=5):
|
| 553 |
+
defaults = dict(
|
| 554 |
+
lr=lr,
|
| 555 |
+
weight_decay=weight_decay,
|
| 556 |
+
momentum=momentum,
|
| 557 |
+
nesterov=nesterov,
|
| 558 |
+
ns_steps=ns_steps,
|
| 559 |
+
adamw_betas=adamw_betas,
|
| 560 |
+
adamw_eps=adamw_eps,
|
| 561 |
+
none_grad=none_grad,
|
| 562 |
+
use_muon=True,
|
| 563 |
+
)
|
| 564 |
+
error_message = "The key 'use_muon' is not set in parameter group {idx}. Assuming all parameters in the group will use muon optimization, which may lead to unexpected behavior."
|
| 565 |
+
instruction_code = "\n\n please follow this code snippet \n```optimizer = get_kernel('motif-technologies/optimizer')\n\n\nparams = optimizer.muon.get_default_muon_param_groups(model)\n\noptim = optimizer.Muon(params, ...)```"
|
| 566 |
+
|
| 567 |
+
if isinstance(params, types.GeneratorType):
|
| 568 |
+
raise ValueError(error_message.format(idx=0) + instruction_code)
|
| 569 |
+
for _idx, param_group in enumerate(params):
|
| 570 |
+
if param_group.get("use_muon", None) is None:
|
| 571 |
+
raise ValueError(
|
| 572 |
+
error_message.format(idx=_idx) + instruction_code)
|
| 573 |
+
|
| 574 |
+
super().__init__(params, defaults)
|
| 575 |
+
|
| 576 |
+
self.rank = None
|
| 577 |
+
|
| 578 |
+
self.comm_stream = torch.cuda.Stream()
|
| 579 |
+
self.compute_stream = torch.cuda.Stream()
|
| 580 |
+
self.debug = debug
|
| 581 |
+
self.clip_config = clip_config
|
| 582 |
+
self.overlap_step = overlap_step
|
| 583 |
+
|
| 584 |
+
def _calc_flops(self, G, steps):
|
| 585 |
+
assert len(G.shape) == 2
|
| 586 |
+
M, N = G.shape
|
| 587 |
+
if M > N:
|
| 588 |
+
M, N = N, M
|
| 589 |
+
|
| 590 |
+
return steps * ((M**3) * 2 + (M**2 * N) * 4 + M * N * 2 + M**2 * 3)
|
| 591 |
+
|
| 592 |
+
def adjust_lr_for_muon(self, lr, param_shape):
|
| 593 |
+
A, B = param_shape[:2]
|
| 594 |
+
# We adjust the learning rate and weight decay based on the size of the parameter matrix
|
| 595 |
+
# as describted in the paper
|
| 596 |
+
adjusted_ratio = 0.2 * math.sqrt(max(A, B))
|
| 597 |
+
adjusted_lr = lr * adjusted_ratio
|
| 598 |
+
return adjusted_lr
|
| 599 |
+
|
| 600 |
+
def get_shard_mesh(self, p):
|
| 601 |
+
"""
|
| 602 |
+
Get the shard mesh for a parameter p on the given rank.
|
| 603 |
+
"""
|
| 604 |
+
assert isinstance(
|
| 605 |
+
p, DTensor), "Parallel Muon only supports DTensor parameters."
|
| 606 |
+
|
| 607 |
+
if p.placements == (Shard(dim=0), ):
|
| 608 |
+
# Case for FSDP
|
| 609 |
+
process_group = p.device_mesh.get_group(mesh_dim=0)
|
| 610 |
+
if self.rank is None:
|
| 611 |
+
self.rank = dist.get_rank(group=process_group)
|
| 612 |
+
else:
|
| 613 |
+
assert self.rank == dist.get_rank(group=process_group)
|
| 614 |
+
return p.device_mesh.mesh, p.device_mesh.get_group(mesh_dim=0)
|
| 615 |
+
elif p.placements == (Replicate(), Shard(dim=0)):
|
| 616 |
+
# Case for HSDP
|
| 617 |
+
process_group = p.device_mesh.get_group(mesh_dim=1)
|
| 618 |
+
if self.rank is None:
|
| 619 |
+
self.rank = dist.get_rank(group=process_group)
|
| 620 |
+
else:
|
| 621 |
+
assert self.rank == dist.get_rank(group=process_group)
|
| 622 |
+
for i, shard_mesh in enumerate(p.device_mesh.mesh):
|
| 623 |
+
if self.rank in shard_mesh:
|
| 624 |
+
return shard_mesh, p.device_mesh.get_group(mesh_dim=1)
|
| 625 |
+
else:
|
| 626 |
+
raise ValueError(f"Unsupported placements ({p.placements}).")
|
| 627 |
+
|
| 628 |
+
def init_state_and_assign_params(self, names, params, group, qk_logits):
|
| 629 |
+
param_to_state = {}
|
| 630 |
+
param_to_flops = {}
|
| 631 |
+
|
| 632 |
+
total_flops = 0
|
| 633 |
+
for p in params:
|
| 634 |
+
g = p.grad
|
| 635 |
+
if g is None:
|
| 636 |
+
continue
|
| 637 |
+
assert g.ndim == 2, "Muon only supports 2D parameters."
|
| 638 |
+
|
| 639 |
+
flops = self._calc_flops(g, group["ns_steps"])
|
| 640 |
+
param_to_flops[id(p)] = flops
|
| 641 |
+
total_flops += flops
|
| 642 |
+
|
| 643 |
+
if self.debug:
|
| 644 |
+
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs",
|
| 645 |
+
flush=True)
|
| 646 |
+
|
| 647 |
+
paired = list(zip(names, params))
|
| 648 |
+
|
| 649 |
+
paired_sorted = sorted(paired,
|
| 650 |
+
key=lambda x: param_to_flops[id(x[1])],
|
| 651 |
+
reverse=True)
|
| 652 |
+
|
| 653 |
+
names_sorted, params_sorted = zip(*paired_sorted)
|
| 654 |
+
ordered_names = list(names_sorted)
|
| 655 |
+
ordered_params = list(params_sorted)
|
| 656 |
+
|
| 657 |
+
round_robin = 0
|
| 658 |
+
mesh = None
|
| 659 |
+
shard_mesh = None
|
| 660 |
+
process_group = None
|
| 661 |
+
for n, p in zip(ordered_names, ordered_params):
|
| 662 |
+
if mesh is None:
|
| 663 |
+
mesh = p.device_mesh
|
| 664 |
+
shard_mesh, process_group = self.get_shard_mesh(p)
|
| 665 |
+
elif mesh != p.device_mesh:
|
| 666 |
+
raise ValueError("All parameters must be on the same mesh.")
|
| 667 |
+
num_ranks = dist.get_world_size(group=process_group)
|
| 668 |
+
param_to_state[id(p)] = _muon_state()
|
| 669 |
+
param_to_state[id(
|
| 670 |
+
p)].worker_rank = shard_mesh[round_robin].item() % num_ranks
|
| 671 |
+
param_to_state[id(p)].process_group = process_group
|
| 672 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 673 |
+
param_to_state[id(p)].qk_clip_state = qk_clip_state
|
| 674 |
+
round_robin = (round_robin + 1) % len(shard_mesh)
|
| 675 |
+
|
| 676 |
+
return param_to_state, ordered_params
|
| 677 |
+
|
| 678 |
+
def base(self, names, params, group, lr, weight_decay, momentum,
|
| 679 |
+
qk_logits):
|
| 680 |
+
# generate weight updates in distributed fashion
|
| 681 |
+
for n, p in zip(names, params):
|
| 682 |
+
g = p.grad
|
| 683 |
+
if g is None:
|
| 684 |
+
continue
|
| 685 |
+
if g.ndim > 2:
|
| 686 |
+
g = g.view(g.size(0), -1)
|
| 687 |
+
assert g is not None
|
| 688 |
+
|
| 689 |
+
# calc update
|
| 690 |
+
state = self.state[p]
|
| 691 |
+
if "momentum_buffer" not in state:
|
| 692 |
+
state["momentum_buffer"] = torch.zeros_like(g)
|
| 693 |
+
buf = state["momentum_buffer"]
|
| 694 |
+
buf.mul_(momentum).add_(g)
|
| 695 |
+
if group["nesterov"]:
|
| 696 |
+
g = g.add(buf, alpha=momentum)
|
| 697 |
+
else:
|
| 698 |
+
g = buf
|
| 699 |
+
|
| 700 |
+
u = _zeropower_via_newtonschulz5(g.to(COMM_DTYPE),
|
| 701 |
+
steps=group["ns_steps"])
|
| 702 |
+
|
| 703 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 704 |
+
Muon._update_p(p, u, lr, adjusted_lr, weight_decay)
|
| 705 |
+
|
| 706 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 707 |
+
|
| 708 |
+
scales_full = self._compute_scales(p, qk_clip_state)
|
| 709 |
+
if scales_full is not None:
|
| 710 |
+
Muon._qk_clip(p, scales_full, qk_clip_state.head_dim)
|
| 711 |
+
|
| 712 |
+
def _update_g(self, p, g, group, momentum):
|
| 713 |
+
# calc update
|
| 714 |
+
state = self.state[p]
|
| 715 |
+
buf = state.setdefault("momentum_buffer", torch.zeros_like(g))
|
| 716 |
+
torch.add(g, buf, alpha=momentum, out=buf)
|
| 717 |
+
if group["nesterov"]:
|
| 718 |
+
g.add_(buf, alpha=momentum)
|
| 719 |
+
return g
|
| 720 |
+
return buf
|
| 721 |
+
|
| 722 |
+
@staticmethod
|
| 723 |
+
def _update_p(p, u, lr, adjusted_lr, weight_decay):
|
| 724 |
+
# apply weight decay
|
| 725 |
+
p.data.mul_(1 - lr * weight_decay)
|
| 726 |
+
# apply update
|
| 727 |
+
p.data.add_(u, alpha=-adjusted_lr)
|
| 728 |
+
|
| 729 |
+
def get_qk_clip_info(self, n, qk_logits):
|
| 730 |
+
head_dim = self.clip_config.get('head_dim')
|
| 731 |
+
threshold = self.clip_config.get('threshold')
|
| 732 |
+
kind, layer_idx = parse_qk_layer(n)
|
| 733 |
+
|
| 734 |
+
logit, indices = None, []
|
| 735 |
+
if qk_logits is not None and kind is not None:
|
| 736 |
+
logit = qk_logits[layer_idx]
|
| 737 |
+
indices_key = 'q_indices' if 'q' in kind else 'k_indices'
|
| 738 |
+
indices = self.clip_config.get(indices_key, []) or []
|
| 739 |
+
|
| 740 |
+
return QKClipInfo(
|
| 741 |
+
kind=kind,
|
| 742 |
+
indices=indices,
|
| 743 |
+
head_dim=head_dim,
|
| 744 |
+
threshold=threshold,
|
| 745 |
+
logit=logit,
|
| 746 |
+
)
|
| 747 |
+
|
| 748 |
+
@staticmethod
|
| 749 |
+
def _compute_scales(p, qk_clip_state):
|
| 750 |
+
kind = qk_clip_state.kind
|
| 751 |
+
indices = qk_clip_state.indices
|
| 752 |
+
head_dim = qk_clip_state.head_dim
|
| 753 |
+
threshold = qk_clip_state.threshold
|
| 754 |
+
logit = qk_clip_state.logit
|
| 755 |
+
|
| 756 |
+
H_global = p.shape[0] // head_dim
|
| 757 |
+
scales_full = torch.ones(H_global, device=p.data.device)
|
| 758 |
+
scaling = 0
|
| 759 |
+
|
| 760 |
+
for logit_idx, head_idx in enumerate(indices):
|
| 761 |
+
v_ele = float(logit[logit_idx])
|
| 762 |
+
if v_ele > threshold:
|
| 763 |
+
new_scale = math.sqrt(threshold / v_ele)
|
| 764 |
+
if new_scale < scales_full[head_idx]:
|
| 765 |
+
scales_full[head_idx] = new_scale
|
| 766 |
+
logger.info(
|
| 767 |
+
f"[{kind}] Head {head_idx} exceeded threshold "
|
| 768 |
+
f"(value={v_ele:.4f}, threshold={threshold:.4f}) -> applying scale={new_scale:.4f}"
|
| 769 |
+
)
|
| 770 |
+
scaling += 1
|
| 771 |
+
|
| 772 |
+
return scales_full if scaling > 0 else None
|
| 773 |
+
|
| 774 |
+
@staticmethod
|
| 775 |
+
def _qk_clip(p, scales, head_dim):
|
| 776 |
+
W = p.data.view(-1, head_dim, p.data.shape[1])
|
| 777 |
+
W.mul_(scales.view(-1, 1, 1))
|
| 778 |
+
|
| 779 |
+
def parallel(self, names, params, group, lr, weight_decay, momentum,
|
| 780 |
+
qk_logits):
|
| 781 |
+
"""
|
| 782 |
+
Perform a parallel optimization step using Muon.
|
| 783 |
+
"""
|
| 784 |
+
|
| 785 |
+
for p in params:
|
| 786 |
+
g = p.grad
|
| 787 |
+
if g is None:
|
| 788 |
+
continue
|
| 789 |
+
if g.ndim > 2:
|
| 790 |
+
g = g.view(g.size(0), -1)
|
| 791 |
+
|
| 792 |
+
# Update g in the local rank
|
| 793 |
+
g = self._update_g(
|
| 794 |
+
p,
|
| 795 |
+
g,
|
| 796 |
+
group,
|
| 797 |
+
momentum=momentum,
|
| 798 |
+
)
|
| 799 |
+
p.grad = g
|
| 800 |
+
|
| 801 |
+
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 802 |
+
names, params, group, qk_logits)
|
| 803 |
+
|
| 804 |
+
assert self.rank is not None
|
| 805 |
+
|
| 806 |
+
def enqueue_all2all_gather(start_idx, chunk_size):
|
| 807 |
+
target_params = ordered_params[start_idx:start_idx + chunk_size]
|
| 808 |
+
if target_params:
|
| 809 |
+
alloc_event = _alloc_gathered_grad(target_params,
|
| 810 |
+
param_to_state, self.rank,
|
| 811 |
+
self.compute_stream)
|
| 812 |
+
_all2all_gather(target_params, param_to_state, self.rank,
|
| 813 |
+
self.comm_stream, group["none_grad"],
|
| 814 |
+
alloc_event)
|
| 815 |
+
|
| 816 |
+
def enqueue_computes(start_idx, chunk_size):
|
| 817 |
+
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
| 818 |
+
state = param_to_state[id(p)]
|
| 819 |
+
_compute_u(p, state, group["ns_steps"], self.rank,
|
| 820 |
+
self.compute_stream)
|
| 821 |
+
|
| 822 |
+
def enqueue_all2all_scatter(start_idx, chunk_size):
|
| 823 |
+
target_params = ordered_params[start_idx:start_idx + chunk_size]
|
| 824 |
+
if target_params:
|
| 825 |
+
alloc_event = _alloc_scattered_u(target_params, param_to_state,
|
| 826 |
+
self.rank,
|
| 827 |
+
self.compute_stream)
|
| 828 |
+
_all2all_scatter(target_params, param_to_state, self.rank,
|
| 829 |
+
self.comm_stream, alloc_event)
|
| 830 |
+
|
| 831 |
+
def enqueue_update_param(start_idx, chunk_size):
|
| 832 |
+
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
| 833 |
+
state = param_to_state[id(p)]
|
| 834 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 835 |
+
_update_param(p, state, lr, adjusted_lr, weight_decay,
|
| 836 |
+
self.rank, self.compute_stream)
|
| 837 |
+
|
| 838 |
+
chunk_size = dist.get_world_size(param_to_state[id(
|
| 839 |
+
params[0])].process_group)
|
| 840 |
+
|
| 841 |
+
# Wait grad update
|
| 842 |
+
self.comm_stream.wait_stream(torch.cuda.current_stream())
|
| 843 |
+
|
| 844 |
+
overlap_step = self.overlap_step
|
| 845 |
+
for i in range(0, overlap_step):
|
| 846 |
+
enqueue_all2all_gather(i * chunk_size, chunk_size)
|
| 847 |
+
enqueue_computes(i * chunk_size, chunk_size)
|
| 848 |
+
|
| 849 |
+
for i in range(0, len(params) + chunk_size - 1, chunk_size):
|
| 850 |
+
enqueue_all2all_scatter(i, chunk_size)
|
| 851 |
+
enqueue_all2all_gather(i + overlap_step * chunk_size, chunk_size)
|
| 852 |
+
enqueue_update_param(i, chunk_size)
|
| 853 |
+
enqueue_computes(i + overlap_step * chunk_size, chunk_size)
|
| 854 |
+
|
| 855 |
+
# Wait the last update_param to finish
|
| 856 |
+
torch.cuda.current_stream().wait_stream(self.compute_stream)
|
| 857 |
+
|
| 858 |
+
@staticmethod
|
| 859 |
+
def _fused_adamw(
|
| 860 |
+
params: list[torch.Tensor],
|
| 861 |
+
grads: list[torch.Tensor],
|
| 862 |
+
exp_avgs: list[torch.Tensor],
|
| 863 |
+
exp_avg_sqs: list[torch.Tensor],
|
| 864 |
+
max_exp_avg_sqs: list[torch.Tensor],
|
| 865 |
+
state_steps: list[torch.Tensor],
|
| 866 |
+
amsgrad: bool,
|
| 867 |
+
beta1: float,
|
| 868 |
+
beta2: float,
|
| 869 |
+
lr: Union[float, torch.Tensor],
|
| 870 |
+
weight_decay: float,
|
| 871 |
+
eps: float,
|
| 872 |
+
maximize: bool,
|
| 873 |
+
) -> None:
|
| 874 |
+
if not params:
|
| 875 |
+
return
|
| 876 |
+
|
| 877 |
+
# We only shuffle around the lr when it is a Tensor and on CUDA, otherwise, we prefer
|
| 878 |
+
# treating it as a scalar.
|
| 879 |
+
lr_dict: Optional[DeviceDict] = ({
|
| 880 |
+
lr.device: lr
|
| 881 |
+
} if isinstance(lr, torch.Tensor) and str(lr.device) != "cpu" else
|
| 882 |
+
None)
|
| 883 |
+
grouped_tensors = torch.optim.Optimizer._group_tensors_by_device_and_dtype(
|
| 884 |
+
[
|
| 885 |
+
params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs,
|
| 886 |
+
state_steps
|
| 887 |
+
] # type: ignore[list-item]
|
| 888 |
+
)
|
| 889 |
+
for (device, _), (
|
| 890 |
+
(
|
| 891 |
+
device_params_,
|
| 892 |
+
device_grads_,
|
| 893 |
+
device_exp_avgs_,
|
| 894 |
+
device_exp_avg_sqs_,
|
| 895 |
+
device_max_exp_avg_sqs,
|
| 896 |
+
device_state_steps_,
|
| 897 |
+
),
|
| 898 |
+
_,
|
| 899 |
+
) in grouped_tensors.items():
|
| 900 |
+
device_params = cast(list[torch.Tensor], device_params_)
|
| 901 |
+
device_grads = cast(list[torch.Tensor], device_grads_)
|
| 902 |
+
device_exp_avgs = cast(list[torch.Tensor], device_exp_avgs_)
|
| 903 |
+
device_exp_avg_sqs = cast(list[torch.Tensor], device_exp_avg_sqs_)
|
| 904 |
+
device_state_steps = cast(list[torch.Tensor], device_state_steps_)
|
| 905 |
+
|
| 906 |
+
if lr_dict is not None and device not in lr_dict:
|
| 907 |
+
lr_dict[device] = lr.to(
|
| 908 |
+
device=device,
|
| 909 |
+
non_blocking=True) # type: ignore[union-attr]
|
| 910 |
+
lr = lr_dict[device]
|
| 911 |
+
torch._foreach_add_(device_state_steps, 1)
|
| 912 |
+
func = torch._fused_adamw_
|
| 913 |
+
func(
|
| 914 |
+
device_params,
|
| 915 |
+
device_grads,
|
| 916 |
+
device_exp_avgs,
|
| 917 |
+
device_exp_avg_sqs,
|
| 918 |
+
device_max_exp_avg_sqs, # type: ignore[arg-type]
|
| 919 |
+
device_state_steps,
|
| 920 |
+
amsgrad=amsgrad,
|
| 921 |
+
lr=lr, # type: ignore[arg-type]
|
| 922 |
+
beta1=beta1,
|
| 923 |
+
beta2=beta2,
|
| 924 |
+
weight_decay=weight_decay,
|
| 925 |
+
eps=eps,
|
| 926 |
+
maximize=maximize,
|
| 927 |
+
)
|
| 928 |
+
|
| 929 |
+
def step(self, closure=None, qk_logits=None):
|
| 930 |
+
"""Perform a single optimization step.
|
| 931 |
+
|
| 932 |
+
Args:
|
| 933 |
+
closure (Callable, optional): A closure that reevaluates the model
|
| 934 |
+
and returns the loss.
|
| 935 |
+
qk_logits (dict[int, Tensor], optional): A dictionary mapping layer indices
|
| 936 |
+
to 1D tensors of shape (num_heads,), representing the maximum
|
| 937 |
+
QK logits across all tokens, computed as
|
| 938 |
+
(1 / sqrt(head_dim)) * (Q @ K^T).
|
| 939 |
+
"""
|
| 940 |
+
loss = None
|
| 941 |
+
if closure is not None:
|
| 942 |
+
with torch.enable_grad():
|
| 943 |
+
loss = closure()
|
| 944 |
+
|
| 945 |
+
for group in self.param_groups:
|
| 946 |
+
params = group["params"]
|
| 947 |
+
|
| 948 |
+
if group["use_muon"]:
|
| 949 |
+
############################
|
| 950 |
+
# Muon #
|
| 951 |
+
############################
|
| 952 |
+
lr = group["lr"]
|
| 953 |
+
weight_decay = group["weight_decay"]
|
| 954 |
+
momentum = group["momentum"]
|
| 955 |
+
names = group["names"]
|
| 956 |
+
|
| 957 |
+
param_dtensors = []
|
| 958 |
+
param_tensors = []
|
| 959 |
+
name_dtensors = []
|
| 960 |
+
name_tensors = []
|
| 961 |
+
|
| 962 |
+
for n, p in zip(names, params):
|
| 963 |
+
if p is None or p.grad is None:
|
| 964 |
+
continue
|
| 965 |
+
if isinstance(p.data, DTensor):
|
| 966 |
+
if all(
|
| 967 |
+
isinstance(placement, Replicate)
|
| 968 |
+
for placement in p.placements):
|
| 969 |
+
param_tensors.append(p)
|
| 970 |
+
name_tensors.append(n)
|
| 971 |
+
else:
|
| 972 |
+
param_dtensors.append(p)
|
| 973 |
+
name_dtensors.append(n)
|
| 974 |
+
elif isinstance(p.data, torch.Tensor):
|
| 975 |
+
param_tensors.append(p)
|
| 976 |
+
name_tensors.append(n)
|
| 977 |
+
else:
|
| 978 |
+
raise TypeError(
|
| 979 |
+
f"Unsupported parameter type: {type(p.data)}")
|
| 980 |
+
|
| 981 |
+
if self.debug:
|
| 982 |
+
print(
|
| 983 |
+
f"[Muon] {len(param_dtensors)} DTensors, {len(param_tensors)} Tensors",
|
| 984 |
+
flush=True,
|
| 985 |
+
)
|
| 986 |
+
|
| 987 |
+
if len(param_dtensors) > 0:
|
| 988 |
+
if not dist.is_initialized():
|
| 989 |
+
raise RuntimeError(
|
| 990 |
+
"Parallel Muon requires torch.distributed to be initialized."
|
| 991 |
+
)
|
| 992 |
+
|
| 993 |
+
self.parallel(
|
| 994 |
+
name_dtensors,
|
| 995 |
+
param_dtensors,
|
| 996 |
+
group,
|
| 997 |
+
lr=lr,
|
| 998 |
+
weight_decay=weight_decay,
|
| 999 |
+
momentum=momentum,
|
| 1000 |
+
qk_logits=qk_logits,
|
| 1001 |
+
)
|
| 1002 |
+
|
| 1003 |
+
if len(param_tensors) > 0:
|
| 1004 |
+
self.base(
|
| 1005 |
+
name_tensors,
|
| 1006 |
+
param_tensors,
|
| 1007 |
+
group,
|
| 1008 |
+
lr=lr,
|
| 1009 |
+
weight_decay=weight_decay,
|
| 1010 |
+
momentum=momentum,
|
| 1011 |
+
qk_logits=qk_logits,
|
| 1012 |
+
)
|
| 1013 |
+
|
| 1014 |
+
else:
|
| 1015 |
+
############################
|
| 1016 |
+
# AdamW backup #
|
| 1017 |
+
############################
|
| 1018 |
+
|
| 1019 |
+
params_with_grads = []
|
| 1020 |
+
grads = []
|
| 1021 |
+
moment1 = []
|
| 1022 |
+
moment2 = []
|
| 1023 |
+
max_exp_avg_sqs = []
|
| 1024 |
+
state_steps = []
|
| 1025 |
+
lr = group["lr"]
|
| 1026 |
+
beta1, beta2 = group["adamw_betas"]
|
| 1027 |
+
eps = group["adamw_eps"]
|
| 1028 |
+
weight_decay = group["weight_decay"]
|
| 1029 |
+
|
| 1030 |
+
for p in params:
|
| 1031 |
+
g = p.grad
|
| 1032 |
+
if g is None:
|
| 1033 |
+
continue
|
| 1034 |
+
state = self.state[p]
|
| 1035 |
+
params_with_grads.append(p)
|
| 1036 |
+
grads.append(g)
|
| 1037 |
+
if "step" not in state:
|
| 1038 |
+
state["step"] = (torch.zeros((),
|
| 1039 |
+
dtype=torch.float32,
|
| 1040 |
+
device=p.device))
|
| 1041 |
+
state["moment1"] = torch.zeros_like(g)
|
| 1042 |
+
state["moment2"] = torch.zeros_like(g)
|
| 1043 |
+
moment1.append(state["moment1"])
|
| 1044 |
+
moment2.append(state["moment2"])
|
| 1045 |
+
if not isinstance(state["step"], torch.Tensor):
|
| 1046 |
+
step_tensor = torch.tensor(state["step"],
|
| 1047 |
+
dtype=torch.float32,
|
| 1048 |
+
device=p.device)
|
| 1049 |
+
else:
|
| 1050 |
+
step_tensor = state["step"]
|
| 1051 |
+
state_steps.append(step_tensor)
|
| 1052 |
+
|
| 1053 |
+
self._fused_adamw(
|
| 1054 |
+
params_with_grads,
|
| 1055 |
+
grads,
|
| 1056 |
+
moment1,
|
| 1057 |
+
moment2,
|
| 1058 |
+
max_exp_avg_sqs,
|
| 1059 |
+
state_steps,
|
| 1060 |
+
amsgrad=False,
|
| 1061 |
+
beta1=beta1,
|
| 1062 |
+
beta2=beta2,
|
| 1063 |
+
lr=lr,
|
| 1064 |
+
weight_decay=weight_decay,
|
| 1065 |
+
eps=eps,
|
| 1066 |
+
maximize=False,
|
| 1067 |
+
)
|
| 1068 |
+
|
| 1069 |
+
return loss
|
build/torch29-cxx11-cu130-x86_64-linux/optimizer/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .muon import Muon
|
| 2 |
+
|
| 3 |
+
__all__ = [
|
| 4 |
+
"Muon",
|
| 5 |
+
]
|
build/torch29-cxx11-cu130-x86_64-linux/optimizer/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _optimizer_811726c_dirty
|
| 3 |
+
ops = torch.ops._optimizer_811726c_dirty
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_optimizer_811726c_dirty::{op_name}"
|
build/torch29-cxx11-cu130-x86_64-linux/optimizer/_optimizer_811726c_dirty.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:52a744cf30c60fe1e8fc35ebb0d3421d679bb2047fbb4602846bd6902cfa9e52
|
| 3 |
+
size 1872152
|
build/torch29-cxx11-cu130-x86_64-linux/optimizer/matmul_transpose_triton.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MIT License
|
| 2 |
+
#
|
| 3 |
+
# Copyright (c) 2025 Tianyang Lin
|
| 4 |
+
#
|
| 5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
# in the Software without restriction, including without limitation the rights
|
| 8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
# furnished to do so, subject to the following conditions:
|
| 11 |
+
#
|
| 12 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
# copies or substantial portions of the Software.
|
| 14 |
+
#
|
| 15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
# SOFTWARE.
|
| 22 |
+
|
| 23 |
+
import torch
|
| 24 |
+
import triton
|
| 25 |
+
import triton.language as tl
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def get_autotune_config():
|
| 29 |
+
return [
|
| 30 |
+
triton.Config(
|
| 31 |
+
{
|
| 32 |
+
'BLOCK_SIZE_M': blk_m,
|
| 33 |
+
'BLOCK_SIZE_K': blk_k,
|
| 34 |
+
'GROUP_SIZE_M': grp_sz
|
| 35 |
+
},
|
| 36 |
+
num_stages=n_stages,
|
| 37 |
+
num_warps=n_warps) for blk_m in [32, 64, 128]
|
| 38 |
+
for blk_k in [32, 64] for grp_sz in [8] for n_stages in [3, 4, 5]
|
| 39 |
+
for n_warps in [4, 8]
|
| 40 |
+
]
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
@triton.autotune(
|
| 44 |
+
configs=get_autotune_config(),
|
| 45 |
+
key=['M', 'K'],
|
| 46 |
+
)
|
| 47 |
+
@triton.jit
|
| 48 |
+
def mmt_kernel(x, y, M, K, stride_xm, stride_xk, stride_ym, stride_yn,
|
| 49 |
+
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
|
| 50 |
+
GROUP_SIZE_M: tl.constexpr):
|
| 51 |
+
"""
|
| 52 |
+
Core kernel jit function of matmul_transpose that computes y = x @ x.T
|
| 53 |
+
The code is a simple adaptation from the triton `matmul` tutorial:
|
| 54 |
+
https://triton-lang.org/main/getting-started/tutorials/03-matrix-multiplication.html
|
| 55 |
+
"""
|
| 56 |
+
pid = tl.program_id(axis=0)
|
| 57 |
+
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
|
| 58 |
+
num_pid_n = tl.cdiv(M, BLOCK_SIZE_M)
|
| 59 |
+
num_pid_in_group = GROUP_SIZE_M * num_pid_n
|
| 60 |
+
group_id = pid // num_pid_in_group
|
| 61 |
+
first_pid_m = group_id * GROUP_SIZE_M
|
| 62 |
+
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
| 63 |
+
pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m)
|
| 64 |
+
pid_n = (pid % num_pid_in_group) // group_size_m
|
| 65 |
+
if pid_m > pid_n:
|
| 66 |
+
return
|
| 67 |
+
|
| 68 |
+
offs_xm = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
|
| 69 |
+
offs_xn = (pid_n * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
|
| 70 |
+
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
| 71 |
+
# we use a & b ptrs to denote different rows of x.
|
| 72 |
+
a_ptrs = x + (offs_xm[:, None] * stride_xm + offs_k[None, :] * stride_xk)
|
| 73 |
+
b_ptrs = x + (offs_xn[:, None] * stride_xm + offs_k[None, :] * stride_xk)
|
| 74 |
+
|
| 75 |
+
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_M), dtype=tl.float32)
|
| 76 |
+
|
| 77 |
+
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
|
| 78 |
+
a = tl.load(a_ptrs,
|
| 79 |
+
mask=offs_k[None, :] < K - k * BLOCK_SIZE_K,
|
| 80 |
+
other=0.0)
|
| 81 |
+
b = tl.load(b_ptrs,
|
| 82 |
+
mask=offs_k[None, :] < K - k * BLOCK_SIZE_K,
|
| 83 |
+
other=0.0)
|
| 84 |
+
accumulator = tl.dot(a, tl.permute(b, (1, 0)), accumulator)
|
| 85 |
+
a_ptrs += BLOCK_SIZE_K * stride_xk
|
| 86 |
+
b_ptrs += BLOCK_SIZE_K * stride_xk
|
| 87 |
+
# use dtype.element_ty to accommodate different input datatypes as in cpp templates
|
| 88 |
+
# https://github.com/triton-lang/triton/issues/2252
|
| 89 |
+
c = accumulator.to(x.dtype.element_ty)
|
| 90 |
+
|
| 91 |
+
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
| 92 |
+
offs_cn = pid_n * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
| 93 |
+
c_ptrs = y + stride_ym * offs_cm[:, None] + stride_yn * offs_cn[None, :]
|
| 94 |
+
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < M)
|
| 95 |
+
tl.store(c_ptrs, c, mask=c_mask)
|
| 96 |
+
|
| 97 |
+
# transpose and copy
|
| 98 |
+
if pid_m < pid_n:
|
| 99 |
+
ct_ptrs = y + stride_ym * offs_cn[:,
|
| 100 |
+
None] + stride_yn * offs_cm[None, :]
|
| 101 |
+
ct_mask = (offs_cn[:, None] < M) & (offs_cm[None, :] < M)
|
| 102 |
+
tl.store(ct_ptrs, tl.permute(c, (1, 0)), mask=ct_mask)
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def matmul_transpose_assign(d_in, d_out):
|
| 106 |
+
assert d_in.is_cuda, "Input `d_in` must be a CUDA tensor"
|
| 107 |
+
assert d_out.is_cuda, "Input `d_out` must be a CUDA tensor"
|
| 108 |
+
assert d_in.device == d_out.device, "Inputs `d_in` and `d_out` must be on the same CUDA device"
|
| 109 |
+
assert d_in.dtype == d_out.dtype, "Inputs must have the same data type"
|
| 110 |
+
assert d_in.ndim == 2, "Input `d_in` must be a 2D tensor"
|
| 111 |
+
assert d_out.ndim == 2, "Input `d_out` must be a 2D tensor"
|
| 112 |
+
assert d_in.size(0) == d_out.size(0) == d_out.size(0), \
|
| 113 |
+
"First dimension of `d_in` must match first and second dimension of `d_out`"
|
| 114 |
+
|
| 115 |
+
d_in = d_in.contiguous()
|
| 116 |
+
M, K = d_in.shape
|
| 117 |
+
grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(
|
| 118 |
+
M, META['BLOCK_SIZE_M']), )
|
| 119 |
+
with torch.cuda.device(d_in.device.index):
|
| 120 |
+
mmt_kernel[grid](d_in, d_out, M, K, d_in.stride(0), d_in.stride(1),
|
| 121 |
+
d_out.stride(0), d_out.stride(1))
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def matmul_transpose(d_in):
|
| 125 |
+
M, _ = d_in.shape
|
| 126 |
+
d_out = torch.empty((M, M), device=d_in.device, dtype=d_in.dtype)
|
| 127 |
+
matmul_transpose_assign(d_in, d_out)
|
| 128 |
+
return d_out
|
build/torch29-cxx11-cu130-x86_64-linux/optimizer/muon.py
ADDED
|
@@ -0,0 +1,1069 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import math
|
| 3 |
+
import types
|
| 4 |
+
from dataclasses import dataclass
|
| 5 |
+
from typing import List, Optional, Union, cast
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.distributed as dist
|
| 9 |
+
from torch.distributed._tensor import DTensor, Replicate, Shard
|
| 10 |
+
|
| 11 |
+
from .matmul_transpose_triton import matmul_transpose_assign
|
| 12 |
+
|
| 13 |
+
logger = logging.getLogger(__name__)
|
| 14 |
+
|
| 15 |
+
COMM_DTYPE = torch.bfloat16
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# This code snippet is a modified version adapted from the following GitHub repositories:
|
| 19 |
+
# https://github.com/KellerJordan/Muon/blob/master/muon.py
|
| 20 |
+
# Muon's Newton–Schulz iteration causes high variance in singular values
|
| 21 |
+
# Idea: give each iteration its own 3 coefficients and optimize them via gradient descent.
|
| 22 |
+
@torch.no_grad()
|
| 23 |
+
# matmul_transpose_assign from : https://github.com/nil0x9/flash-muon
|
| 24 |
+
def _zeropower_via_newtonschulz5(G, steps):
|
| 25 |
+
"""
|
| 26 |
+
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
|
| 27 |
+
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
|
| 28 |
+
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
|
| 29 |
+
zero even beyond the point where the iteration no longer converges all the way to one everywhere
|
| 30 |
+
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
|
| 31 |
+
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
|
| 32 |
+
performance at all relative to UV^T, where USV^T = G is the SVD.
|
| 33 |
+
"""
|
| 34 |
+
assert len(G.shape) == 2
|
| 35 |
+
assert G.dtype == COMM_DTYPE
|
| 36 |
+
X = G # no manual typecast
|
| 37 |
+
|
| 38 |
+
if G.size(0) > G.size(1):
|
| 39 |
+
X = X.T
|
| 40 |
+
# Ensure spectral norm is at most 1
|
| 41 |
+
X = X / (X.norm() + 1e-7)
|
| 42 |
+
buf1 = torch.empty(X.size(0), X.size(0), dtype=X.dtype, device=X.device)
|
| 43 |
+
buf2 = torch.empty(X.size(0), X.size(0), dtype=X.dtype, device=X.device)
|
| 44 |
+
# Perform the NS iterations
|
| 45 |
+
for a, b, c in [
|
| 46 |
+
(4.0848, -6.8946, 2.9270),
|
| 47 |
+
(3.9505, -6.3029, 2.6377),
|
| 48 |
+
(3.7418, -5.5913, 2.3037),
|
| 49 |
+
(2.8769, -3.1427, 1.2046),
|
| 50 |
+
(2.8366, -3.0525, 1.2012),
|
| 51 |
+
]:
|
| 52 |
+
matmul_transpose_assign(X, buf1)
|
| 53 |
+
matmul_transpose_assign(buf1, buf2)
|
| 54 |
+
buf1.mul_(b).add_(buf2, alpha=c)
|
| 55 |
+
X = torch.addmm(X, buf1, X, alpha=1.0, beta=a)
|
| 56 |
+
|
| 57 |
+
if G.size(0) > G.size(1):
|
| 58 |
+
X = X.T
|
| 59 |
+
return X
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
@dataclass
|
| 63 |
+
class _muon_state:
|
| 64 |
+
# TODO: use Optional
|
| 65 |
+
worker_rank: int | None = None
|
| 66 |
+
gathered_grad: torch.Tensor | None = None
|
| 67 |
+
scattered_u: DTensor | None = None
|
| 68 |
+
computed_u: torch.Tensor | None = None
|
| 69 |
+
gather_event: torch.cuda.Event | None = None
|
| 70 |
+
compute_event: torch.cuda.Event | None = None
|
| 71 |
+
scatter_event: torch.cuda.Event | None = None
|
| 72 |
+
process_group = None
|
| 73 |
+
qk_clip_state = None
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def split_elems_for_src(param, src_rank, num_ranks) -> int:
|
| 77 |
+
rows = param.shape[0]
|
| 78 |
+
cols = int(param.numel() // rows)
|
| 79 |
+
base, rem = divmod(rows, num_ranks)
|
| 80 |
+
my_rows = base + (1 if src_rank < rem else 0)
|
| 81 |
+
return my_rows * cols
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
@torch.no_grad()
|
| 85 |
+
def _alloc_gathered_grad(params, param_to_state, rank, compute_stream):
|
| 86 |
+
"""
|
| 87 |
+
Pre-allocate gathered_grad buffer on compute_stream
|
| 88 |
+
before launching all2all gather
|
| 89 |
+
"""
|
| 90 |
+
with torch.cuda.stream(compute_stream):
|
| 91 |
+
for p in params:
|
| 92 |
+
state = param_to_state[id(p)]
|
| 93 |
+
if rank == state.worker_rank:
|
| 94 |
+
num_ranks = dist.get_world_size(group=state.process_group)
|
| 95 |
+
state.gathered_grad = torch.empty(p.grad.numel(),
|
| 96 |
+
dtype=COMM_DTYPE,
|
| 97 |
+
device="cuda")
|
| 98 |
+
else:
|
| 99 |
+
state.gathered_grad = None
|
| 100 |
+
|
| 101 |
+
alloc_event = torch.cuda.Event()
|
| 102 |
+
alloc_event.record(compute_stream)
|
| 103 |
+
return alloc_event
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
@torch.no_grad()
|
| 107 |
+
def _all2all_gather(params, param_to_state, rank, comm_stream, none_grad,
|
| 108 |
+
alloc_event):
|
| 109 |
+
"""
|
| 110 |
+
All2all gathers shards so each owner rank reconstructs its full gradient
|
| 111 |
+
"""
|
| 112 |
+
with torch.cuda.stream(comm_stream):
|
| 113 |
+
process_group = param_to_state[id(params[0])].process_group
|
| 114 |
+
num_ranks = dist.get_world_size(group=process_group)
|
| 115 |
+
|
| 116 |
+
# Construct sending buffers
|
| 117 |
+
per_dst = [[] for _ in range(num_ranks)]
|
| 118 |
+
send_counts = [0] * num_ranks
|
| 119 |
+
|
| 120 |
+
for p in params:
|
| 121 |
+
state = param_to_state[id(p)]
|
| 122 |
+
dst = state.worker_rank
|
| 123 |
+
assert dst < num_ranks
|
| 124 |
+
shard_elems = split_elems_for_src(p, rank, num_ranks)
|
| 125 |
+
g = p.grad
|
| 126 |
+
g = g.to_local().to(COMM_DTYPE).contiguous().view(-1)
|
| 127 |
+
assert g.numel() == shard_elems
|
| 128 |
+
per_dst[dst].append(g)
|
| 129 |
+
send_counts[dst] += shard_elems
|
| 130 |
+
|
| 131 |
+
assert any(
|
| 132 |
+
len(v) > 0 for v in per_dst
|
| 133 |
+
), "At least one destination rank must receive a sharded tensor"
|
| 134 |
+
# list[list[Tensor]] -> list[Tensor]
|
| 135 |
+
per_dst = [t for dst in per_dst for t in dst]
|
| 136 |
+
|
| 137 |
+
send_buf = torch.cat(per_dst, dim=0)
|
| 138 |
+
|
| 139 |
+
owned_params = [
|
| 140 |
+
p for p in params if param_to_state[id(p)].worker_rank == rank
|
| 141 |
+
]
|
| 142 |
+
|
| 143 |
+
# Compute receive sizes and allocate receiving buffers
|
| 144 |
+
recv_counts = [0] * num_ranks
|
| 145 |
+
|
| 146 |
+
for src in range(num_ranks):
|
| 147 |
+
total = 0
|
| 148 |
+
for p in owned_params:
|
| 149 |
+
state = param_to_state[id(p)]
|
| 150 |
+
assert state.worker_rank == rank
|
| 151 |
+
total += split_elems_for_src(p, src, num_ranks)
|
| 152 |
+
recv_counts[src] = total
|
| 153 |
+
|
| 154 |
+
recv_total = sum(recv_counts)
|
| 155 |
+
recv_buf = torch.empty(recv_total, dtype=COMM_DTYPE, device="cuda")
|
| 156 |
+
|
| 157 |
+
#All2All
|
| 158 |
+
dist.all_to_all_single(
|
| 159 |
+
recv_buf,
|
| 160 |
+
send_buf,
|
| 161 |
+
output_split_sizes=recv_counts,
|
| 162 |
+
input_split_sizes=send_counts,
|
| 163 |
+
group=process_group,
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
# Reconstructs gathered grad from the received buffer
|
| 167 |
+
#
|
| 168 |
+
# recv_buf (num ranks = 3)
|
| 169 |
+
#
|
| 170 |
+
# From rank 0 From rank 1 From rank 2
|
| 171 |
+
# | p1_0, p2_0, p3_0 | p1_1, p2_1, p3_1 | p1_2, p2_2, p3_2 |
|
| 172 |
+
#
|
| 173 |
+
# Outer loop:
|
| 174 |
+
# rank 0 -> rank 1 -> rank2
|
| 175 |
+
#
|
| 176 |
+
# Inner loop:
|
| 177 |
+
# p1_n -> p2_n -> p3_n
|
| 178 |
+
|
| 179 |
+
comm_stream.wait_event(alloc_event)
|
| 180 |
+
|
| 181 |
+
off = 0
|
| 182 |
+
write_offsets = {id(p): 0 for p in owned_params}
|
| 183 |
+
for src in range(num_ranks):
|
| 184 |
+
if recv_counts[src] == 0:
|
| 185 |
+
continue
|
| 186 |
+
|
| 187 |
+
block = recv_counts[src]
|
| 188 |
+
inner_off = 0
|
| 189 |
+
for p in owned_params:
|
| 190 |
+
state = param_to_state[id(p)]
|
| 191 |
+
assert state.worker_rank == rank
|
| 192 |
+
n = split_elems_for_src(p, src, num_ranks)
|
| 193 |
+
assert n > 0
|
| 194 |
+
|
| 195 |
+
sg = recv_buf.narrow(0, off + inner_off, n)
|
| 196 |
+
woff = write_offsets[id(p)]
|
| 197 |
+
dst = state.gathered_grad.narrow(0, woff, n)
|
| 198 |
+
dst.copy_(sg)
|
| 199 |
+
|
| 200 |
+
write_offsets[id(p)] += n
|
| 201 |
+
inner_off += n
|
| 202 |
+
off += block
|
| 203 |
+
|
| 204 |
+
for p in params:
|
| 205 |
+
state = param_to_state[id(p)]
|
| 206 |
+
if state.worker_rank == rank:
|
| 207 |
+
state.gathered_grad = state.gathered_grad.view_as(p)
|
| 208 |
+
state.gather_event = torch.cuda.Event()
|
| 209 |
+
state.gather_event.record(comm_stream)
|
| 210 |
+
else:
|
| 211 |
+
state.gathered_grad = None
|
| 212 |
+
state.gather_event = None
|
| 213 |
+
if none_grad:
|
| 214 |
+
p.grad = None
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
@torch.no_grad()
|
| 218 |
+
def _compute_u(p, state, steps, rank, compute_stream):
|
| 219 |
+
"""
|
| 220 |
+
On worker_rank, compute the orthogonalized update using Newton-Schulz iteration.
|
| 221 |
+
"""
|
| 222 |
+
with torch.cuda.stream(compute_stream):
|
| 223 |
+
if rank == state.worker_rank:
|
| 224 |
+
if state.gather_event is None:
|
| 225 |
+
raise RuntimeError("Gather event must be set before compute.")
|
| 226 |
+
compute_stream.wait_event(state.gather_event)
|
| 227 |
+
u = _zeropower_via_newtonschulz5(state.gathered_grad, steps)
|
| 228 |
+
state.gathered_grad = None
|
| 229 |
+
state.computed_u = u
|
| 230 |
+
state.compute_event = torch.cuda.Event()
|
| 231 |
+
state.compute_event.record()
|
| 232 |
+
else:
|
| 233 |
+
state.computed_u = None
|
| 234 |
+
state.compute_event = None
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
@torch.no_grad()
|
| 238 |
+
def _alloc_scattered_u(params, param_to_state, rank, compute_stream):
|
| 239 |
+
"""
|
| 240 |
+
Pre-allocate scattered_u buffer on compute_stream
|
| 241 |
+
before launching all2all gather
|
| 242 |
+
"""
|
| 243 |
+
with torch.cuda.stream(compute_stream):
|
| 244 |
+
for p in params:
|
| 245 |
+
state = param_to_state[id(p)]
|
| 246 |
+
state.scattered_u = torch.empty_like(p.to_local(),
|
| 247 |
+
dtype=COMM_DTYPE)
|
| 248 |
+
|
| 249 |
+
alloc_event = torch.cuda.Event()
|
| 250 |
+
alloc_event.record(compute_stream)
|
| 251 |
+
return alloc_event
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
def _all2all_scatter(params, param_to_state, rank, comm_stream, alloc_event):
|
| 255 |
+
"""
|
| 256 |
+
All2all scatters full gradients to all ranks
|
| 257 |
+
"""
|
| 258 |
+
with torch.cuda.stream(comm_stream):
|
| 259 |
+
process_group = param_to_state[id(params[0])].process_group
|
| 260 |
+
num_ranks = dist.get_world_size(group=process_group)
|
| 261 |
+
owned_params = [
|
| 262 |
+
p for p in params if param_to_state[id(p)].worker_rank == rank
|
| 263 |
+
]
|
| 264 |
+
|
| 265 |
+
# Construct sending buffer
|
| 266 |
+
per_dst = [[] for _ in range(num_ranks)]
|
| 267 |
+
send_counts = [0] * num_ranks
|
| 268 |
+
|
| 269 |
+
if owned_params:
|
| 270 |
+
for p in owned_params:
|
| 271 |
+
state = param_to_state[id(p)]
|
| 272 |
+
if state.compute_event is None:
|
| 273 |
+
raise RuntimeError(
|
| 274 |
+
"Compute event must be set before scatter.")
|
| 275 |
+
comm_stream.wait_event(state.compute_event)
|
| 276 |
+
state.gathered_grad = None
|
| 277 |
+
|
| 278 |
+
assert state.computed_u is not None
|
| 279 |
+
|
| 280 |
+
u_full = state.computed_u.to(COMM_DTYPE).contiguous().view(-1)
|
| 281 |
+
|
| 282 |
+
offset = 0
|
| 283 |
+
for dst in range(num_ranks):
|
| 284 |
+
n = split_elems_for_src(p, dst, num_ranks)
|
| 285 |
+
assert n > 0
|
| 286 |
+
|
| 287 |
+
su = u_full.narrow(0, offset, n)
|
| 288 |
+
per_dst[dst].append(su)
|
| 289 |
+
send_counts[dst] += n
|
| 290 |
+
offset += n
|
| 291 |
+
|
| 292 |
+
assert offset == u_full.numel()
|
| 293 |
+
|
| 294 |
+
lengths = [len(v) for v in per_dst]
|
| 295 |
+
if all(l > 0 for l in lengths):
|
| 296 |
+
assert all(
|
| 297 |
+
l == lengths[0] for l in lengths
|
| 298 |
+
), "All destination ranks must have the same number of sharded tensor"
|
| 299 |
+
# list[list[Tensor]] -> list[Tensor]
|
| 300 |
+
per_dst = [t for dst in per_dst for t in dst]
|
| 301 |
+
send_buf = torch.cat(per_dst, dim=0)
|
| 302 |
+
else:
|
| 303 |
+
# all_to_all requires participation from all ranks
|
| 304 |
+
# Even non-owner ranks must join the collective call
|
| 305 |
+
send_buf = torch.empty(0, dtype=COMM_DTYPE, device="cuda")
|
| 306 |
+
|
| 307 |
+
# Compute receive sizes and allocate receiving buffers
|
| 308 |
+
recv_counts = [0] * num_ranks
|
| 309 |
+
|
| 310 |
+
for src in range(num_ranks):
|
| 311 |
+
total = 0
|
| 312 |
+
for p in params:
|
| 313 |
+
state = param_to_state[id(p)]
|
| 314 |
+
if state.worker_rank != src:
|
| 315 |
+
continue
|
| 316 |
+
total += split_elems_for_src(p, rank, num_ranks)
|
| 317 |
+
recv_counts[src] = total
|
| 318 |
+
|
| 319 |
+
recv_total = sum(recv_counts)
|
| 320 |
+
assert recv_total > 0
|
| 321 |
+
recv_buf = torch.empty(recv_total, dtype=COMM_DTYPE, device="cuda")
|
| 322 |
+
|
| 323 |
+
#All2All
|
| 324 |
+
dist.all_to_all_single(
|
| 325 |
+
recv_buf,
|
| 326 |
+
send_buf,
|
| 327 |
+
output_split_sizes=recv_counts,
|
| 328 |
+
input_split_sizes=send_counts,
|
| 329 |
+
group=process_group,
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
# Copy to pre-allocated scattered_u buffer from the received buffer
|
| 333 |
+
#
|
| 334 |
+
# recv_buf (num ranks = 3, local_rank = 0)
|
| 335 |
+
#
|
| 336 |
+
# From rank 0 From rank 1 From rank 2
|
| 337 |
+
# | p1_0, p2_0, p3_0 | p4_0 | p5_0, p6_0 |
|
| 338 |
+
#
|
| 339 |
+
# Outer loop:
|
| 340 |
+
# rank 0 -> rank 1 -> rank2
|
| 341 |
+
#
|
| 342 |
+
# Inner loop:
|
| 343 |
+
# src(0) : p1_0 -> p2_0 -> p3_0
|
| 344 |
+
# src(1) : p4_0
|
| 345 |
+
# src(2) : p5_0 -> p6_0
|
| 346 |
+
|
| 347 |
+
comm_stream.wait_event(alloc_event)
|
| 348 |
+
|
| 349 |
+
off = 0
|
| 350 |
+
for src in range(num_ranks):
|
| 351 |
+
block = recv_counts[src]
|
| 352 |
+
if block == 0:
|
| 353 |
+
continue
|
| 354 |
+
|
| 355 |
+
inner_off = 0
|
| 356 |
+
for p in params:
|
| 357 |
+
state = param_to_state[id(p)]
|
| 358 |
+
if state.worker_rank != src:
|
| 359 |
+
continue
|
| 360 |
+
n = split_elems_for_src(p, rank, num_ranks)
|
| 361 |
+
assert n > 0
|
| 362 |
+
|
| 363 |
+
flat_local = recv_buf.narrow(0, off + inner_off,
|
| 364 |
+
n).view_as(p.to_local())
|
| 365 |
+
state.scattered_u.copy_(flat_local)
|
| 366 |
+
|
| 367 |
+
state.scatter_event = torch.cuda.Event()
|
| 368 |
+
state.scatter_event.record(comm_stream)
|
| 369 |
+
inner_off += n
|
| 370 |
+
|
| 371 |
+
assert inner_off == block
|
| 372 |
+
off += block
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
def _update_param(p, state, lr, adjusted_lr, weight_decay, rank,
|
| 376 |
+
compute_stream):
|
| 377 |
+
"""
|
| 378 |
+
Update sharded parameter p with the scattered_u.
|
| 379 |
+
Only worker_rank frees computed_u.
|
| 380 |
+
"""
|
| 381 |
+
with torch.cuda.stream(compute_stream):
|
| 382 |
+
if state.scatter_event is None:
|
| 383 |
+
raise RuntimeError("Scatter event must be set before update")
|
| 384 |
+
compute_stream.wait_event(state.scatter_event)
|
| 385 |
+
u_dtensor = DTensor.from_local(
|
| 386 |
+
state.scattered_u,
|
| 387 |
+
placements=p.placements,
|
| 388 |
+
device_mesh=p.device_mesh,
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
state.scattered_u = u_dtensor
|
| 392 |
+
|
| 393 |
+
if rank == state.worker_rank:
|
| 394 |
+
# Free computed_u
|
| 395 |
+
state.computed_u = None
|
| 396 |
+
|
| 397 |
+
Muon._update_p(p, state.scattered_u, lr, adjusted_lr, weight_decay)
|
| 398 |
+
state.scattered_u = None
|
| 399 |
+
u_dtensor = None
|
| 400 |
+
|
| 401 |
+
scales_full = Muon._compute_scales(p, state.qk_clip_state)
|
| 402 |
+
if scales_full is not None:
|
| 403 |
+
num_ranks = dist.get_world_size(group=state.process_group)
|
| 404 |
+
local_rank = dist.get_rank(group=state.process_group)
|
| 405 |
+
scales_local = scales_full.chunk(num_ranks, dim=0)[local_rank]
|
| 406 |
+
scales_local = DTensor.from_local(
|
| 407 |
+
scales_local,
|
| 408 |
+
placements=p.placements,
|
| 409 |
+
device_mesh=p.device_mesh,
|
| 410 |
+
)
|
| 411 |
+
Muon._qk_clip(p, scales_local, state.qk_clip_state.head_dim)
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
def default_is_muon(name, x):
|
| 415 |
+
skip_keys = ["embed_tokens", "lm_head", "tok_embeddings", "output"]
|
| 416 |
+
return x.ndim >= 2 and not any(key in name for key in skip_keys)
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
def get_default_muon_param_groups(model, is_muon_func=default_is_muon):
|
| 420 |
+
muon_params, muon_names = [], []
|
| 421 |
+
non_muon_params = []
|
| 422 |
+
|
| 423 |
+
for n, p in model.named_parameters():
|
| 424 |
+
if not p.requires_grad:
|
| 425 |
+
continue
|
| 426 |
+
if is_muon_func(n, p):
|
| 427 |
+
muon_params.append(p)
|
| 428 |
+
muon_names.append(n)
|
| 429 |
+
else:
|
| 430 |
+
non_muon_params.append(p)
|
| 431 |
+
|
| 432 |
+
return [
|
| 433 |
+
{
|
| 434 |
+
"params": muon_params,
|
| 435 |
+
"names": muon_names,
|
| 436 |
+
"use_muon": True,
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"params": non_muon_params,
|
| 440 |
+
"use_muon": False,
|
| 441 |
+
},
|
| 442 |
+
]
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
def parse_qk_layer(name: str) -> tuple[str | None, int]:
|
| 446 |
+
"""
|
| 447 |
+
Parse a parameter name to check if it is a query/key projection layer
|
| 448 |
+
('wq', 'wk', 'q_proj', 'k_proj') and return (kind, layer_index).
|
| 449 |
+
|
| 450 |
+
Returns:
|
| 451 |
+
(kind, layer_idx) or (None, -1) if not matched.
|
| 452 |
+
|
| 453 |
+
Example:
|
| 454 |
+
'model.3.attn.wq.weight' -> ('wq', 3)
|
| 455 |
+
'model.5.attn.wk.weight' -> ('wk', 5)
|
| 456 |
+
'model.2.attn.q_proj.weight' -> ('q_proj', 2)
|
| 457 |
+
'model.7.attn.k_proj.weight' -> ('k_proj', 7)
|
| 458 |
+
'model.4.attn.v_proj.weight' -> (None, -1)
|
| 459 |
+
"""
|
| 460 |
+
parts = name.split('.')
|
| 461 |
+
if len(parts) < 3:
|
| 462 |
+
return None, -1
|
| 463 |
+
|
| 464 |
+
kind = parts[-2]
|
| 465 |
+
|
| 466 |
+
layer_idx = -1
|
| 467 |
+
for part in reversed(parts):
|
| 468 |
+
if part.isdigit():
|
| 469 |
+
layer_idx = int(part)
|
| 470 |
+
break
|
| 471 |
+
|
| 472 |
+
if kind in ('wq', 'wk', 'q_proj', 'k_proj'):
|
| 473 |
+
return kind, layer_idx
|
| 474 |
+
|
| 475 |
+
return None, -1
|
| 476 |
+
|
| 477 |
+
|
| 478 |
+
@dataclass
|
| 479 |
+
class QKClipInfo:
|
| 480 |
+
"""Per-parameter dynamic info computed from config + runtime logits."""
|
| 481 |
+
kind: Optional[str] # 'wq'/'q_proj' or 'wk'/'k_proj' or None
|
| 482 |
+
indices: List[int] # which heads to consider for clipping
|
| 483 |
+
head_dim: int # from config
|
| 484 |
+
threshold: float # from config
|
| 485 |
+
logit: Optional[torch.Tensor]
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
class Muon(torch.optim.Optimizer):
|
| 489 |
+
"""
|
| 490 |
+
Muon - MomentUm Orthogonalized by Newton-schulz
|
| 491 |
+
|
| 492 |
+
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
|
| 493 |
+
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
|
| 494 |
+
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
|
| 495 |
+
the advantage that it can be stably run in bfloat16 on the GPU.
|
| 496 |
+
|
| 497 |
+
Some warnings:
|
| 498 |
+
- We believe this optimizer is unlikely to work well for training with small batch size.
|
| 499 |
+
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
|
| 500 |
+
|
| 501 |
+
Arguments:
|
| 502 |
+
model: The model to be optimized by Muon.
|
| 503 |
+
is_muon_func: A function that takes a parameter and its name, and returns whether the parameter should be optimized by Muon.
|
| 504 |
+
lr: The learning rate. The updates will have spectral norm of `lr`. (0.02 is a good default)
|
| 505 |
+
momentum: The momentum used by the internal SGD. (0.95 is a good default)
|
| 506 |
+
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
|
| 507 |
+
ns_steps: The number of Newton-Schulz iterations to run. (6 is probably always enough)
|
| 508 |
+
weight_decay: The weight decay for Muon and AdamW.
|
| 509 |
+
{0, 1}-D or are detected as being the embed or lm_head will be optimized by AdamW as well.
|
| 510 |
+
adamw_lr: The learning rate for the internal AdamW.
|
| 511 |
+
adamw_betas: The betas for the internal AdamW.
|
| 512 |
+
adamw_eps: The epsilon for the internal AdamW.
|
| 513 |
+
none_grad: Whether to set p.grad to None after gathering the gradients. This can save memory.
|
| 514 |
+
debug: Whether to print debug information.
|
| 515 |
+
clip_info : Configuration for QK clipping. Expected keys:
|
| 516 |
+
- "q_indices" (list[int]): Indices of query heads to consider.
|
| 517 |
+
- "k_indices" (list[int]): Indices of key heads to consider.
|
| 518 |
+
- "head_dim" (int): Dimensionality of each attention head.
|
| 519 |
+
- "threshold" (float): Threshold value; heads whose QK logits exceed
|
| 520 |
+
this value will be scaled down.
|
| 521 |
+
Default is:
|
| 522 |
+
{
|
| 523 |
+
"q_indices": [],
|
| 524 |
+
"k_indices": [],
|
| 525 |
+
"head_dim": 128,
|
| 526 |
+
"threshold": 100
|
| 527 |
+
}
|
| 528 |
+
overlap_step : How many all2all gather, compute operations are launched in advance
|
| 529 |
+
before the corresponding all2all scatter steps begin.
|
| 530 |
+
A higher overlap_step increases memory usage but can improve
|
| 531 |
+
performance by overlapping communication.
|
| 532 |
+
Parallel muon only.
|
| 533 |
+
"""
|
| 534 |
+
|
| 535 |
+
def __init__(self,
|
| 536 |
+
params,
|
| 537 |
+
lr=1e-3,
|
| 538 |
+
momentum=0.95,
|
| 539 |
+
nesterov=True,
|
| 540 |
+
ns_steps=5,
|
| 541 |
+
weight_decay=0.1,
|
| 542 |
+
adamw_betas=(0.9, 0.95),
|
| 543 |
+
adamw_eps=1e-8,
|
| 544 |
+
none_grad=True,
|
| 545 |
+
debug=False,
|
| 546 |
+
clip_config={
|
| 547 |
+
"q_indices": [],
|
| 548 |
+
"k_indices": [],
|
| 549 |
+
"head_dim": 128,
|
| 550 |
+
"threshold": 100
|
| 551 |
+
},
|
| 552 |
+
overlap_step=5):
|
| 553 |
+
defaults = dict(
|
| 554 |
+
lr=lr,
|
| 555 |
+
weight_decay=weight_decay,
|
| 556 |
+
momentum=momentum,
|
| 557 |
+
nesterov=nesterov,
|
| 558 |
+
ns_steps=ns_steps,
|
| 559 |
+
adamw_betas=adamw_betas,
|
| 560 |
+
adamw_eps=adamw_eps,
|
| 561 |
+
none_grad=none_grad,
|
| 562 |
+
use_muon=True,
|
| 563 |
+
)
|
| 564 |
+
error_message = "The key 'use_muon' is not set in parameter group {idx}. Assuming all parameters in the group will use muon optimization, which may lead to unexpected behavior."
|
| 565 |
+
instruction_code = "\n\n please follow this code snippet \n```optimizer = get_kernel('motif-technologies/optimizer')\n\n\nparams = optimizer.muon.get_default_muon_param_groups(model)\n\noptim = optimizer.Muon(params, ...)```"
|
| 566 |
+
|
| 567 |
+
if isinstance(params, types.GeneratorType):
|
| 568 |
+
raise ValueError(error_message.format(idx=0) + instruction_code)
|
| 569 |
+
for _idx, param_group in enumerate(params):
|
| 570 |
+
if param_group.get("use_muon", None) is None:
|
| 571 |
+
raise ValueError(
|
| 572 |
+
error_message.format(idx=_idx) + instruction_code)
|
| 573 |
+
|
| 574 |
+
super().__init__(params, defaults)
|
| 575 |
+
|
| 576 |
+
self.rank = None
|
| 577 |
+
|
| 578 |
+
self.comm_stream = torch.cuda.Stream()
|
| 579 |
+
self.compute_stream = torch.cuda.Stream()
|
| 580 |
+
self.debug = debug
|
| 581 |
+
self.clip_config = clip_config
|
| 582 |
+
self.overlap_step = overlap_step
|
| 583 |
+
|
| 584 |
+
def _calc_flops(self, G, steps):
|
| 585 |
+
assert len(G.shape) == 2
|
| 586 |
+
M, N = G.shape
|
| 587 |
+
if M > N:
|
| 588 |
+
M, N = N, M
|
| 589 |
+
|
| 590 |
+
return steps * ((M**3) * 2 + (M**2 * N) * 4 + M * N * 2 + M**2 * 3)
|
| 591 |
+
|
| 592 |
+
def adjust_lr_for_muon(self, lr, param_shape):
|
| 593 |
+
A, B = param_shape[:2]
|
| 594 |
+
# We adjust the learning rate and weight decay based on the size of the parameter matrix
|
| 595 |
+
# as describted in the paper
|
| 596 |
+
adjusted_ratio = 0.2 * math.sqrt(max(A, B))
|
| 597 |
+
adjusted_lr = lr * adjusted_ratio
|
| 598 |
+
return adjusted_lr
|
| 599 |
+
|
| 600 |
+
def get_shard_mesh(self, p):
|
| 601 |
+
"""
|
| 602 |
+
Get the shard mesh for a parameter p on the given rank.
|
| 603 |
+
"""
|
| 604 |
+
assert isinstance(
|
| 605 |
+
p, DTensor), "Parallel Muon only supports DTensor parameters."
|
| 606 |
+
|
| 607 |
+
if p.placements == (Shard(dim=0), ):
|
| 608 |
+
# Case for FSDP
|
| 609 |
+
process_group = p.device_mesh.get_group(mesh_dim=0)
|
| 610 |
+
if self.rank is None:
|
| 611 |
+
self.rank = dist.get_rank(group=process_group)
|
| 612 |
+
else:
|
| 613 |
+
assert self.rank == dist.get_rank(group=process_group)
|
| 614 |
+
return p.device_mesh.mesh, p.device_mesh.get_group(mesh_dim=0)
|
| 615 |
+
elif p.placements == (Replicate(), Shard(dim=0)):
|
| 616 |
+
# Case for HSDP
|
| 617 |
+
process_group = p.device_mesh.get_group(mesh_dim=1)
|
| 618 |
+
if self.rank is None:
|
| 619 |
+
self.rank = dist.get_rank(group=process_group)
|
| 620 |
+
else:
|
| 621 |
+
assert self.rank == dist.get_rank(group=process_group)
|
| 622 |
+
for i, shard_mesh in enumerate(p.device_mesh.mesh):
|
| 623 |
+
if self.rank in shard_mesh:
|
| 624 |
+
return shard_mesh, p.device_mesh.get_group(mesh_dim=1)
|
| 625 |
+
else:
|
| 626 |
+
raise ValueError(f"Unsupported placements ({p.placements}).")
|
| 627 |
+
|
| 628 |
+
def init_state_and_assign_params(self, names, params, group, qk_logits):
|
| 629 |
+
param_to_state = {}
|
| 630 |
+
param_to_flops = {}
|
| 631 |
+
|
| 632 |
+
total_flops = 0
|
| 633 |
+
for p in params:
|
| 634 |
+
g = p.grad
|
| 635 |
+
if g is None:
|
| 636 |
+
continue
|
| 637 |
+
assert g.ndim == 2, "Muon only supports 2D parameters."
|
| 638 |
+
|
| 639 |
+
flops = self._calc_flops(g, group["ns_steps"])
|
| 640 |
+
param_to_flops[id(p)] = flops
|
| 641 |
+
total_flops += flops
|
| 642 |
+
|
| 643 |
+
if self.debug:
|
| 644 |
+
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs",
|
| 645 |
+
flush=True)
|
| 646 |
+
|
| 647 |
+
paired = list(zip(names, params))
|
| 648 |
+
|
| 649 |
+
paired_sorted = sorted(paired,
|
| 650 |
+
key=lambda x: param_to_flops[id(x[1])],
|
| 651 |
+
reverse=True)
|
| 652 |
+
|
| 653 |
+
names_sorted, params_sorted = zip(*paired_sorted)
|
| 654 |
+
ordered_names = list(names_sorted)
|
| 655 |
+
ordered_params = list(params_sorted)
|
| 656 |
+
|
| 657 |
+
round_robin = 0
|
| 658 |
+
mesh = None
|
| 659 |
+
shard_mesh = None
|
| 660 |
+
process_group = None
|
| 661 |
+
for n, p in zip(ordered_names, ordered_params):
|
| 662 |
+
if mesh is None:
|
| 663 |
+
mesh = p.device_mesh
|
| 664 |
+
shard_mesh, process_group = self.get_shard_mesh(p)
|
| 665 |
+
elif mesh != p.device_mesh:
|
| 666 |
+
raise ValueError("All parameters must be on the same mesh.")
|
| 667 |
+
num_ranks = dist.get_world_size(group=process_group)
|
| 668 |
+
param_to_state[id(p)] = _muon_state()
|
| 669 |
+
param_to_state[id(
|
| 670 |
+
p)].worker_rank = shard_mesh[round_robin].item() % num_ranks
|
| 671 |
+
param_to_state[id(p)].process_group = process_group
|
| 672 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 673 |
+
param_to_state[id(p)].qk_clip_state = qk_clip_state
|
| 674 |
+
round_robin = (round_robin + 1) % len(shard_mesh)
|
| 675 |
+
|
| 676 |
+
return param_to_state, ordered_params
|
| 677 |
+
|
| 678 |
+
def base(self, names, params, group, lr, weight_decay, momentum,
|
| 679 |
+
qk_logits):
|
| 680 |
+
# generate weight updates in distributed fashion
|
| 681 |
+
for n, p in zip(names, params):
|
| 682 |
+
g = p.grad
|
| 683 |
+
if g is None:
|
| 684 |
+
continue
|
| 685 |
+
if g.ndim > 2:
|
| 686 |
+
g = g.view(g.size(0), -1)
|
| 687 |
+
assert g is not None
|
| 688 |
+
|
| 689 |
+
# calc update
|
| 690 |
+
state = self.state[p]
|
| 691 |
+
if "momentum_buffer" not in state:
|
| 692 |
+
state["momentum_buffer"] = torch.zeros_like(g)
|
| 693 |
+
buf = state["momentum_buffer"]
|
| 694 |
+
buf.mul_(momentum).add_(g)
|
| 695 |
+
if group["nesterov"]:
|
| 696 |
+
g = g.add(buf, alpha=momentum)
|
| 697 |
+
else:
|
| 698 |
+
g = buf
|
| 699 |
+
|
| 700 |
+
u = _zeropower_via_newtonschulz5(g.to(COMM_DTYPE),
|
| 701 |
+
steps=group["ns_steps"])
|
| 702 |
+
|
| 703 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 704 |
+
Muon._update_p(p, u, lr, adjusted_lr, weight_decay)
|
| 705 |
+
|
| 706 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 707 |
+
|
| 708 |
+
scales_full = self._compute_scales(p, qk_clip_state)
|
| 709 |
+
if scales_full is not None:
|
| 710 |
+
Muon._qk_clip(p, scales_full, qk_clip_state.head_dim)
|
| 711 |
+
|
| 712 |
+
def _update_g(self, p, g, group, momentum):
|
| 713 |
+
# calc update
|
| 714 |
+
state = self.state[p]
|
| 715 |
+
buf = state.setdefault("momentum_buffer", torch.zeros_like(g))
|
| 716 |
+
torch.add(g, buf, alpha=momentum, out=buf)
|
| 717 |
+
if group["nesterov"]:
|
| 718 |
+
g.add_(buf, alpha=momentum)
|
| 719 |
+
return g
|
| 720 |
+
return buf
|
| 721 |
+
|
| 722 |
+
@staticmethod
|
| 723 |
+
def _update_p(p, u, lr, adjusted_lr, weight_decay):
|
| 724 |
+
# apply weight decay
|
| 725 |
+
p.data.mul_(1 - lr * weight_decay)
|
| 726 |
+
# apply update
|
| 727 |
+
p.data.add_(u, alpha=-adjusted_lr)
|
| 728 |
+
|
| 729 |
+
def get_qk_clip_info(self, n, qk_logits):
|
| 730 |
+
head_dim = self.clip_config.get('head_dim')
|
| 731 |
+
threshold = self.clip_config.get('threshold')
|
| 732 |
+
kind, layer_idx = parse_qk_layer(n)
|
| 733 |
+
|
| 734 |
+
logit, indices = None, []
|
| 735 |
+
if qk_logits is not None and kind is not None:
|
| 736 |
+
logit = qk_logits[layer_idx]
|
| 737 |
+
indices_key = 'q_indices' if 'q' in kind else 'k_indices'
|
| 738 |
+
indices = self.clip_config.get(indices_key, []) or []
|
| 739 |
+
|
| 740 |
+
return QKClipInfo(
|
| 741 |
+
kind=kind,
|
| 742 |
+
indices=indices,
|
| 743 |
+
head_dim=head_dim,
|
| 744 |
+
threshold=threshold,
|
| 745 |
+
logit=logit,
|
| 746 |
+
)
|
| 747 |
+
|
| 748 |
+
@staticmethod
|
| 749 |
+
def _compute_scales(p, qk_clip_state):
|
| 750 |
+
kind = qk_clip_state.kind
|
| 751 |
+
indices = qk_clip_state.indices
|
| 752 |
+
head_dim = qk_clip_state.head_dim
|
| 753 |
+
threshold = qk_clip_state.threshold
|
| 754 |
+
logit = qk_clip_state.logit
|
| 755 |
+
|
| 756 |
+
H_global = p.shape[0] // head_dim
|
| 757 |
+
scales_full = torch.ones(H_global, device=p.data.device)
|
| 758 |
+
scaling = 0
|
| 759 |
+
|
| 760 |
+
for logit_idx, head_idx in enumerate(indices):
|
| 761 |
+
v_ele = float(logit[logit_idx])
|
| 762 |
+
if v_ele > threshold:
|
| 763 |
+
new_scale = math.sqrt(threshold / v_ele)
|
| 764 |
+
if new_scale < scales_full[head_idx]:
|
| 765 |
+
scales_full[head_idx] = new_scale
|
| 766 |
+
logger.info(
|
| 767 |
+
f"[{kind}] Head {head_idx} exceeded threshold "
|
| 768 |
+
f"(value={v_ele:.4f}, threshold={threshold:.4f}) -> applying scale={new_scale:.4f}"
|
| 769 |
+
)
|
| 770 |
+
scaling += 1
|
| 771 |
+
|
| 772 |
+
return scales_full if scaling > 0 else None
|
| 773 |
+
|
| 774 |
+
@staticmethod
|
| 775 |
+
def _qk_clip(p, scales, head_dim):
|
| 776 |
+
W = p.data.view(-1, head_dim, p.data.shape[1])
|
| 777 |
+
W.mul_(scales.view(-1, 1, 1))
|
| 778 |
+
|
| 779 |
+
def parallel(self, names, params, group, lr, weight_decay, momentum,
|
| 780 |
+
qk_logits):
|
| 781 |
+
"""
|
| 782 |
+
Perform a parallel optimization step using Muon.
|
| 783 |
+
"""
|
| 784 |
+
|
| 785 |
+
for p in params:
|
| 786 |
+
g = p.grad
|
| 787 |
+
if g is None:
|
| 788 |
+
continue
|
| 789 |
+
if g.ndim > 2:
|
| 790 |
+
g = g.view(g.size(0), -1)
|
| 791 |
+
|
| 792 |
+
# Update g in the local rank
|
| 793 |
+
g = self._update_g(
|
| 794 |
+
p,
|
| 795 |
+
g,
|
| 796 |
+
group,
|
| 797 |
+
momentum=momentum,
|
| 798 |
+
)
|
| 799 |
+
p.grad = g
|
| 800 |
+
|
| 801 |
+
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 802 |
+
names, params, group, qk_logits)
|
| 803 |
+
|
| 804 |
+
assert self.rank is not None
|
| 805 |
+
|
| 806 |
+
def enqueue_all2all_gather(start_idx, chunk_size):
|
| 807 |
+
target_params = ordered_params[start_idx:start_idx + chunk_size]
|
| 808 |
+
if target_params:
|
| 809 |
+
alloc_event = _alloc_gathered_grad(target_params,
|
| 810 |
+
param_to_state, self.rank,
|
| 811 |
+
self.compute_stream)
|
| 812 |
+
_all2all_gather(target_params, param_to_state, self.rank,
|
| 813 |
+
self.comm_stream, group["none_grad"],
|
| 814 |
+
alloc_event)
|
| 815 |
+
|
| 816 |
+
def enqueue_computes(start_idx, chunk_size):
|
| 817 |
+
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
| 818 |
+
state = param_to_state[id(p)]
|
| 819 |
+
_compute_u(p, state, group["ns_steps"], self.rank,
|
| 820 |
+
self.compute_stream)
|
| 821 |
+
|
| 822 |
+
def enqueue_all2all_scatter(start_idx, chunk_size):
|
| 823 |
+
target_params = ordered_params[start_idx:start_idx + chunk_size]
|
| 824 |
+
if target_params:
|
| 825 |
+
alloc_event = _alloc_scattered_u(target_params, param_to_state,
|
| 826 |
+
self.rank,
|
| 827 |
+
self.compute_stream)
|
| 828 |
+
_all2all_scatter(target_params, param_to_state, self.rank,
|
| 829 |
+
self.comm_stream, alloc_event)
|
| 830 |
+
|
| 831 |
+
def enqueue_update_param(start_idx, chunk_size):
|
| 832 |
+
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
| 833 |
+
state = param_to_state[id(p)]
|
| 834 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 835 |
+
_update_param(p, state, lr, adjusted_lr, weight_decay,
|
| 836 |
+
self.rank, self.compute_stream)
|
| 837 |
+
|
| 838 |
+
chunk_size = dist.get_world_size(param_to_state[id(
|
| 839 |
+
params[0])].process_group)
|
| 840 |
+
|
| 841 |
+
# Wait grad update
|
| 842 |
+
self.comm_stream.wait_stream(torch.cuda.current_stream())
|
| 843 |
+
|
| 844 |
+
overlap_step = self.overlap_step
|
| 845 |
+
for i in range(0, overlap_step):
|
| 846 |
+
enqueue_all2all_gather(i * chunk_size, chunk_size)
|
| 847 |
+
enqueue_computes(i * chunk_size, chunk_size)
|
| 848 |
+
|
| 849 |
+
for i in range(0, len(params) + chunk_size - 1, chunk_size):
|
| 850 |
+
enqueue_all2all_scatter(i, chunk_size)
|
| 851 |
+
enqueue_all2all_gather(i + overlap_step * chunk_size, chunk_size)
|
| 852 |
+
enqueue_update_param(i, chunk_size)
|
| 853 |
+
enqueue_computes(i + overlap_step * chunk_size, chunk_size)
|
| 854 |
+
|
| 855 |
+
# Wait the last update_param to finish
|
| 856 |
+
torch.cuda.current_stream().wait_stream(self.compute_stream)
|
| 857 |
+
|
| 858 |
+
@staticmethod
|
| 859 |
+
def _fused_adamw(
|
| 860 |
+
params: list[torch.Tensor],
|
| 861 |
+
grads: list[torch.Tensor],
|
| 862 |
+
exp_avgs: list[torch.Tensor],
|
| 863 |
+
exp_avg_sqs: list[torch.Tensor],
|
| 864 |
+
max_exp_avg_sqs: list[torch.Tensor],
|
| 865 |
+
state_steps: list[torch.Tensor],
|
| 866 |
+
amsgrad: bool,
|
| 867 |
+
beta1: float,
|
| 868 |
+
beta2: float,
|
| 869 |
+
lr: Union[float, torch.Tensor],
|
| 870 |
+
weight_decay: float,
|
| 871 |
+
eps: float,
|
| 872 |
+
maximize: bool,
|
| 873 |
+
) -> None:
|
| 874 |
+
if not params:
|
| 875 |
+
return
|
| 876 |
+
|
| 877 |
+
# We only shuffle around the lr when it is a Tensor and on CUDA, otherwise, we prefer
|
| 878 |
+
# treating it as a scalar.
|
| 879 |
+
lr_dict: Optional[DeviceDict] = ({
|
| 880 |
+
lr.device: lr
|
| 881 |
+
} if isinstance(lr, torch.Tensor) and str(lr.device) != "cpu" else
|
| 882 |
+
None)
|
| 883 |
+
grouped_tensors = torch.optim.Optimizer._group_tensors_by_device_and_dtype(
|
| 884 |
+
[
|
| 885 |
+
params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs,
|
| 886 |
+
state_steps
|
| 887 |
+
] # type: ignore[list-item]
|
| 888 |
+
)
|
| 889 |
+
for (device, _), (
|
| 890 |
+
(
|
| 891 |
+
device_params_,
|
| 892 |
+
device_grads_,
|
| 893 |
+
device_exp_avgs_,
|
| 894 |
+
device_exp_avg_sqs_,
|
| 895 |
+
device_max_exp_avg_sqs,
|
| 896 |
+
device_state_steps_,
|
| 897 |
+
),
|
| 898 |
+
_,
|
| 899 |
+
) in grouped_tensors.items():
|
| 900 |
+
device_params = cast(list[torch.Tensor], device_params_)
|
| 901 |
+
device_grads = cast(list[torch.Tensor], device_grads_)
|
| 902 |
+
device_exp_avgs = cast(list[torch.Tensor], device_exp_avgs_)
|
| 903 |
+
device_exp_avg_sqs = cast(list[torch.Tensor], device_exp_avg_sqs_)
|
| 904 |
+
device_state_steps = cast(list[torch.Tensor], device_state_steps_)
|
| 905 |
+
|
| 906 |
+
if lr_dict is not None and device not in lr_dict:
|
| 907 |
+
lr_dict[device] = lr.to(
|
| 908 |
+
device=device,
|
| 909 |
+
non_blocking=True) # type: ignore[union-attr]
|
| 910 |
+
lr = lr_dict[device]
|
| 911 |
+
torch._foreach_add_(device_state_steps, 1)
|
| 912 |
+
func = torch._fused_adamw_
|
| 913 |
+
func(
|
| 914 |
+
device_params,
|
| 915 |
+
device_grads,
|
| 916 |
+
device_exp_avgs,
|
| 917 |
+
device_exp_avg_sqs,
|
| 918 |
+
device_max_exp_avg_sqs, # type: ignore[arg-type]
|
| 919 |
+
device_state_steps,
|
| 920 |
+
amsgrad=amsgrad,
|
| 921 |
+
lr=lr, # type: ignore[arg-type]
|
| 922 |
+
beta1=beta1,
|
| 923 |
+
beta2=beta2,
|
| 924 |
+
weight_decay=weight_decay,
|
| 925 |
+
eps=eps,
|
| 926 |
+
maximize=maximize,
|
| 927 |
+
)
|
| 928 |
+
|
| 929 |
+
def step(self, closure=None, qk_logits=None):
|
| 930 |
+
"""Perform a single optimization step.
|
| 931 |
+
|
| 932 |
+
Args:
|
| 933 |
+
closure (Callable, optional): A closure that reevaluates the model
|
| 934 |
+
and returns the loss.
|
| 935 |
+
qk_logits (dict[int, Tensor], optional): A dictionary mapping layer indices
|
| 936 |
+
to 1D tensors of shape (num_heads,), representing the maximum
|
| 937 |
+
QK logits across all tokens, computed as
|
| 938 |
+
(1 / sqrt(head_dim)) * (Q @ K^T).
|
| 939 |
+
"""
|
| 940 |
+
loss = None
|
| 941 |
+
if closure is not None:
|
| 942 |
+
with torch.enable_grad():
|
| 943 |
+
loss = closure()
|
| 944 |
+
|
| 945 |
+
for group in self.param_groups:
|
| 946 |
+
params = group["params"]
|
| 947 |
+
|
| 948 |
+
if group["use_muon"]:
|
| 949 |
+
############################
|
| 950 |
+
# Muon #
|
| 951 |
+
############################
|
| 952 |
+
lr = group["lr"]
|
| 953 |
+
weight_decay = group["weight_decay"]
|
| 954 |
+
momentum = group["momentum"]
|
| 955 |
+
names = group["names"]
|
| 956 |
+
|
| 957 |
+
param_dtensors = []
|
| 958 |
+
param_tensors = []
|
| 959 |
+
name_dtensors = []
|
| 960 |
+
name_tensors = []
|
| 961 |
+
|
| 962 |
+
for n, p in zip(names, params):
|
| 963 |
+
if p is None or p.grad is None:
|
| 964 |
+
continue
|
| 965 |
+
if isinstance(p.data, DTensor):
|
| 966 |
+
if all(
|
| 967 |
+
isinstance(placement, Replicate)
|
| 968 |
+
for placement in p.placements):
|
| 969 |
+
param_tensors.append(p)
|
| 970 |
+
name_tensors.append(n)
|
| 971 |
+
else:
|
| 972 |
+
param_dtensors.append(p)
|
| 973 |
+
name_dtensors.append(n)
|
| 974 |
+
elif isinstance(p.data, torch.Tensor):
|
| 975 |
+
param_tensors.append(p)
|
| 976 |
+
name_tensors.append(n)
|
| 977 |
+
else:
|
| 978 |
+
raise TypeError(
|
| 979 |
+
f"Unsupported parameter type: {type(p.data)}")
|
| 980 |
+
|
| 981 |
+
if self.debug:
|
| 982 |
+
print(
|
| 983 |
+
f"[Muon] {len(param_dtensors)} DTensors, {len(param_tensors)} Tensors",
|
| 984 |
+
flush=True,
|
| 985 |
+
)
|
| 986 |
+
|
| 987 |
+
if len(param_dtensors) > 0:
|
| 988 |
+
if not dist.is_initialized():
|
| 989 |
+
raise RuntimeError(
|
| 990 |
+
"Parallel Muon requires torch.distributed to be initialized."
|
| 991 |
+
)
|
| 992 |
+
|
| 993 |
+
self.parallel(
|
| 994 |
+
name_dtensors,
|
| 995 |
+
param_dtensors,
|
| 996 |
+
group,
|
| 997 |
+
lr=lr,
|
| 998 |
+
weight_decay=weight_decay,
|
| 999 |
+
momentum=momentum,
|
| 1000 |
+
qk_logits=qk_logits,
|
| 1001 |
+
)
|
| 1002 |
+
|
| 1003 |
+
if len(param_tensors) > 0:
|
| 1004 |
+
self.base(
|
| 1005 |
+
name_tensors,
|
| 1006 |
+
param_tensors,
|
| 1007 |
+
group,
|
| 1008 |
+
lr=lr,
|
| 1009 |
+
weight_decay=weight_decay,
|
| 1010 |
+
momentum=momentum,
|
| 1011 |
+
qk_logits=qk_logits,
|
| 1012 |
+
)
|
| 1013 |
+
|
| 1014 |
+
else:
|
| 1015 |
+
############################
|
| 1016 |
+
# AdamW backup #
|
| 1017 |
+
############################
|
| 1018 |
+
|
| 1019 |
+
params_with_grads = []
|
| 1020 |
+
grads = []
|
| 1021 |
+
moment1 = []
|
| 1022 |
+
moment2 = []
|
| 1023 |
+
max_exp_avg_sqs = []
|
| 1024 |
+
state_steps = []
|
| 1025 |
+
lr = group["lr"]
|
| 1026 |
+
beta1, beta2 = group["adamw_betas"]
|
| 1027 |
+
eps = group["adamw_eps"]
|
| 1028 |
+
weight_decay = group["weight_decay"]
|
| 1029 |
+
|
| 1030 |
+
for p in params:
|
| 1031 |
+
g = p.grad
|
| 1032 |
+
if g is None:
|
| 1033 |
+
continue
|
| 1034 |
+
state = self.state[p]
|
| 1035 |
+
params_with_grads.append(p)
|
| 1036 |
+
grads.append(g)
|
| 1037 |
+
if "step" not in state:
|
| 1038 |
+
state["step"] = (torch.zeros((),
|
| 1039 |
+
dtype=torch.float32,
|
| 1040 |
+
device=p.device))
|
| 1041 |
+
state["moment1"] = torch.zeros_like(g)
|
| 1042 |
+
state["moment2"] = torch.zeros_like(g)
|
| 1043 |
+
moment1.append(state["moment1"])
|
| 1044 |
+
moment2.append(state["moment2"])
|
| 1045 |
+
if not isinstance(state["step"], torch.Tensor):
|
| 1046 |
+
step_tensor = torch.tensor(state["step"],
|
| 1047 |
+
dtype=torch.float32,
|
| 1048 |
+
device=p.device)
|
| 1049 |
+
else:
|
| 1050 |
+
step_tensor = state["step"]
|
| 1051 |
+
state_steps.append(step_tensor)
|
| 1052 |
+
|
| 1053 |
+
self._fused_adamw(
|
| 1054 |
+
params_with_grads,
|
| 1055 |
+
grads,
|
| 1056 |
+
moment1,
|
| 1057 |
+
moment2,
|
| 1058 |
+
max_exp_avg_sqs,
|
| 1059 |
+
state_steps,
|
| 1060 |
+
amsgrad=False,
|
| 1061 |
+
beta1=beta1,
|
| 1062 |
+
beta2=beta2,
|
| 1063 |
+
lr=lr,
|
| 1064 |
+
weight_decay=weight_decay,
|
| 1065 |
+
eps=eps,
|
| 1066 |
+
maximize=False,
|
| 1067 |
+
)
|
| 1068 |
+
|
| 1069 |
+
return loss
|
build/torch29-cxx11-rocm63-x86_64-linux/optimizer/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .muon import Muon
|
| 2 |
+
|
| 3 |
+
__all__ = [
|
| 4 |
+
"Muon",
|
| 5 |
+
]
|
build/torch29-cxx11-rocm63-x86_64-linux/optimizer/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _optimizer_811726c_dirty
|
| 3 |
+
ops = torch.ops._optimizer_811726c_dirty
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_optimizer_811726c_dirty::{op_name}"
|
build/torch29-cxx11-rocm63-x86_64-linux/optimizer/_optimizer_811726c_dirty.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0661740cd0f97ca56ef83979c5a5fa059bcba411148f89d836e9305065578e73
|
| 3 |
+
size 1749264
|
build/torch29-cxx11-rocm63-x86_64-linux/optimizer/matmul_transpose_triton.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MIT License
|
| 2 |
+
#
|
| 3 |
+
# Copyright (c) 2025 Tianyang Lin
|
| 4 |
+
#
|
| 5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
# in the Software without restriction, including without limitation the rights
|
| 8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
# furnished to do so, subject to the following conditions:
|
| 11 |
+
#
|
| 12 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
# copies or substantial portions of the Software.
|
| 14 |
+
#
|
| 15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
# SOFTWARE.
|
| 22 |
+
|
| 23 |
+
import torch
|
| 24 |
+
import triton
|
| 25 |
+
import triton.language as tl
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def get_autotune_config():
|
| 29 |
+
return [
|
| 30 |
+
triton.Config(
|
| 31 |
+
{
|
| 32 |
+
'BLOCK_SIZE_M': blk_m,
|
| 33 |
+
'BLOCK_SIZE_K': blk_k,
|
| 34 |
+
'GROUP_SIZE_M': grp_sz
|
| 35 |
+
},
|
| 36 |
+
num_stages=n_stages,
|
| 37 |
+
num_warps=n_warps) for blk_m in [32, 64, 128]
|
| 38 |
+
for blk_k in [32, 64] for grp_sz in [8] for n_stages in [3, 4, 5]
|
| 39 |
+
for n_warps in [4, 8]
|
| 40 |
+
]
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
@triton.autotune(
|
| 44 |
+
configs=get_autotune_config(),
|
| 45 |
+
key=['M', 'K'],
|
| 46 |
+
)
|
| 47 |
+
@triton.jit
|
| 48 |
+
def mmt_kernel(x, y, M, K, stride_xm, stride_xk, stride_ym, stride_yn,
|
| 49 |
+
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
|
| 50 |
+
GROUP_SIZE_M: tl.constexpr):
|
| 51 |
+
"""
|
| 52 |
+
Core kernel jit function of matmul_transpose that computes y = x @ x.T
|
| 53 |
+
The code is a simple adaptation from the triton `matmul` tutorial:
|
| 54 |
+
https://triton-lang.org/main/getting-started/tutorials/03-matrix-multiplication.html
|
| 55 |
+
"""
|
| 56 |
+
pid = tl.program_id(axis=0)
|
| 57 |
+
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
|
| 58 |
+
num_pid_n = tl.cdiv(M, BLOCK_SIZE_M)
|
| 59 |
+
num_pid_in_group = GROUP_SIZE_M * num_pid_n
|
| 60 |
+
group_id = pid // num_pid_in_group
|
| 61 |
+
first_pid_m = group_id * GROUP_SIZE_M
|
| 62 |
+
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
| 63 |
+
pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m)
|
| 64 |
+
pid_n = (pid % num_pid_in_group) // group_size_m
|
| 65 |
+
if pid_m > pid_n:
|
| 66 |
+
return
|
| 67 |
+
|
| 68 |
+
offs_xm = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
|
| 69 |
+
offs_xn = (pid_n * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
|
| 70 |
+
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
| 71 |
+
# we use a & b ptrs to denote different rows of x.
|
| 72 |
+
a_ptrs = x + (offs_xm[:, None] * stride_xm + offs_k[None, :] * stride_xk)
|
| 73 |
+
b_ptrs = x + (offs_xn[:, None] * stride_xm + offs_k[None, :] * stride_xk)
|
| 74 |
+
|
| 75 |
+
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_M), dtype=tl.float32)
|
| 76 |
+
|
| 77 |
+
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
|
| 78 |
+
a = tl.load(a_ptrs,
|
| 79 |
+
mask=offs_k[None, :] < K - k * BLOCK_SIZE_K,
|
| 80 |
+
other=0.0)
|
| 81 |
+
b = tl.load(b_ptrs,
|
| 82 |
+
mask=offs_k[None, :] < K - k * BLOCK_SIZE_K,
|
| 83 |
+
other=0.0)
|
| 84 |
+
accumulator = tl.dot(a, tl.permute(b, (1, 0)), accumulator)
|
| 85 |
+
a_ptrs += BLOCK_SIZE_K * stride_xk
|
| 86 |
+
b_ptrs += BLOCK_SIZE_K * stride_xk
|
| 87 |
+
# use dtype.element_ty to accommodate different input datatypes as in cpp templates
|
| 88 |
+
# https://github.com/triton-lang/triton/issues/2252
|
| 89 |
+
c = accumulator.to(x.dtype.element_ty)
|
| 90 |
+
|
| 91 |
+
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
| 92 |
+
offs_cn = pid_n * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
| 93 |
+
c_ptrs = y + stride_ym * offs_cm[:, None] + stride_yn * offs_cn[None, :]
|
| 94 |
+
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < M)
|
| 95 |
+
tl.store(c_ptrs, c, mask=c_mask)
|
| 96 |
+
|
| 97 |
+
# transpose and copy
|
| 98 |
+
if pid_m < pid_n:
|
| 99 |
+
ct_ptrs = y + stride_ym * offs_cn[:,
|
| 100 |
+
None] + stride_yn * offs_cm[None, :]
|
| 101 |
+
ct_mask = (offs_cn[:, None] < M) & (offs_cm[None, :] < M)
|
| 102 |
+
tl.store(ct_ptrs, tl.permute(c, (1, 0)), mask=ct_mask)
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def matmul_transpose_assign(d_in, d_out):
|
| 106 |
+
assert d_in.is_cuda, "Input `d_in` must be a CUDA tensor"
|
| 107 |
+
assert d_out.is_cuda, "Input `d_out` must be a CUDA tensor"
|
| 108 |
+
assert d_in.device == d_out.device, "Inputs `d_in` and `d_out` must be on the same CUDA device"
|
| 109 |
+
assert d_in.dtype == d_out.dtype, "Inputs must have the same data type"
|
| 110 |
+
assert d_in.ndim == 2, "Input `d_in` must be a 2D tensor"
|
| 111 |
+
assert d_out.ndim == 2, "Input `d_out` must be a 2D tensor"
|
| 112 |
+
assert d_in.size(0) == d_out.size(0) == d_out.size(0), \
|
| 113 |
+
"First dimension of `d_in` must match first and second dimension of `d_out`"
|
| 114 |
+
|
| 115 |
+
d_in = d_in.contiguous()
|
| 116 |
+
M, K = d_in.shape
|
| 117 |
+
grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(
|
| 118 |
+
M, META['BLOCK_SIZE_M']), )
|
| 119 |
+
with torch.cuda.device(d_in.device.index):
|
| 120 |
+
mmt_kernel[grid](d_in, d_out, M, K, d_in.stride(0), d_in.stride(1),
|
| 121 |
+
d_out.stride(0), d_out.stride(1))
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def matmul_transpose(d_in):
|
| 125 |
+
M, _ = d_in.shape
|
| 126 |
+
d_out = torch.empty((M, M), device=d_in.device, dtype=d_in.dtype)
|
| 127 |
+
matmul_transpose_assign(d_in, d_out)
|
| 128 |
+
return d_out
|
build/torch29-cxx11-rocm63-x86_64-linux/optimizer/muon.py
ADDED
|
@@ -0,0 +1,1069 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import math
|
| 3 |
+
import types
|
| 4 |
+
from dataclasses import dataclass
|
| 5 |
+
from typing import List, Optional, Union, cast
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.distributed as dist
|
| 9 |
+
from torch.distributed._tensor import DTensor, Replicate, Shard
|
| 10 |
+
|
| 11 |
+
from .matmul_transpose_triton import matmul_transpose_assign
|
| 12 |
+
|
| 13 |
+
logger = logging.getLogger(__name__)
|
| 14 |
+
|
| 15 |
+
COMM_DTYPE = torch.bfloat16
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# This code snippet is a modified version adapted from the following GitHub repositories:
|
| 19 |
+
# https://github.com/KellerJordan/Muon/blob/master/muon.py
|
| 20 |
+
# Muon's Newton–Schulz iteration causes high variance in singular values
|
| 21 |
+
# Idea: give each iteration its own 3 coefficients and optimize them via gradient descent.
|
| 22 |
+
@torch.no_grad()
|
| 23 |
+
# matmul_transpose_assign from : https://github.com/nil0x9/flash-muon
|
| 24 |
+
def _zeropower_via_newtonschulz5(G, steps):
|
| 25 |
+
"""
|
| 26 |
+
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
|
| 27 |
+
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
|
| 28 |
+
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
|
| 29 |
+
zero even beyond the point where the iteration no longer converges all the way to one everywhere
|
| 30 |
+
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
|
| 31 |
+
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
|
| 32 |
+
performance at all relative to UV^T, where USV^T = G is the SVD.
|
| 33 |
+
"""
|
| 34 |
+
assert len(G.shape) == 2
|
| 35 |
+
assert G.dtype == COMM_DTYPE
|
| 36 |
+
X = G # no manual typecast
|
| 37 |
+
|
| 38 |
+
if G.size(0) > G.size(1):
|
| 39 |
+
X = X.T
|
| 40 |
+
# Ensure spectral norm is at most 1
|
| 41 |
+
X = X / (X.norm() + 1e-7)
|
| 42 |
+
buf1 = torch.empty(X.size(0), X.size(0), dtype=X.dtype, device=X.device)
|
| 43 |
+
buf2 = torch.empty(X.size(0), X.size(0), dtype=X.dtype, device=X.device)
|
| 44 |
+
# Perform the NS iterations
|
| 45 |
+
for a, b, c in [
|
| 46 |
+
(4.0848, -6.8946, 2.9270),
|
| 47 |
+
(3.9505, -6.3029, 2.6377),
|
| 48 |
+
(3.7418, -5.5913, 2.3037),
|
| 49 |
+
(2.8769, -3.1427, 1.2046),
|
| 50 |
+
(2.8366, -3.0525, 1.2012),
|
| 51 |
+
]:
|
| 52 |
+
matmul_transpose_assign(X, buf1)
|
| 53 |
+
matmul_transpose_assign(buf1, buf2)
|
| 54 |
+
buf1.mul_(b).add_(buf2, alpha=c)
|
| 55 |
+
X = torch.addmm(X, buf1, X, alpha=1.0, beta=a)
|
| 56 |
+
|
| 57 |
+
if G.size(0) > G.size(1):
|
| 58 |
+
X = X.T
|
| 59 |
+
return X
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
@dataclass
|
| 63 |
+
class _muon_state:
|
| 64 |
+
# TODO: use Optional
|
| 65 |
+
worker_rank: int | None = None
|
| 66 |
+
gathered_grad: torch.Tensor | None = None
|
| 67 |
+
scattered_u: DTensor | None = None
|
| 68 |
+
computed_u: torch.Tensor | None = None
|
| 69 |
+
gather_event: torch.cuda.Event | None = None
|
| 70 |
+
compute_event: torch.cuda.Event | None = None
|
| 71 |
+
scatter_event: torch.cuda.Event | None = None
|
| 72 |
+
process_group = None
|
| 73 |
+
qk_clip_state = None
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def split_elems_for_src(param, src_rank, num_ranks) -> int:
|
| 77 |
+
rows = param.shape[0]
|
| 78 |
+
cols = int(param.numel() // rows)
|
| 79 |
+
base, rem = divmod(rows, num_ranks)
|
| 80 |
+
my_rows = base + (1 if src_rank < rem else 0)
|
| 81 |
+
return my_rows * cols
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
@torch.no_grad()
|
| 85 |
+
def _alloc_gathered_grad(params, param_to_state, rank, compute_stream):
|
| 86 |
+
"""
|
| 87 |
+
Pre-allocate gathered_grad buffer on compute_stream
|
| 88 |
+
before launching all2all gather
|
| 89 |
+
"""
|
| 90 |
+
with torch.cuda.stream(compute_stream):
|
| 91 |
+
for p in params:
|
| 92 |
+
state = param_to_state[id(p)]
|
| 93 |
+
if rank == state.worker_rank:
|
| 94 |
+
num_ranks = dist.get_world_size(group=state.process_group)
|
| 95 |
+
state.gathered_grad = torch.empty(p.grad.numel(),
|
| 96 |
+
dtype=COMM_DTYPE,
|
| 97 |
+
device="cuda")
|
| 98 |
+
else:
|
| 99 |
+
state.gathered_grad = None
|
| 100 |
+
|
| 101 |
+
alloc_event = torch.cuda.Event()
|
| 102 |
+
alloc_event.record(compute_stream)
|
| 103 |
+
return alloc_event
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
@torch.no_grad()
|
| 107 |
+
def _all2all_gather(params, param_to_state, rank, comm_stream, none_grad,
|
| 108 |
+
alloc_event):
|
| 109 |
+
"""
|
| 110 |
+
All2all gathers shards so each owner rank reconstructs its full gradient
|
| 111 |
+
"""
|
| 112 |
+
with torch.cuda.stream(comm_stream):
|
| 113 |
+
process_group = param_to_state[id(params[0])].process_group
|
| 114 |
+
num_ranks = dist.get_world_size(group=process_group)
|
| 115 |
+
|
| 116 |
+
# Construct sending buffers
|
| 117 |
+
per_dst = [[] for _ in range(num_ranks)]
|
| 118 |
+
send_counts = [0] * num_ranks
|
| 119 |
+
|
| 120 |
+
for p in params:
|
| 121 |
+
state = param_to_state[id(p)]
|
| 122 |
+
dst = state.worker_rank
|
| 123 |
+
assert dst < num_ranks
|
| 124 |
+
shard_elems = split_elems_for_src(p, rank, num_ranks)
|
| 125 |
+
g = p.grad
|
| 126 |
+
g = g.to_local().to(COMM_DTYPE).contiguous().view(-1)
|
| 127 |
+
assert g.numel() == shard_elems
|
| 128 |
+
per_dst[dst].append(g)
|
| 129 |
+
send_counts[dst] += shard_elems
|
| 130 |
+
|
| 131 |
+
assert any(
|
| 132 |
+
len(v) > 0 for v in per_dst
|
| 133 |
+
), "At least one destination rank must receive a sharded tensor"
|
| 134 |
+
# list[list[Tensor]] -> list[Tensor]
|
| 135 |
+
per_dst = [t for dst in per_dst for t in dst]
|
| 136 |
+
|
| 137 |
+
send_buf = torch.cat(per_dst, dim=0)
|
| 138 |
+
|
| 139 |
+
owned_params = [
|
| 140 |
+
p for p in params if param_to_state[id(p)].worker_rank == rank
|
| 141 |
+
]
|
| 142 |
+
|
| 143 |
+
# Compute receive sizes and allocate receiving buffers
|
| 144 |
+
recv_counts = [0] * num_ranks
|
| 145 |
+
|
| 146 |
+
for src in range(num_ranks):
|
| 147 |
+
total = 0
|
| 148 |
+
for p in owned_params:
|
| 149 |
+
state = param_to_state[id(p)]
|
| 150 |
+
assert state.worker_rank == rank
|
| 151 |
+
total += split_elems_for_src(p, src, num_ranks)
|
| 152 |
+
recv_counts[src] = total
|
| 153 |
+
|
| 154 |
+
recv_total = sum(recv_counts)
|
| 155 |
+
recv_buf = torch.empty(recv_total, dtype=COMM_DTYPE, device="cuda")
|
| 156 |
+
|
| 157 |
+
#All2All
|
| 158 |
+
dist.all_to_all_single(
|
| 159 |
+
recv_buf,
|
| 160 |
+
send_buf,
|
| 161 |
+
output_split_sizes=recv_counts,
|
| 162 |
+
input_split_sizes=send_counts,
|
| 163 |
+
group=process_group,
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
# Reconstructs gathered grad from the received buffer
|
| 167 |
+
#
|
| 168 |
+
# recv_buf (num ranks = 3)
|
| 169 |
+
#
|
| 170 |
+
# From rank 0 From rank 1 From rank 2
|
| 171 |
+
# | p1_0, p2_0, p3_0 | p1_1, p2_1, p3_1 | p1_2, p2_2, p3_2 |
|
| 172 |
+
#
|
| 173 |
+
# Outer loop:
|
| 174 |
+
# rank 0 -> rank 1 -> rank2
|
| 175 |
+
#
|
| 176 |
+
# Inner loop:
|
| 177 |
+
# p1_n -> p2_n -> p3_n
|
| 178 |
+
|
| 179 |
+
comm_stream.wait_event(alloc_event)
|
| 180 |
+
|
| 181 |
+
off = 0
|
| 182 |
+
write_offsets = {id(p): 0 for p in owned_params}
|
| 183 |
+
for src in range(num_ranks):
|
| 184 |
+
if recv_counts[src] == 0:
|
| 185 |
+
continue
|
| 186 |
+
|
| 187 |
+
block = recv_counts[src]
|
| 188 |
+
inner_off = 0
|
| 189 |
+
for p in owned_params:
|
| 190 |
+
state = param_to_state[id(p)]
|
| 191 |
+
assert state.worker_rank == rank
|
| 192 |
+
n = split_elems_for_src(p, src, num_ranks)
|
| 193 |
+
assert n > 0
|
| 194 |
+
|
| 195 |
+
sg = recv_buf.narrow(0, off + inner_off, n)
|
| 196 |
+
woff = write_offsets[id(p)]
|
| 197 |
+
dst = state.gathered_grad.narrow(0, woff, n)
|
| 198 |
+
dst.copy_(sg)
|
| 199 |
+
|
| 200 |
+
write_offsets[id(p)] += n
|
| 201 |
+
inner_off += n
|
| 202 |
+
off += block
|
| 203 |
+
|
| 204 |
+
for p in params:
|
| 205 |
+
state = param_to_state[id(p)]
|
| 206 |
+
if state.worker_rank == rank:
|
| 207 |
+
state.gathered_grad = state.gathered_grad.view_as(p)
|
| 208 |
+
state.gather_event = torch.cuda.Event()
|
| 209 |
+
state.gather_event.record(comm_stream)
|
| 210 |
+
else:
|
| 211 |
+
state.gathered_grad = None
|
| 212 |
+
state.gather_event = None
|
| 213 |
+
if none_grad:
|
| 214 |
+
p.grad = None
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
@torch.no_grad()
|
| 218 |
+
def _compute_u(p, state, steps, rank, compute_stream):
|
| 219 |
+
"""
|
| 220 |
+
On worker_rank, compute the orthogonalized update using Newton-Schulz iteration.
|
| 221 |
+
"""
|
| 222 |
+
with torch.cuda.stream(compute_stream):
|
| 223 |
+
if rank == state.worker_rank:
|
| 224 |
+
if state.gather_event is None:
|
| 225 |
+
raise RuntimeError("Gather event must be set before compute.")
|
| 226 |
+
compute_stream.wait_event(state.gather_event)
|
| 227 |
+
u = _zeropower_via_newtonschulz5(state.gathered_grad, steps)
|
| 228 |
+
state.gathered_grad = None
|
| 229 |
+
state.computed_u = u
|
| 230 |
+
state.compute_event = torch.cuda.Event()
|
| 231 |
+
state.compute_event.record()
|
| 232 |
+
else:
|
| 233 |
+
state.computed_u = None
|
| 234 |
+
state.compute_event = None
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
@torch.no_grad()
|
| 238 |
+
def _alloc_scattered_u(params, param_to_state, rank, compute_stream):
|
| 239 |
+
"""
|
| 240 |
+
Pre-allocate scattered_u buffer on compute_stream
|
| 241 |
+
before launching all2all gather
|
| 242 |
+
"""
|
| 243 |
+
with torch.cuda.stream(compute_stream):
|
| 244 |
+
for p in params:
|
| 245 |
+
state = param_to_state[id(p)]
|
| 246 |
+
state.scattered_u = torch.empty_like(p.to_local(),
|
| 247 |
+
dtype=COMM_DTYPE)
|
| 248 |
+
|
| 249 |
+
alloc_event = torch.cuda.Event()
|
| 250 |
+
alloc_event.record(compute_stream)
|
| 251 |
+
return alloc_event
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
def _all2all_scatter(params, param_to_state, rank, comm_stream, alloc_event):
|
| 255 |
+
"""
|
| 256 |
+
All2all scatters full gradients to all ranks
|
| 257 |
+
"""
|
| 258 |
+
with torch.cuda.stream(comm_stream):
|
| 259 |
+
process_group = param_to_state[id(params[0])].process_group
|
| 260 |
+
num_ranks = dist.get_world_size(group=process_group)
|
| 261 |
+
owned_params = [
|
| 262 |
+
p for p in params if param_to_state[id(p)].worker_rank == rank
|
| 263 |
+
]
|
| 264 |
+
|
| 265 |
+
# Construct sending buffer
|
| 266 |
+
per_dst = [[] for _ in range(num_ranks)]
|
| 267 |
+
send_counts = [0] * num_ranks
|
| 268 |
+
|
| 269 |
+
if owned_params:
|
| 270 |
+
for p in owned_params:
|
| 271 |
+
state = param_to_state[id(p)]
|
| 272 |
+
if state.compute_event is None:
|
| 273 |
+
raise RuntimeError(
|
| 274 |
+
"Compute event must be set before scatter.")
|
| 275 |
+
comm_stream.wait_event(state.compute_event)
|
| 276 |
+
state.gathered_grad = None
|
| 277 |
+
|
| 278 |
+
assert state.computed_u is not None
|
| 279 |
+
|
| 280 |
+
u_full = state.computed_u.to(COMM_DTYPE).contiguous().view(-1)
|
| 281 |
+
|
| 282 |
+
offset = 0
|
| 283 |
+
for dst in range(num_ranks):
|
| 284 |
+
n = split_elems_for_src(p, dst, num_ranks)
|
| 285 |
+
assert n > 0
|
| 286 |
+
|
| 287 |
+
su = u_full.narrow(0, offset, n)
|
| 288 |
+
per_dst[dst].append(su)
|
| 289 |
+
send_counts[dst] += n
|
| 290 |
+
offset += n
|
| 291 |
+
|
| 292 |
+
assert offset == u_full.numel()
|
| 293 |
+
|
| 294 |
+
lengths = [len(v) for v in per_dst]
|
| 295 |
+
if all(l > 0 for l in lengths):
|
| 296 |
+
assert all(
|
| 297 |
+
l == lengths[0] for l in lengths
|
| 298 |
+
), "All destination ranks must have the same number of sharded tensor"
|
| 299 |
+
# list[list[Tensor]] -> list[Tensor]
|
| 300 |
+
per_dst = [t for dst in per_dst for t in dst]
|
| 301 |
+
send_buf = torch.cat(per_dst, dim=0)
|
| 302 |
+
else:
|
| 303 |
+
# all_to_all requires participation from all ranks
|
| 304 |
+
# Even non-owner ranks must join the collective call
|
| 305 |
+
send_buf = torch.empty(0, dtype=COMM_DTYPE, device="cuda")
|
| 306 |
+
|
| 307 |
+
# Compute receive sizes and allocate receiving buffers
|
| 308 |
+
recv_counts = [0] * num_ranks
|
| 309 |
+
|
| 310 |
+
for src in range(num_ranks):
|
| 311 |
+
total = 0
|
| 312 |
+
for p in params:
|
| 313 |
+
state = param_to_state[id(p)]
|
| 314 |
+
if state.worker_rank != src:
|
| 315 |
+
continue
|
| 316 |
+
total += split_elems_for_src(p, rank, num_ranks)
|
| 317 |
+
recv_counts[src] = total
|
| 318 |
+
|
| 319 |
+
recv_total = sum(recv_counts)
|
| 320 |
+
assert recv_total > 0
|
| 321 |
+
recv_buf = torch.empty(recv_total, dtype=COMM_DTYPE, device="cuda")
|
| 322 |
+
|
| 323 |
+
#All2All
|
| 324 |
+
dist.all_to_all_single(
|
| 325 |
+
recv_buf,
|
| 326 |
+
send_buf,
|
| 327 |
+
output_split_sizes=recv_counts,
|
| 328 |
+
input_split_sizes=send_counts,
|
| 329 |
+
group=process_group,
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
# Copy to pre-allocated scattered_u buffer from the received buffer
|
| 333 |
+
#
|
| 334 |
+
# recv_buf (num ranks = 3, local_rank = 0)
|
| 335 |
+
#
|
| 336 |
+
# From rank 0 From rank 1 From rank 2
|
| 337 |
+
# | p1_0, p2_0, p3_0 | p4_0 | p5_0, p6_0 |
|
| 338 |
+
#
|
| 339 |
+
# Outer loop:
|
| 340 |
+
# rank 0 -> rank 1 -> rank2
|
| 341 |
+
#
|
| 342 |
+
# Inner loop:
|
| 343 |
+
# src(0) : p1_0 -> p2_0 -> p3_0
|
| 344 |
+
# src(1) : p4_0
|
| 345 |
+
# src(2) : p5_0 -> p6_0
|
| 346 |
+
|
| 347 |
+
comm_stream.wait_event(alloc_event)
|
| 348 |
+
|
| 349 |
+
off = 0
|
| 350 |
+
for src in range(num_ranks):
|
| 351 |
+
block = recv_counts[src]
|
| 352 |
+
if block == 0:
|
| 353 |
+
continue
|
| 354 |
+
|
| 355 |
+
inner_off = 0
|
| 356 |
+
for p in params:
|
| 357 |
+
state = param_to_state[id(p)]
|
| 358 |
+
if state.worker_rank != src:
|
| 359 |
+
continue
|
| 360 |
+
n = split_elems_for_src(p, rank, num_ranks)
|
| 361 |
+
assert n > 0
|
| 362 |
+
|
| 363 |
+
flat_local = recv_buf.narrow(0, off + inner_off,
|
| 364 |
+
n).view_as(p.to_local())
|
| 365 |
+
state.scattered_u.copy_(flat_local)
|
| 366 |
+
|
| 367 |
+
state.scatter_event = torch.cuda.Event()
|
| 368 |
+
state.scatter_event.record(comm_stream)
|
| 369 |
+
inner_off += n
|
| 370 |
+
|
| 371 |
+
assert inner_off == block
|
| 372 |
+
off += block
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
def _update_param(p, state, lr, adjusted_lr, weight_decay, rank,
|
| 376 |
+
compute_stream):
|
| 377 |
+
"""
|
| 378 |
+
Update sharded parameter p with the scattered_u.
|
| 379 |
+
Only worker_rank frees computed_u.
|
| 380 |
+
"""
|
| 381 |
+
with torch.cuda.stream(compute_stream):
|
| 382 |
+
if state.scatter_event is None:
|
| 383 |
+
raise RuntimeError("Scatter event must be set before update")
|
| 384 |
+
compute_stream.wait_event(state.scatter_event)
|
| 385 |
+
u_dtensor = DTensor.from_local(
|
| 386 |
+
state.scattered_u,
|
| 387 |
+
placements=p.placements,
|
| 388 |
+
device_mesh=p.device_mesh,
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
state.scattered_u = u_dtensor
|
| 392 |
+
|
| 393 |
+
if rank == state.worker_rank:
|
| 394 |
+
# Free computed_u
|
| 395 |
+
state.computed_u = None
|
| 396 |
+
|
| 397 |
+
Muon._update_p(p, state.scattered_u, lr, adjusted_lr, weight_decay)
|
| 398 |
+
state.scattered_u = None
|
| 399 |
+
u_dtensor = None
|
| 400 |
+
|
| 401 |
+
scales_full = Muon._compute_scales(p, state.qk_clip_state)
|
| 402 |
+
if scales_full is not None:
|
| 403 |
+
num_ranks = dist.get_world_size(group=state.process_group)
|
| 404 |
+
local_rank = dist.get_rank(group=state.process_group)
|
| 405 |
+
scales_local = scales_full.chunk(num_ranks, dim=0)[local_rank]
|
| 406 |
+
scales_local = DTensor.from_local(
|
| 407 |
+
scales_local,
|
| 408 |
+
placements=p.placements,
|
| 409 |
+
device_mesh=p.device_mesh,
|
| 410 |
+
)
|
| 411 |
+
Muon._qk_clip(p, scales_local, state.qk_clip_state.head_dim)
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
def default_is_muon(name, x):
|
| 415 |
+
skip_keys = ["embed_tokens", "lm_head", "tok_embeddings", "output"]
|
| 416 |
+
return x.ndim >= 2 and not any(key in name for key in skip_keys)
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
def get_default_muon_param_groups(model, is_muon_func=default_is_muon):
|
| 420 |
+
muon_params, muon_names = [], []
|
| 421 |
+
non_muon_params = []
|
| 422 |
+
|
| 423 |
+
for n, p in model.named_parameters():
|
| 424 |
+
if not p.requires_grad:
|
| 425 |
+
continue
|
| 426 |
+
if is_muon_func(n, p):
|
| 427 |
+
muon_params.append(p)
|
| 428 |
+
muon_names.append(n)
|
| 429 |
+
else:
|
| 430 |
+
non_muon_params.append(p)
|
| 431 |
+
|
| 432 |
+
return [
|
| 433 |
+
{
|
| 434 |
+
"params": muon_params,
|
| 435 |
+
"names": muon_names,
|
| 436 |
+
"use_muon": True,
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"params": non_muon_params,
|
| 440 |
+
"use_muon": False,
|
| 441 |
+
},
|
| 442 |
+
]
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
def parse_qk_layer(name: str) -> tuple[str | None, int]:
|
| 446 |
+
"""
|
| 447 |
+
Parse a parameter name to check if it is a query/key projection layer
|
| 448 |
+
('wq', 'wk', 'q_proj', 'k_proj') and return (kind, layer_index).
|
| 449 |
+
|
| 450 |
+
Returns:
|
| 451 |
+
(kind, layer_idx) or (None, -1) if not matched.
|
| 452 |
+
|
| 453 |
+
Example:
|
| 454 |
+
'model.3.attn.wq.weight' -> ('wq', 3)
|
| 455 |
+
'model.5.attn.wk.weight' -> ('wk', 5)
|
| 456 |
+
'model.2.attn.q_proj.weight' -> ('q_proj', 2)
|
| 457 |
+
'model.7.attn.k_proj.weight' -> ('k_proj', 7)
|
| 458 |
+
'model.4.attn.v_proj.weight' -> (None, -1)
|
| 459 |
+
"""
|
| 460 |
+
parts = name.split('.')
|
| 461 |
+
if len(parts) < 3:
|
| 462 |
+
return None, -1
|
| 463 |
+
|
| 464 |
+
kind = parts[-2]
|
| 465 |
+
|
| 466 |
+
layer_idx = -1
|
| 467 |
+
for part in reversed(parts):
|
| 468 |
+
if part.isdigit():
|
| 469 |
+
layer_idx = int(part)
|
| 470 |
+
break
|
| 471 |
+
|
| 472 |
+
if kind in ('wq', 'wk', 'q_proj', 'k_proj'):
|
| 473 |
+
return kind, layer_idx
|
| 474 |
+
|
| 475 |
+
return None, -1
|
| 476 |
+
|
| 477 |
+
|
| 478 |
+
@dataclass
|
| 479 |
+
class QKClipInfo:
|
| 480 |
+
"""Per-parameter dynamic info computed from config + runtime logits."""
|
| 481 |
+
kind: Optional[str] # 'wq'/'q_proj' or 'wk'/'k_proj' or None
|
| 482 |
+
indices: List[int] # which heads to consider for clipping
|
| 483 |
+
head_dim: int # from config
|
| 484 |
+
threshold: float # from config
|
| 485 |
+
logit: Optional[torch.Tensor]
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
class Muon(torch.optim.Optimizer):
|
| 489 |
+
"""
|
| 490 |
+
Muon - MomentUm Orthogonalized by Newton-schulz
|
| 491 |
+
|
| 492 |
+
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
|
| 493 |
+
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
|
| 494 |
+
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
|
| 495 |
+
the advantage that it can be stably run in bfloat16 on the GPU.
|
| 496 |
+
|
| 497 |
+
Some warnings:
|
| 498 |
+
- We believe this optimizer is unlikely to work well for training with small batch size.
|
| 499 |
+
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
|
| 500 |
+
|
| 501 |
+
Arguments:
|
| 502 |
+
model: The model to be optimized by Muon.
|
| 503 |
+
is_muon_func: A function that takes a parameter and its name, and returns whether the parameter should be optimized by Muon.
|
| 504 |
+
lr: The learning rate. The updates will have spectral norm of `lr`. (0.02 is a good default)
|
| 505 |
+
momentum: The momentum used by the internal SGD. (0.95 is a good default)
|
| 506 |
+
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
|
| 507 |
+
ns_steps: The number of Newton-Schulz iterations to run. (6 is probably always enough)
|
| 508 |
+
weight_decay: The weight decay for Muon and AdamW.
|
| 509 |
+
{0, 1}-D or are detected as being the embed or lm_head will be optimized by AdamW as well.
|
| 510 |
+
adamw_lr: The learning rate for the internal AdamW.
|
| 511 |
+
adamw_betas: The betas for the internal AdamW.
|
| 512 |
+
adamw_eps: The epsilon for the internal AdamW.
|
| 513 |
+
none_grad: Whether to set p.grad to None after gathering the gradients. This can save memory.
|
| 514 |
+
debug: Whether to print debug information.
|
| 515 |
+
clip_info : Configuration for QK clipping. Expected keys:
|
| 516 |
+
- "q_indices" (list[int]): Indices of query heads to consider.
|
| 517 |
+
- "k_indices" (list[int]): Indices of key heads to consider.
|
| 518 |
+
- "head_dim" (int): Dimensionality of each attention head.
|
| 519 |
+
- "threshold" (float): Threshold value; heads whose QK logits exceed
|
| 520 |
+
this value will be scaled down.
|
| 521 |
+
Default is:
|
| 522 |
+
{
|
| 523 |
+
"q_indices": [],
|
| 524 |
+
"k_indices": [],
|
| 525 |
+
"head_dim": 128,
|
| 526 |
+
"threshold": 100
|
| 527 |
+
}
|
| 528 |
+
overlap_step : How many all2all gather, compute operations are launched in advance
|
| 529 |
+
before the corresponding all2all scatter steps begin.
|
| 530 |
+
A higher overlap_step increases memory usage but can improve
|
| 531 |
+
performance by overlapping communication.
|
| 532 |
+
Parallel muon only.
|
| 533 |
+
"""
|
| 534 |
+
|
| 535 |
+
def __init__(self,
|
| 536 |
+
params,
|
| 537 |
+
lr=1e-3,
|
| 538 |
+
momentum=0.95,
|
| 539 |
+
nesterov=True,
|
| 540 |
+
ns_steps=5,
|
| 541 |
+
weight_decay=0.1,
|
| 542 |
+
adamw_betas=(0.9, 0.95),
|
| 543 |
+
adamw_eps=1e-8,
|
| 544 |
+
none_grad=True,
|
| 545 |
+
debug=False,
|
| 546 |
+
clip_config={
|
| 547 |
+
"q_indices": [],
|
| 548 |
+
"k_indices": [],
|
| 549 |
+
"head_dim": 128,
|
| 550 |
+
"threshold": 100
|
| 551 |
+
},
|
| 552 |
+
overlap_step=5):
|
| 553 |
+
defaults = dict(
|
| 554 |
+
lr=lr,
|
| 555 |
+
weight_decay=weight_decay,
|
| 556 |
+
momentum=momentum,
|
| 557 |
+
nesterov=nesterov,
|
| 558 |
+
ns_steps=ns_steps,
|
| 559 |
+
adamw_betas=adamw_betas,
|
| 560 |
+
adamw_eps=adamw_eps,
|
| 561 |
+
none_grad=none_grad,
|
| 562 |
+
use_muon=True,
|
| 563 |
+
)
|
| 564 |
+
error_message = "The key 'use_muon' is not set in parameter group {idx}. Assuming all parameters in the group will use muon optimization, which may lead to unexpected behavior."
|
| 565 |
+
instruction_code = "\n\n please follow this code snippet \n```optimizer = get_kernel('motif-technologies/optimizer')\n\n\nparams = optimizer.muon.get_default_muon_param_groups(model)\n\noptim = optimizer.Muon(params, ...)```"
|
| 566 |
+
|
| 567 |
+
if isinstance(params, types.GeneratorType):
|
| 568 |
+
raise ValueError(error_message.format(idx=0) + instruction_code)
|
| 569 |
+
for _idx, param_group in enumerate(params):
|
| 570 |
+
if param_group.get("use_muon", None) is None:
|
| 571 |
+
raise ValueError(
|
| 572 |
+
error_message.format(idx=_idx) + instruction_code)
|
| 573 |
+
|
| 574 |
+
super().__init__(params, defaults)
|
| 575 |
+
|
| 576 |
+
self.rank = None
|
| 577 |
+
|
| 578 |
+
self.comm_stream = torch.cuda.Stream()
|
| 579 |
+
self.compute_stream = torch.cuda.Stream()
|
| 580 |
+
self.debug = debug
|
| 581 |
+
self.clip_config = clip_config
|
| 582 |
+
self.overlap_step = overlap_step
|
| 583 |
+
|
| 584 |
+
def _calc_flops(self, G, steps):
|
| 585 |
+
assert len(G.shape) == 2
|
| 586 |
+
M, N = G.shape
|
| 587 |
+
if M > N:
|
| 588 |
+
M, N = N, M
|
| 589 |
+
|
| 590 |
+
return steps * ((M**3) * 2 + (M**2 * N) * 4 + M * N * 2 + M**2 * 3)
|
| 591 |
+
|
| 592 |
+
def adjust_lr_for_muon(self, lr, param_shape):
|
| 593 |
+
A, B = param_shape[:2]
|
| 594 |
+
# We adjust the learning rate and weight decay based on the size of the parameter matrix
|
| 595 |
+
# as describted in the paper
|
| 596 |
+
adjusted_ratio = 0.2 * math.sqrt(max(A, B))
|
| 597 |
+
adjusted_lr = lr * adjusted_ratio
|
| 598 |
+
return adjusted_lr
|
| 599 |
+
|
| 600 |
+
def get_shard_mesh(self, p):
|
| 601 |
+
"""
|
| 602 |
+
Get the shard mesh for a parameter p on the given rank.
|
| 603 |
+
"""
|
| 604 |
+
assert isinstance(
|
| 605 |
+
p, DTensor), "Parallel Muon only supports DTensor parameters."
|
| 606 |
+
|
| 607 |
+
if p.placements == (Shard(dim=0), ):
|
| 608 |
+
# Case for FSDP
|
| 609 |
+
process_group = p.device_mesh.get_group(mesh_dim=0)
|
| 610 |
+
if self.rank is None:
|
| 611 |
+
self.rank = dist.get_rank(group=process_group)
|
| 612 |
+
else:
|
| 613 |
+
assert self.rank == dist.get_rank(group=process_group)
|
| 614 |
+
return p.device_mesh.mesh, p.device_mesh.get_group(mesh_dim=0)
|
| 615 |
+
elif p.placements == (Replicate(), Shard(dim=0)):
|
| 616 |
+
# Case for HSDP
|
| 617 |
+
process_group = p.device_mesh.get_group(mesh_dim=1)
|
| 618 |
+
if self.rank is None:
|
| 619 |
+
self.rank = dist.get_rank(group=process_group)
|
| 620 |
+
else:
|
| 621 |
+
assert self.rank == dist.get_rank(group=process_group)
|
| 622 |
+
for i, shard_mesh in enumerate(p.device_mesh.mesh):
|
| 623 |
+
if self.rank in shard_mesh:
|
| 624 |
+
return shard_mesh, p.device_mesh.get_group(mesh_dim=1)
|
| 625 |
+
else:
|
| 626 |
+
raise ValueError(f"Unsupported placements ({p.placements}).")
|
| 627 |
+
|
| 628 |
+
def init_state_and_assign_params(self, names, params, group, qk_logits):
|
| 629 |
+
param_to_state = {}
|
| 630 |
+
param_to_flops = {}
|
| 631 |
+
|
| 632 |
+
total_flops = 0
|
| 633 |
+
for p in params:
|
| 634 |
+
g = p.grad
|
| 635 |
+
if g is None:
|
| 636 |
+
continue
|
| 637 |
+
assert g.ndim == 2, "Muon only supports 2D parameters."
|
| 638 |
+
|
| 639 |
+
flops = self._calc_flops(g, group["ns_steps"])
|
| 640 |
+
param_to_flops[id(p)] = flops
|
| 641 |
+
total_flops += flops
|
| 642 |
+
|
| 643 |
+
if self.debug:
|
| 644 |
+
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs",
|
| 645 |
+
flush=True)
|
| 646 |
+
|
| 647 |
+
paired = list(zip(names, params))
|
| 648 |
+
|
| 649 |
+
paired_sorted = sorted(paired,
|
| 650 |
+
key=lambda x: param_to_flops[id(x[1])],
|
| 651 |
+
reverse=True)
|
| 652 |
+
|
| 653 |
+
names_sorted, params_sorted = zip(*paired_sorted)
|
| 654 |
+
ordered_names = list(names_sorted)
|
| 655 |
+
ordered_params = list(params_sorted)
|
| 656 |
+
|
| 657 |
+
round_robin = 0
|
| 658 |
+
mesh = None
|
| 659 |
+
shard_mesh = None
|
| 660 |
+
process_group = None
|
| 661 |
+
for n, p in zip(ordered_names, ordered_params):
|
| 662 |
+
if mesh is None:
|
| 663 |
+
mesh = p.device_mesh
|
| 664 |
+
shard_mesh, process_group = self.get_shard_mesh(p)
|
| 665 |
+
elif mesh != p.device_mesh:
|
| 666 |
+
raise ValueError("All parameters must be on the same mesh.")
|
| 667 |
+
num_ranks = dist.get_world_size(group=process_group)
|
| 668 |
+
param_to_state[id(p)] = _muon_state()
|
| 669 |
+
param_to_state[id(
|
| 670 |
+
p)].worker_rank = shard_mesh[round_robin].item() % num_ranks
|
| 671 |
+
param_to_state[id(p)].process_group = process_group
|
| 672 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 673 |
+
param_to_state[id(p)].qk_clip_state = qk_clip_state
|
| 674 |
+
round_robin = (round_robin + 1) % len(shard_mesh)
|
| 675 |
+
|
| 676 |
+
return param_to_state, ordered_params
|
| 677 |
+
|
| 678 |
+
def base(self, names, params, group, lr, weight_decay, momentum,
|
| 679 |
+
qk_logits):
|
| 680 |
+
# generate weight updates in distributed fashion
|
| 681 |
+
for n, p in zip(names, params):
|
| 682 |
+
g = p.grad
|
| 683 |
+
if g is None:
|
| 684 |
+
continue
|
| 685 |
+
if g.ndim > 2:
|
| 686 |
+
g = g.view(g.size(0), -1)
|
| 687 |
+
assert g is not None
|
| 688 |
+
|
| 689 |
+
# calc update
|
| 690 |
+
state = self.state[p]
|
| 691 |
+
if "momentum_buffer" not in state:
|
| 692 |
+
state["momentum_buffer"] = torch.zeros_like(g)
|
| 693 |
+
buf = state["momentum_buffer"]
|
| 694 |
+
buf.mul_(momentum).add_(g)
|
| 695 |
+
if group["nesterov"]:
|
| 696 |
+
g = g.add(buf, alpha=momentum)
|
| 697 |
+
else:
|
| 698 |
+
g = buf
|
| 699 |
+
|
| 700 |
+
u = _zeropower_via_newtonschulz5(g.to(COMM_DTYPE),
|
| 701 |
+
steps=group["ns_steps"])
|
| 702 |
+
|
| 703 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 704 |
+
Muon._update_p(p, u, lr, adjusted_lr, weight_decay)
|
| 705 |
+
|
| 706 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 707 |
+
|
| 708 |
+
scales_full = self._compute_scales(p, qk_clip_state)
|
| 709 |
+
if scales_full is not None:
|
| 710 |
+
Muon._qk_clip(p, scales_full, qk_clip_state.head_dim)
|
| 711 |
+
|
| 712 |
+
def _update_g(self, p, g, group, momentum):
|
| 713 |
+
# calc update
|
| 714 |
+
state = self.state[p]
|
| 715 |
+
buf = state.setdefault("momentum_buffer", torch.zeros_like(g))
|
| 716 |
+
torch.add(g, buf, alpha=momentum, out=buf)
|
| 717 |
+
if group["nesterov"]:
|
| 718 |
+
g.add_(buf, alpha=momentum)
|
| 719 |
+
return g
|
| 720 |
+
return buf
|
| 721 |
+
|
| 722 |
+
@staticmethod
|
| 723 |
+
def _update_p(p, u, lr, adjusted_lr, weight_decay):
|
| 724 |
+
# apply weight decay
|
| 725 |
+
p.data.mul_(1 - lr * weight_decay)
|
| 726 |
+
# apply update
|
| 727 |
+
p.data.add_(u, alpha=-adjusted_lr)
|
| 728 |
+
|
| 729 |
+
def get_qk_clip_info(self, n, qk_logits):
|
| 730 |
+
head_dim = self.clip_config.get('head_dim')
|
| 731 |
+
threshold = self.clip_config.get('threshold')
|
| 732 |
+
kind, layer_idx = parse_qk_layer(n)
|
| 733 |
+
|
| 734 |
+
logit, indices = None, []
|
| 735 |
+
if qk_logits is not None and kind is not None:
|
| 736 |
+
logit = qk_logits[layer_idx]
|
| 737 |
+
indices_key = 'q_indices' if 'q' in kind else 'k_indices'
|
| 738 |
+
indices = self.clip_config.get(indices_key, []) or []
|
| 739 |
+
|
| 740 |
+
return QKClipInfo(
|
| 741 |
+
kind=kind,
|
| 742 |
+
indices=indices,
|
| 743 |
+
head_dim=head_dim,
|
| 744 |
+
threshold=threshold,
|
| 745 |
+
logit=logit,
|
| 746 |
+
)
|
| 747 |
+
|
| 748 |
+
@staticmethod
|
| 749 |
+
def _compute_scales(p, qk_clip_state):
|
| 750 |
+
kind = qk_clip_state.kind
|
| 751 |
+
indices = qk_clip_state.indices
|
| 752 |
+
head_dim = qk_clip_state.head_dim
|
| 753 |
+
threshold = qk_clip_state.threshold
|
| 754 |
+
logit = qk_clip_state.logit
|
| 755 |
+
|
| 756 |
+
H_global = p.shape[0] // head_dim
|
| 757 |
+
scales_full = torch.ones(H_global, device=p.data.device)
|
| 758 |
+
scaling = 0
|
| 759 |
+
|
| 760 |
+
for logit_idx, head_idx in enumerate(indices):
|
| 761 |
+
v_ele = float(logit[logit_idx])
|
| 762 |
+
if v_ele > threshold:
|
| 763 |
+
new_scale = math.sqrt(threshold / v_ele)
|
| 764 |
+
if new_scale < scales_full[head_idx]:
|
| 765 |
+
scales_full[head_idx] = new_scale
|
| 766 |
+
logger.info(
|
| 767 |
+
f"[{kind}] Head {head_idx} exceeded threshold "
|
| 768 |
+
f"(value={v_ele:.4f}, threshold={threshold:.4f}) -> applying scale={new_scale:.4f}"
|
| 769 |
+
)
|
| 770 |
+
scaling += 1
|
| 771 |
+
|
| 772 |
+
return scales_full if scaling > 0 else None
|
| 773 |
+
|
| 774 |
+
@staticmethod
|
| 775 |
+
def _qk_clip(p, scales, head_dim):
|
| 776 |
+
W = p.data.view(-1, head_dim, p.data.shape[1])
|
| 777 |
+
W.mul_(scales.view(-1, 1, 1))
|
| 778 |
+
|
| 779 |
+
def parallel(self, names, params, group, lr, weight_decay, momentum,
|
| 780 |
+
qk_logits):
|
| 781 |
+
"""
|
| 782 |
+
Perform a parallel optimization step using Muon.
|
| 783 |
+
"""
|
| 784 |
+
|
| 785 |
+
for p in params:
|
| 786 |
+
g = p.grad
|
| 787 |
+
if g is None:
|
| 788 |
+
continue
|
| 789 |
+
if g.ndim > 2:
|
| 790 |
+
g = g.view(g.size(0), -1)
|
| 791 |
+
|
| 792 |
+
# Update g in the local rank
|
| 793 |
+
g = self._update_g(
|
| 794 |
+
p,
|
| 795 |
+
g,
|
| 796 |
+
group,
|
| 797 |
+
momentum=momentum,
|
| 798 |
+
)
|
| 799 |
+
p.grad = g
|
| 800 |
+
|
| 801 |
+
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 802 |
+
names, params, group, qk_logits)
|
| 803 |
+
|
| 804 |
+
assert self.rank is not None
|
| 805 |
+
|
| 806 |
+
def enqueue_all2all_gather(start_idx, chunk_size):
|
| 807 |
+
target_params = ordered_params[start_idx:start_idx + chunk_size]
|
| 808 |
+
if target_params:
|
| 809 |
+
alloc_event = _alloc_gathered_grad(target_params,
|
| 810 |
+
param_to_state, self.rank,
|
| 811 |
+
self.compute_stream)
|
| 812 |
+
_all2all_gather(target_params, param_to_state, self.rank,
|
| 813 |
+
self.comm_stream, group["none_grad"],
|
| 814 |
+
alloc_event)
|
| 815 |
+
|
| 816 |
+
def enqueue_computes(start_idx, chunk_size):
|
| 817 |
+
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
| 818 |
+
state = param_to_state[id(p)]
|
| 819 |
+
_compute_u(p, state, group["ns_steps"], self.rank,
|
| 820 |
+
self.compute_stream)
|
| 821 |
+
|
| 822 |
+
def enqueue_all2all_scatter(start_idx, chunk_size):
|
| 823 |
+
target_params = ordered_params[start_idx:start_idx + chunk_size]
|
| 824 |
+
if target_params:
|
| 825 |
+
alloc_event = _alloc_scattered_u(target_params, param_to_state,
|
| 826 |
+
self.rank,
|
| 827 |
+
self.compute_stream)
|
| 828 |
+
_all2all_scatter(target_params, param_to_state, self.rank,
|
| 829 |
+
self.comm_stream, alloc_event)
|
| 830 |
+
|
| 831 |
+
def enqueue_update_param(start_idx, chunk_size):
|
| 832 |
+
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
| 833 |
+
state = param_to_state[id(p)]
|
| 834 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 835 |
+
_update_param(p, state, lr, adjusted_lr, weight_decay,
|
| 836 |
+
self.rank, self.compute_stream)
|
| 837 |
+
|
| 838 |
+
chunk_size = dist.get_world_size(param_to_state[id(
|
| 839 |
+
params[0])].process_group)
|
| 840 |
+
|
| 841 |
+
# Wait grad update
|
| 842 |
+
self.comm_stream.wait_stream(torch.cuda.current_stream())
|
| 843 |
+
|
| 844 |
+
overlap_step = self.overlap_step
|
| 845 |
+
for i in range(0, overlap_step):
|
| 846 |
+
enqueue_all2all_gather(i * chunk_size, chunk_size)
|
| 847 |
+
enqueue_computes(i * chunk_size, chunk_size)
|
| 848 |
+
|
| 849 |
+
for i in range(0, len(params) + chunk_size - 1, chunk_size):
|
| 850 |
+
enqueue_all2all_scatter(i, chunk_size)
|
| 851 |
+
enqueue_all2all_gather(i + overlap_step * chunk_size, chunk_size)
|
| 852 |
+
enqueue_update_param(i, chunk_size)
|
| 853 |
+
enqueue_computes(i + overlap_step * chunk_size, chunk_size)
|
| 854 |
+
|
| 855 |
+
# Wait the last update_param to finish
|
| 856 |
+
torch.cuda.current_stream().wait_stream(self.compute_stream)
|
| 857 |
+
|
| 858 |
+
@staticmethod
|
| 859 |
+
def _fused_adamw(
|
| 860 |
+
params: list[torch.Tensor],
|
| 861 |
+
grads: list[torch.Tensor],
|
| 862 |
+
exp_avgs: list[torch.Tensor],
|
| 863 |
+
exp_avg_sqs: list[torch.Tensor],
|
| 864 |
+
max_exp_avg_sqs: list[torch.Tensor],
|
| 865 |
+
state_steps: list[torch.Tensor],
|
| 866 |
+
amsgrad: bool,
|
| 867 |
+
beta1: float,
|
| 868 |
+
beta2: float,
|
| 869 |
+
lr: Union[float, torch.Tensor],
|
| 870 |
+
weight_decay: float,
|
| 871 |
+
eps: float,
|
| 872 |
+
maximize: bool,
|
| 873 |
+
) -> None:
|
| 874 |
+
if not params:
|
| 875 |
+
return
|
| 876 |
+
|
| 877 |
+
# We only shuffle around the lr when it is a Tensor and on CUDA, otherwise, we prefer
|
| 878 |
+
# treating it as a scalar.
|
| 879 |
+
lr_dict: Optional[DeviceDict] = ({
|
| 880 |
+
lr.device: lr
|
| 881 |
+
} if isinstance(lr, torch.Tensor) and str(lr.device) != "cpu" else
|
| 882 |
+
None)
|
| 883 |
+
grouped_tensors = torch.optim.Optimizer._group_tensors_by_device_and_dtype(
|
| 884 |
+
[
|
| 885 |
+
params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs,
|
| 886 |
+
state_steps
|
| 887 |
+
] # type: ignore[list-item]
|
| 888 |
+
)
|
| 889 |
+
for (device, _), (
|
| 890 |
+
(
|
| 891 |
+
device_params_,
|
| 892 |
+
device_grads_,
|
| 893 |
+
device_exp_avgs_,
|
| 894 |
+
device_exp_avg_sqs_,
|
| 895 |
+
device_max_exp_avg_sqs,
|
| 896 |
+
device_state_steps_,
|
| 897 |
+
),
|
| 898 |
+
_,
|
| 899 |
+
) in grouped_tensors.items():
|
| 900 |
+
device_params = cast(list[torch.Tensor], device_params_)
|
| 901 |
+
device_grads = cast(list[torch.Tensor], device_grads_)
|
| 902 |
+
device_exp_avgs = cast(list[torch.Tensor], device_exp_avgs_)
|
| 903 |
+
device_exp_avg_sqs = cast(list[torch.Tensor], device_exp_avg_sqs_)
|
| 904 |
+
device_state_steps = cast(list[torch.Tensor], device_state_steps_)
|
| 905 |
+
|
| 906 |
+
if lr_dict is not None and device not in lr_dict:
|
| 907 |
+
lr_dict[device] = lr.to(
|
| 908 |
+
device=device,
|
| 909 |
+
non_blocking=True) # type: ignore[union-attr]
|
| 910 |
+
lr = lr_dict[device]
|
| 911 |
+
torch._foreach_add_(device_state_steps, 1)
|
| 912 |
+
func = torch._fused_adamw_
|
| 913 |
+
func(
|
| 914 |
+
device_params,
|
| 915 |
+
device_grads,
|
| 916 |
+
device_exp_avgs,
|
| 917 |
+
device_exp_avg_sqs,
|
| 918 |
+
device_max_exp_avg_sqs, # type: ignore[arg-type]
|
| 919 |
+
device_state_steps,
|
| 920 |
+
amsgrad=amsgrad,
|
| 921 |
+
lr=lr, # type: ignore[arg-type]
|
| 922 |
+
beta1=beta1,
|
| 923 |
+
beta2=beta2,
|
| 924 |
+
weight_decay=weight_decay,
|
| 925 |
+
eps=eps,
|
| 926 |
+
maximize=maximize,
|
| 927 |
+
)
|
| 928 |
+
|
| 929 |
+
def step(self, closure=None, qk_logits=None):
|
| 930 |
+
"""Perform a single optimization step.
|
| 931 |
+
|
| 932 |
+
Args:
|
| 933 |
+
closure (Callable, optional): A closure that reevaluates the model
|
| 934 |
+
and returns the loss.
|
| 935 |
+
qk_logits (dict[int, Tensor], optional): A dictionary mapping layer indices
|
| 936 |
+
to 1D tensors of shape (num_heads,), representing the maximum
|
| 937 |
+
QK logits across all tokens, computed as
|
| 938 |
+
(1 / sqrt(head_dim)) * (Q @ K^T).
|
| 939 |
+
"""
|
| 940 |
+
loss = None
|
| 941 |
+
if closure is not None:
|
| 942 |
+
with torch.enable_grad():
|
| 943 |
+
loss = closure()
|
| 944 |
+
|
| 945 |
+
for group in self.param_groups:
|
| 946 |
+
params = group["params"]
|
| 947 |
+
|
| 948 |
+
if group["use_muon"]:
|
| 949 |
+
############################
|
| 950 |
+
# Muon #
|
| 951 |
+
############################
|
| 952 |
+
lr = group["lr"]
|
| 953 |
+
weight_decay = group["weight_decay"]
|
| 954 |
+
momentum = group["momentum"]
|
| 955 |
+
names = group["names"]
|
| 956 |
+
|
| 957 |
+
param_dtensors = []
|
| 958 |
+
param_tensors = []
|
| 959 |
+
name_dtensors = []
|
| 960 |
+
name_tensors = []
|
| 961 |
+
|
| 962 |
+
for n, p in zip(names, params):
|
| 963 |
+
if p is None or p.grad is None:
|
| 964 |
+
continue
|
| 965 |
+
if isinstance(p.data, DTensor):
|
| 966 |
+
if all(
|
| 967 |
+
isinstance(placement, Replicate)
|
| 968 |
+
for placement in p.placements):
|
| 969 |
+
param_tensors.append(p)
|
| 970 |
+
name_tensors.append(n)
|
| 971 |
+
else:
|
| 972 |
+
param_dtensors.append(p)
|
| 973 |
+
name_dtensors.append(n)
|
| 974 |
+
elif isinstance(p.data, torch.Tensor):
|
| 975 |
+
param_tensors.append(p)
|
| 976 |
+
name_tensors.append(n)
|
| 977 |
+
else:
|
| 978 |
+
raise TypeError(
|
| 979 |
+
f"Unsupported parameter type: {type(p.data)}")
|
| 980 |
+
|
| 981 |
+
if self.debug:
|
| 982 |
+
print(
|
| 983 |
+
f"[Muon] {len(param_dtensors)} DTensors, {len(param_tensors)} Tensors",
|
| 984 |
+
flush=True,
|
| 985 |
+
)
|
| 986 |
+
|
| 987 |
+
if len(param_dtensors) > 0:
|
| 988 |
+
if not dist.is_initialized():
|
| 989 |
+
raise RuntimeError(
|
| 990 |
+
"Parallel Muon requires torch.distributed to be initialized."
|
| 991 |
+
)
|
| 992 |
+
|
| 993 |
+
self.parallel(
|
| 994 |
+
name_dtensors,
|
| 995 |
+
param_dtensors,
|
| 996 |
+
group,
|
| 997 |
+
lr=lr,
|
| 998 |
+
weight_decay=weight_decay,
|
| 999 |
+
momentum=momentum,
|
| 1000 |
+
qk_logits=qk_logits,
|
| 1001 |
+
)
|
| 1002 |
+
|
| 1003 |
+
if len(param_tensors) > 0:
|
| 1004 |
+
self.base(
|
| 1005 |
+
name_tensors,
|
| 1006 |
+
param_tensors,
|
| 1007 |
+
group,
|
| 1008 |
+
lr=lr,
|
| 1009 |
+
weight_decay=weight_decay,
|
| 1010 |
+
momentum=momentum,
|
| 1011 |
+
qk_logits=qk_logits,
|
| 1012 |
+
)
|
| 1013 |
+
|
| 1014 |
+
else:
|
| 1015 |
+
############################
|
| 1016 |
+
# AdamW backup #
|
| 1017 |
+
############################
|
| 1018 |
+
|
| 1019 |
+
params_with_grads = []
|
| 1020 |
+
grads = []
|
| 1021 |
+
moment1 = []
|
| 1022 |
+
moment2 = []
|
| 1023 |
+
max_exp_avg_sqs = []
|
| 1024 |
+
state_steps = []
|
| 1025 |
+
lr = group["lr"]
|
| 1026 |
+
beta1, beta2 = group["adamw_betas"]
|
| 1027 |
+
eps = group["adamw_eps"]
|
| 1028 |
+
weight_decay = group["weight_decay"]
|
| 1029 |
+
|
| 1030 |
+
for p in params:
|
| 1031 |
+
g = p.grad
|
| 1032 |
+
if g is None:
|
| 1033 |
+
continue
|
| 1034 |
+
state = self.state[p]
|
| 1035 |
+
params_with_grads.append(p)
|
| 1036 |
+
grads.append(g)
|
| 1037 |
+
if "step" not in state:
|
| 1038 |
+
state["step"] = (torch.zeros((),
|
| 1039 |
+
dtype=torch.float32,
|
| 1040 |
+
device=p.device))
|
| 1041 |
+
state["moment1"] = torch.zeros_like(g)
|
| 1042 |
+
state["moment2"] = torch.zeros_like(g)
|
| 1043 |
+
moment1.append(state["moment1"])
|
| 1044 |
+
moment2.append(state["moment2"])
|
| 1045 |
+
if not isinstance(state["step"], torch.Tensor):
|
| 1046 |
+
step_tensor = torch.tensor(state["step"],
|
| 1047 |
+
dtype=torch.float32,
|
| 1048 |
+
device=p.device)
|
| 1049 |
+
else:
|
| 1050 |
+
step_tensor = state["step"]
|
| 1051 |
+
state_steps.append(step_tensor)
|
| 1052 |
+
|
| 1053 |
+
self._fused_adamw(
|
| 1054 |
+
params_with_grads,
|
| 1055 |
+
grads,
|
| 1056 |
+
moment1,
|
| 1057 |
+
moment2,
|
| 1058 |
+
max_exp_avg_sqs,
|
| 1059 |
+
state_steps,
|
| 1060 |
+
amsgrad=False,
|
| 1061 |
+
beta1=beta1,
|
| 1062 |
+
beta2=beta2,
|
| 1063 |
+
lr=lr,
|
| 1064 |
+
weight_decay=weight_decay,
|
| 1065 |
+
eps=eps,
|
| 1066 |
+
maximize=False,
|
| 1067 |
+
)
|
| 1068 |
+
|
| 1069 |
+
return loss
|
build/torch29-cxx11-rocm64-x86_64-linux/optimizer/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .muon import Muon
|
| 2 |
+
|
| 3 |
+
__all__ = [
|
| 4 |
+
"Muon",
|
| 5 |
+
]
|
build/torch29-cxx11-rocm64-x86_64-linux/optimizer/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _optimizer_811726c_dirty
|
| 3 |
+
ops = torch.ops._optimizer_811726c_dirty
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_optimizer_811726c_dirty::{op_name}"
|
build/torch29-cxx11-rocm64-x86_64-linux/optimizer/_optimizer_811726c_dirty.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:08b55491319446b12d0d890926506639640414edcba945e0f71afef0fac369d5
|
| 3 |
+
size 1749352
|
build/torch29-cxx11-rocm64-x86_64-linux/optimizer/matmul_transpose_triton.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MIT License
|
| 2 |
+
#
|
| 3 |
+
# Copyright (c) 2025 Tianyang Lin
|
| 4 |
+
#
|
| 5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
# in the Software without restriction, including without limitation the rights
|
| 8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
# furnished to do so, subject to the following conditions:
|
| 11 |
+
#
|
| 12 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
# copies or substantial portions of the Software.
|
| 14 |
+
#
|
| 15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
# SOFTWARE.
|
| 22 |
+
|
| 23 |
+
import torch
|
| 24 |
+
import triton
|
| 25 |
+
import triton.language as tl
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def get_autotune_config():
|
| 29 |
+
return [
|
| 30 |
+
triton.Config(
|
| 31 |
+
{
|
| 32 |
+
'BLOCK_SIZE_M': blk_m,
|
| 33 |
+
'BLOCK_SIZE_K': blk_k,
|
| 34 |
+
'GROUP_SIZE_M': grp_sz
|
| 35 |
+
},
|
| 36 |
+
num_stages=n_stages,
|
| 37 |
+
num_warps=n_warps) for blk_m in [32, 64, 128]
|
| 38 |
+
for blk_k in [32, 64] for grp_sz in [8] for n_stages in [3, 4, 5]
|
| 39 |
+
for n_warps in [4, 8]
|
| 40 |
+
]
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
@triton.autotune(
|
| 44 |
+
configs=get_autotune_config(),
|
| 45 |
+
key=['M', 'K'],
|
| 46 |
+
)
|
| 47 |
+
@triton.jit
|
| 48 |
+
def mmt_kernel(x, y, M, K, stride_xm, stride_xk, stride_ym, stride_yn,
|
| 49 |
+
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
|
| 50 |
+
GROUP_SIZE_M: tl.constexpr):
|
| 51 |
+
"""
|
| 52 |
+
Core kernel jit function of matmul_transpose that computes y = x @ x.T
|
| 53 |
+
The code is a simple adaptation from the triton `matmul` tutorial:
|
| 54 |
+
https://triton-lang.org/main/getting-started/tutorials/03-matrix-multiplication.html
|
| 55 |
+
"""
|
| 56 |
+
pid = tl.program_id(axis=0)
|
| 57 |
+
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
|
| 58 |
+
num_pid_n = tl.cdiv(M, BLOCK_SIZE_M)
|
| 59 |
+
num_pid_in_group = GROUP_SIZE_M * num_pid_n
|
| 60 |
+
group_id = pid // num_pid_in_group
|
| 61 |
+
first_pid_m = group_id * GROUP_SIZE_M
|
| 62 |
+
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
| 63 |
+
pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m)
|
| 64 |
+
pid_n = (pid % num_pid_in_group) // group_size_m
|
| 65 |
+
if pid_m > pid_n:
|
| 66 |
+
return
|
| 67 |
+
|
| 68 |
+
offs_xm = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
|
| 69 |
+
offs_xn = (pid_n * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
|
| 70 |
+
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
| 71 |
+
# we use a & b ptrs to denote different rows of x.
|
| 72 |
+
a_ptrs = x + (offs_xm[:, None] * stride_xm + offs_k[None, :] * stride_xk)
|
| 73 |
+
b_ptrs = x + (offs_xn[:, None] * stride_xm + offs_k[None, :] * stride_xk)
|
| 74 |
+
|
| 75 |
+
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_M), dtype=tl.float32)
|
| 76 |
+
|
| 77 |
+
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
|
| 78 |
+
a = tl.load(a_ptrs,
|
| 79 |
+
mask=offs_k[None, :] < K - k * BLOCK_SIZE_K,
|
| 80 |
+
other=0.0)
|
| 81 |
+
b = tl.load(b_ptrs,
|
| 82 |
+
mask=offs_k[None, :] < K - k * BLOCK_SIZE_K,
|
| 83 |
+
other=0.0)
|
| 84 |
+
accumulator = tl.dot(a, tl.permute(b, (1, 0)), accumulator)
|
| 85 |
+
a_ptrs += BLOCK_SIZE_K * stride_xk
|
| 86 |
+
b_ptrs += BLOCK_SIZE_K * stride_xk
|
| 87 |
+
# use dtype.element_ty to accommodate different input datatypes as in cpp templates
|
| 88 |
+
# https://github.com/triton-lang/triton/issues/2252
|
| 89 |
+
c = accumulator.to(x.dtype.element_ty)
|
| 90 |
+
|
| 91 |
+
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
| 92 |
+
offs_cn = pid_n * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
| 93 |
+
c_ptrs = y + stride_ym * offs_cm[:, None] + stride_yn * offs_cn[None, :]
|
| 94 |
+
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < M)
|
| 95 |
+
tl.store(c_ptrs, c, mask=c_mask)
|
| 96 |
+
|
| 97 |
+
# transpose and copy
|
| 98 |
+
if pid_m < pid_n:
|
| 99 |
+
ct_ptrs = y + stride_ym * offs_cn[:,
|
| 100 |
+
None] + stride_yn * offs_cm[None, :]
|
| 101 |
+
ct_mask = (offs_cn[:, None] < M) & (offs_cm[None, :] < M)
|
| 102 |
+
tl.store(ct_ptrs, tl.permute(c, (1, 0)), mask=ct_mask)
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def matmul_transpose_assign(d_in, d_out):
|
| 106 |
+
assert d_in.is_cuda, "Input `d_in` must be a CUDA tensor"
|
| 107 |
+
assert d_out.is_cuda, "Input `d_out` must be a CUDA tensor"
|
| 108 |
+
assert d_in.device == d_out.device, "Inputs `d_in` and `d_out` must be on the same CUDA device"
|
| 109 |
+
assert d_in.dtype == d_out.dtype, "Inputs must have the same data type"
|
| 110 |
+
assert d_in.ndim == 2, "Input `d_in` must be a 2D tensor"
|
| 111 |
+
assert d_out.ndim == 2, "Input `d_out` must be a 2D tensor"
|
| 112 |
+
assert d_in.size(0) == d_out.size(0) == d_out.size(0), \
|
| 113 |
+
"First dimension of `d_in` must match first and second dimension of `d_out`"
|
| 114 |
+
|
| 115 |
+
d_in = d_in.contiguous()
|
| 116 |
+
M, K = d_in.shape
|
| 117 |
+
grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(
|
| 118 |
+
M, META['BLOCK_SIZE_M']), )
|
| 119 |
+
with torch.cuda.device(d_in.device.index):
|
| 120 |
+
mmt_kernel[grid](d_in, d_out, M, K, d_in.stride(0), d_in.stride(1),
|
| 121 |
+
d_out.stride(0), d_out.stride(1))
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def matmul_transpose(d_in):
|
| 125 |
+
M, _ = d_in.shape
|
| 126 |
+
d_out = torch.empty((M, M), device=d_in.device, dtype=d_in.dtype)
|
| 127 |
+
matmul_transpose_assign(d_in, d_out)
|
| 128 |
+
return d_out
|
build/torch29-cxx11-rocm64-x86_64-linux/optimizer/muon.py
ADDED
|
@@ -0,0 +1,1069 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import math
|
| 3 |
+
import types
|
| 4 |
+
from dataclasses import dataclass
|
| 5 |
+
from typing import List, Optional, Union, cast
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.distributed as dist
|
| 9 |
+
from torch.distributed._tensor import DTensor, Replicate, Shard
|
| 10 |
+
|
| 11 |
+
from .matmul_transpose_triton import matmul_transpose_assign
|
| 12 |
+
|
| 13 |
+
logger = logging.getLogger(__name__)
|
| 14 |
+
|
| 15 |
+
COMM_DTYPE = torch.bfloat16
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# This code snippet is a modified version adapted from the following GitHub repositories:
|
| 19 |
+
# https://github.com/KellerJordan/Muon/blob/master/muon.py
|
| 20 |
+
# Muon's Newton–Schulz iteration causes high variance in singular values
|
| 21 |
+
# Idea: give each iteration its own 3 coefficients and optimize them via gradient descent.
|
| 22 |
+
@torch.no_grad()
|
| 23 |
+
# matmul_transpose_assign from : https://github.com/nil0x9/flash-muon
|
| 24 |
+
def _zeropower_via_newtonschulz5(G, steps):
|
| 25 |
+
"""
|
| 26 |
+
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
|
| 27 |
+
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
|
| 28 |
+
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
|
| 29 |
+
zero even beyond the point where the iteration no longer converges all the way to one everywhere
|
| 30 |
+
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
|
| 31 |
+
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
|
| 32 |
+
performance at all relative to UV^T, where USV^T = G is the SVD.
|
| 33 |
+
"""
|
| 34 |
+
assert len(G.shape) == 2
|
| 35 |
+
assert G.dtype == COMM_DTYPE
|
| 36 |
+
X = G # no manual typecast
|
| 37 |
+
|
| 38 |
+
if G.size(0) > G.size(1):
|
| 39 |
+
X = X.T
|
| 40 |
+
# Ensure spectral norm is at most 1
|
| 41 |
+
X = X / (X.norm() + 1e-7)
|
| 42 |
+
buf1 = torch.empty(X.size(0), X.size(0), dtype=X.dtype, device=X.device)
|
| 43 |
+
buf2 = torch.empty(X.size(0), X.size(0), dtype=X.dtype, device=X.device)
|
| 44 |
+
# Perform the NS iterations
|
| 45 |
+
for a, b, c in [
|
| 46 |
+
(4.0848, -6.8946, 2.9270),
|
| 47 |
+
(3.9505, -6.3029, 2.6377),
|
| 48 |
+
(3.7418, -5.5913, 2.3037),
|
| 49 |
+
(2.8769, -3.1427, 1.2046),
|
| 50 |
+
(2.8366, -3.0525, 1.2012),
|
| 51 |
+
]:
|
| 52 |
+
matmul_transpose_assign(X, buf1)
|
| 53 |
+
matmul_transpose_assign(buf1, buf2)
|
| 54 |
+
buf1.mul_(b).add_(buf2, alpha=c)
|
| 55 |
+
X = torch.addmm(X, buf1, X, alpha=1.0, beta=a)
|
| 56 |
+
|
| 57 |
+
if G.size(0) > G.size(1):
|
| 58 |
+
X = X.T
|
| 59 |
+
return X
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
@dataclass
|
| 63 |
+
class _muon_state:
|
| 64 |
+
# TODO: use Optional
|
| 65 |
+
worker_rank: int | None = None
|
| 66 |
+
gathered_grad: torch.Tensor | None = None
|
| 67 |
+
scattered_u: DTensor | None = None
|
| 68 |
+
computed_u: torch.Tensor | None = None
|
| 69 |
+
gather_event: torch.cuda.Event | None = None
|
| 70 |
+
compute_event: torch.cuda.Event | None = None
|
| 71 |
+
scatter_event: torch.cuda.Event | None = None
|
| 72 |
+
process_group = None
|
| 73 |
+
qk_clip_state = None
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def split_elems_for_src(param, src_rank, num_ranks) -> int:
|
| 77 |
+
rows = param.shape[0]
|
| 78 |
+
cols = int(param.numel() // rows)
|
| 79 |
+
base, rem = divmod(rows, num_ranks)
|
| 80 |
+
my_rows = base + (1 if src_rank < rem else 0)
|
| 81 |
+
return my_rows * cols
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
@torch.no_grad()
|
| 85 |
+
def _alloc_gathered_grad(params, param_to_state, rank, compute_stream):
|
| 86 |
+
"""
|
| 87 |
+
Pre-allocate gathered_grad buffer on compute_stream
|
| 88 |
+
before launching all2all gather
|
| 89 |
+
"""
|
| 90 |
+
with torch.cuda.stream(compute_stream):
|
| 91 |
+
for p in params:
|
| 92 |
+
state = param_to_state[id(p)]
|
| 93 |
+
if rank == state.worker_rank:
|
| 94 |
+
num_ranks = dist.get_world_size(group=state.process_group)
|
| 95 |
+
state.gathered_grad = torch.empty(p.grad.numel(),
|
| 96 |
+
dtype=COMM_DTYPE,
|
| 97 |
+
device="cuda")
|
| 98 |
+
else:
|
| 99 |
+
state.gathered_grad = None
|
| 100 |
+
|
| 101 |
+
alloc_event = torch.cuda.Event()
|
| 102 |
+
alloc_event.record(compute_stream)
|
| 103 |
+
return alloc_event
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
@torch.no_grad()
|
| 107 |
+
def _all2all_gather(params, param_to_state, rank, comm_stream, none_grad,
|
| 108 |
+
alloc_event):
|
| 109 |
+
"""
|
| 110 |
+
All2all gathers shards so each owner rank reconstructs its full gradient
|
| 111 |
+
"""
|
| 112 |
+
with torch.cuda.stream(comm_stream):
|
| 113 |
+
process_group = param_to_state[id(params[0])].process_group
|
| 114 |
+
num_ranks = dist.get_world_size(group=process_group)
|
| 115 |
+
|
| 116 |
+
# Construct sending buffers
|
| 117 |
+
per_dst = [[] for _ in range(num_ranks)]
|
| 118 |
+
send_counts = [0] * num_ranks
|
| 119 |
+
|
| 120 |
+
for p in params:
|
| 121 |
+
state = param_to_state[id(p)]
|
| 122 |
+
dst = state.worker_rank
|
| 123 |
+
assert dst < num_ranks
|
| 124 |
+
shard_elems = split_elems_for_src(p, rank, num_ranks)
|
| 125 |
+
g = p.grad
|
| 126 |
+
g = g.to_local().to(COMM_DTYPE).contiguous().view(-1)
|
| 127 |
+
assert g.numel() == shard_elems
|
| 128 |
+
per_dst[dst].append(g)
|
| 129 |
+
send_counts[dst] += shard_elems
|
| 130 |
+
|
| 131 |
+
assert any(
|
| 132 |
+
len(v) > 0 for v in per_dst
|
| 133 |
+
), "At least one destination rank must receive a sharded tensor"
|
| 134 |
+
# list[list[Tensor]] -> list[Tensor]
|
| 135 |
+
per_dst = [t for dst in per_dst for t in dst]
|
| 136 |
+
|
| 137 |
+
send_buf = torch.cat(per_dst, dim=0)
|
| 138 |
+
|
| 139 |
+
owned_params = [
|
| 140 |
+
p for p in params if param_to_state[id(p)].worker_rank == rank
|
| 141 |
+
]
|
| 142 |
+
|
| 143 |
+
# Compute receive sizes and allocate receiving buffers
|
| 144 |
+
recv_counts = [0] * num_ranks
|
| 145 |
+
|
| 146 |
+
for src in range(num_ranks):
|
| 147 |
+
total = 0
|
| 148 |
+
for p in owned_params:
|
| 149 |
+
state = param_to_state[id(p)]
|
| 150 |
+
assert state.worker_rank == rank
|
| 151 |
+
total += split_elems_for_src(p, src, num_ranks)
|
| 152 |
+
recv_counts[src] = total
|
| 153 |
+
|
| 154 |
+
recv_total = sum(recv_counts)
|
| 155 |
+
recv_buf = torch.empty(recv_total, dtype=COMM_DTYPE, device="cuda")
|
| 156 |
+
|
| 157 |
+
#All2All
|
| 158 |
+
dist.all_to_all_single(
|
| 159 |
+
recv_buf,
|
| 160 |
+
send_buf,
|
| 161 |
+
output_split_sizes=recv_counts,
|
| 162 |
+
input_split_sizes=send_counts,
|
| 163 |
+
group=process_group,
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
# Reconstructs gathered grad from the received buffer
|
| 167 |
+
#
|
| 168 |
+
# recv_buf (num ranks = 3)
|
| 169 |
+
#
|
| 170 |
+
# From rank 0 From rank 1 From rank 2
|
| 171 |
+
# | p1_0, p2_0, p3_0 | p1_1, p2_1, p3_1 | p1_2, p2_2, p3_2 |
|
| 172 |
+
#
|
| 173 |
+
# Outer loop:
|
| 174 |
+
# rank 0 -> rank 1 -> rank2
|
| 175 |
+
#
|
| 176 |
+
# Inner loop:
|
| 177 |
+
# p1_n -> p2_n -> p3_n
|
| 178 |
+
|
| 179 |
+
comm_stream.wait_event(alloc_event)
|
| 180 |
+
|
| 181 |
+
off = 0
|
| 182 |
+
write_offsets = {id(p): 0 for p in owned_params}
|
| 183 |
+
for src in range(num_ranks):
|
| 184 |
+
if recv_counts[src] == 0:
|
| 185 |
+
continue
|
| 186 |
+
|
| 187 |
+
block = recv_counts[src]
|
| 188 |
+
inner_off = 0
|
| 189 |
+
for p in owned_params:
|
| 190 |
+
state = param_to_state[id(p)]
|
| 191 |
+
assert state.worker_rank == rank
|
| 192 |
+
n = split_elems_for_src(p, src, num_ranks)
|
| 193 |
+
assert n > 0
|
| 194 |
+
|
| 195 |
+
sg = recv_buf.narrow(0, off + inner_off, n)
|
| 196 |
+
woff = write_offsets[id(p)]
|
| 197 |
+
dst = state.gathered_grad.narrow(0, woff, n)
|
| 198 |
+
dst.copy_(sg)
|
| 199 |
+
|
| 200 |
+
write_offsets[id(p)] += n
|
| 201 |
+
inner_off += n
|
| 202 |
+
off += block
|
| 203 |
+
|
| 204 |
+
for p in params:
|
| 205 |
+
state = param_to_state[id(p)]
|
| 206 |
+
if state.worker_rank == rank:
|
| 207 |
+
state.gathered_grad = state.gathered_grad.view_as(p)
|
| 208 |
+
state.gather_event = torch.cuda.Event()
|
| 209 |
+
state.gather_event.record(comm_stream)
|
| 210 |
+
else:
|
| 211 |
+
state.gathered_grad = None
|
| 212 |
+
state.gather_event = None
|
| 213 |
+
if none_grad:
|
| 214 |
+
p.grad = None
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
@torch.no_grad()
|
| 218 |
+
def _compute_u(p, state, steps, rank, compute_stream):
|
| 219 |
+
"""
|
| 220 |
+
On worker_rank, compute the orthogonalized update using Newton-Schulz iteration.
|
| 221 |
+
"""
|
| 222 |
+
with torch.cuda.stream(compute_stream):
|
| 223 |
+
if rank == state.worker_rank:
|
| 224 |
+
if state.gather_event is None:
|
| 225 |
+
raise RuntimeError("Gather event must be set before compute.")
|
| 226 |
+
compute_stream.wait_event(state.gather_event)
|
| 227 |
+
u = _zeropower_via_newtonschulz5(state.gathered_grad, steps)
|
| 228 |
+
state.gathered_grad = None
|
| 229 |
+
state.computed_u = u
|
| 230 |
+
state.compute_event = torch.cuda.Event()
|
| 231 |
+
state.compute_event.record()
|
| 232 |
+
else:
|
| 233 |
+
state.computed_u = None
|
| 234 |
+
state.compute_event = None
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
@torch.no_grad()
|
| 238 |
+
def _alloc_scattered_u(params, param_to_state, rank, compute_stream):
|
| 239 |
+
"""
|
| 240 |
+
Pre-allocate scattered_u buffer on compute_stream
|
| 241 |
+
before launching all2all gather
|
| 242 |
+
"""
|
| 243 |
+
with torch.cuda.stream(compute_stream):
|
| 244 |
+
for p in params:
|
| 245 |
+
state = param_to_state[id(p)]
|
| 246 |
+
state.scattered_u = torch.empty_like(p.to_local(),
|
| 247 |
+
dtype=COMM_DTYPE)
|
| 248 |
+
|
| 249 |
+
alloc_event = torch.cuda.Event()
|
| 250 |
+
alloc_event.record(compute_stream)
|
| 251 |
+
return alloc_event
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
def _all2all_scatter(params, param_to_state, rank, comm_stream, alloc_event):
|
| 255 |
+
"""
|
| 256 |
+
All2all scatters full gradients to all ranks
|
| 257 |
+
"""
|
| 258 |
+
with torch.cuda.stream(comm_stream):
|
| 259 |
+
process_group = param_to_state[id(params[0])].process_group
|
| 260 |
+
num_ranks = dist.get_world_size(group=process_group)
|
| 261 |
+
owned_params = [
|
| 262 |
+
p for p in params if param_to_state[id(p)].worker_rank == rank
|
| 263 |
+
]
|
| 264 |
+
|
| 265 |
+
# Construct sending buffer
|
| 266 |
+
per_dst = [[] for _ in range(num_ranks)]
|
| 267 |
+
send_counts = [0] * num_ranks
|
| 268 |
+
|
| 269 |
+
if owned_params:
|
| 270 |
+
for p in owned_params:
|
| 271 |
+
state = param_to_state[id(p)]
|
| 272 |
+
if state.compute_event is None:
|
| 273 |
+
raise RuntimeError(
|
| 274 |
+
"Compute event must be set before scatter.")
|
| 275 |
+
comm_stream.wait_event(state.compute_event)
|
| 276 |
+
state.gathered_grad = None
|
| 277 |
+
|
| 278 |
+
assert state.computed_u is not None
|
| 279 |
+
|
| 280 |
+
u_full = state.computed_u.to(COMM_DTYPE).contiguous().view(-1)
|
| 281 |
+
|
| 282 |
+
offset = 0
|
| 283 |
+
for dst in range(num_ranks):
|
| 284 |
+
n = split_elems_for_src(p, dst, num_ranks)
|
| 285 |
+
assert n > 0
|
| 286 |
+
|
| 287 |
+
su = u_full.narrow(0, offset, n)
|
| 288 |
+
per_dst[dst].append(su)
|
| 289 |
+
send_counts[dst] += n
|
| 290 |
+
offset += n
|
| 291 |
+
|
| 292 |
+
assert offset == u_full.numel()
|
| 293 |
+
|
| 294 |
+
lengths = [len(v) for v in per_dst]
|
| 295 |
+
if all(l > 0 for l in lengths):
|
| 296 |
+
assert all(
|
| 297 |
+
l == lengths[0] for l in lengths
|
| 298 |
+
), "All destination ranks must have the same number of sharded tensor"
|
| 299 |
+
# list[list[Tensor]] -> list[Tensor]
|
| 300 |
+
per_dst = [t for dst in per_dst for t in dst]
|
| 301 |
+
send_buf = torch.cat(per_dst, dim=0)
|
| 302 |
+
else:
|
| 303 |
+
# all_to_all requires participation from all ranks
|
| 304 |
+
# Even non-owner ranks must join the collective call
|
| 305 |
+
send_buf = torch.empty(0, dtype=COMM_DTYPE, device="cuda")
|
| 306 |
+
|
| 307 |
+
# Compute receive sizes and allocate receiving buffers
|
| 308 |
+
recv_counts = [0] * num_ranks
|
| 309 |
+
|
| 310 |
+
for src in range(num_ranks):
|
| 311 |
+
total = 0
|
| 312 |
+
for p in params:
|
| 313 |
+
state = param_to_state[id(p)]
|
| 314 |
+
if state.worker_rank != src:
|
| 315 |
+
continue
|
| 316 |
+
total += split_elems_for_src(p, rank, num_ranks)
|
| 317 |
+
recv_counts[src] = total
|
| 318 |
+
|
| 319 |
+
recv_total = sum(recv_counts)
|
| 320 |
+
assert recv_total > 0
|
| 321 |
+
recv_buf = torch.empty(recv_total, dtype=COMM_DTYPE, device="cuda")
|
| 322 |
+
|
| 323 |
+
#All2All
|
| 324 |
+
dist.all_to_all_single(
|
| 325 |
+
recv_buf,
|
| 326 |
+
send_buf,
|
| 327 |
+
output_split_sizes=recv_counts,
|
| 328 |
+
input_split_sizes=send_counts,
|
| 329 |
+
group=process_group,
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
# Copy to pre-allocated scattered_u buffer from the received buffer
|
| 333 |
+
#
|
| 334 |
+
# recv_buf (num ranks = 3, local_rank = 0)
|
| 335 |
+
#
|
| 336 |
+
# From rank 0 From rank 1 From rank 2
|
| 337 |
+
# | p1_0, p2_0, p3_0 | p4_0 | p5_0, p6_0 |
|
| 338 |
+
#
|
| 339 |
+
# Outer loop:
|
| 340 |
+
# rank 0 -> rank 1 -> rank2
|
| 341 |
+
#
|
| 342 |
+
# Inner loop:
|
| 343 |
+
# src(0) : p1_0 -> p2_0 -> p3_0
|
| 344 |
+
# src(1) : p4_0
|
| 345 |
+
# src(2) : p5_0 -> p6_0
|
| 346 |
+
|
| 347 |
+
comm_stream.wait_event(alloc_event)
|
| 348 |
+
|
| 349 |
+
off = 0
|
| 350 |
+
for src in range(num_ranks):
|
| 351 |
+
block = recv_counts[src]
|
| 352 |
+
if block == 0:
|
| 353 |
+
continue
|
| 354 |
+
|
| 355 |
+
inner_off = 0
|
| 356 |
+
for p in params:
|
| 357 |
+
state = param_to_state[id(p)]
|
| 358 |
+
if state.worker_rank != src:
|
| 359 |
+
continue
|
| 360 |
+
n = split_elems_for_src(p, rank, num_ranks)
|
| 361 |
+
assert n > 0
|
| 362 |
+
|
| 363 |
+
flat_local = recv_buf.narrow(0, off + inner_off,
|
| 364 |
+
n).view_as(p.to_local())
|
| 365 |
+
state.scattered_u.copy_(flat_local)
|
| 366 |
+
|
| 367 |
+
state.scatter_event = torch.cuda.Event()
|
| 368 |
+
state.scatter_event.record(comm_stream)
|
| 369 |
+
inner_off += n
|
| 370 |
+
|
| 371 |
+
assert inner_off == block
|
| 372 |
+
off += block
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
def _update_param(p, state, lr, adjusted_lr, weight_decay, rank,
|
| 376 |
+
compute_stream):
|
| 377 |
+
"""
|
| 378 |
+
Update sharded parameter p with the scattered_u.
|
| 379 |
+
Only worker_rank frees computed_u.
|
| 380 |
+
"""
|
| 381 |
+
with torch.cuda.stream(compute_stream):
|
| 382 |
+
if state.scatter_event is None:
|
| 383 |
+
raise RuntimeError("Scatter event must be set before update")
|
| 384 |
+
compute_stream.wait_event(state.scatter_event)
|
| 385 |
+
u_dtensor = DTensor.from_local(
|
| 386 |
+
state.scattered_u,
|
| 387 |
+
placements=p.placements,
|
| 388 |
+
device_mesh=p.device_mesh,
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
state.scattered_u = u_dtensor
|
| 392 |
+
|
| 393 |
+
if rank == state.worker_rank:
|
| 394 |
+
# Free computed_u
|
| 395 |
+
state.computed_u = None
|
| 396 |
+
|
| 397 |
+
Muon._update_p(p, state.scattered_u, lr, adjusted_lr, weight_decay)
|
| 398 |
+
state.scattered_u = None
|
| 399 |
+
u_dtensor = None
|
| 400 |
+
|
| 401 |
+
scales_full = Muon._compute_scales(p, state.qk_clip_state)
|
| 402 |
+
if scales_full is not None:
|
| 403 |
+
num_ranks = dist.get_world_size(group=state.process_group)
|
| 404 |
+
local_rank = dist.get_rank(group=state.process_group)
|
| 405 |
+
scales_local = scales_full.chunk(num_ranks, dim=0)[local_rank]
|
| 406 |
+
scales_local = DTensor.from_local(
|
| 407 |
+
scales_local,
|
| 408 |
+
placements=p.placements,
|
| 409 |
+
device_mesh=p.device_mesh,
|
| 410 |
+
)
|
| 411 |
+
Muon._qk_clip(p, scales_local, state.qk_clip_state.head_dim)
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
def default_is_muon(name, x):
|
| 415 |
+
skip_keys = ["embed_tokens", "lm_head", "tok_embeddings", "output"]
|
| 416 |
+
return x.ndim >= 2 and not any(key in name for key in skip_keys)
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
def get_default_muon_param_groups(model, is_muon_func=default_is_muon):
|
| 420 |
+
muon_params, muon_names = [], []
|
| 421 |
+
non_muon_params = []
|
| 422 |
+
|
| 423 |
+
for n, p in model.named_parameters():
|
| 424 |
+
if not p.requires_grad:
|
| 425 |
+
continue
|
| 426 |
+
if is_muon_func(n, p):
|
| 427 |
+
muon_params.append(p)
|
| 428 |
+
muon_names.append(n)
|
| 429 |
+
else:
|
| 430 |
+
non_muon_params.append(p)
|
| 431 |
+
|
| 432 |
+
return [
|
| 433 |
+
{
|
| 434 |
+
"params": muon_params,
|
| 435 |
+
"names": muon_names,
|
| 436 |
+
"use_muon": True,
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"params": non_muon_params,
|
| 440 |
+
"use_muon": False,
|
| 441 |
+
},
|
| 442 |
+
]
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
def parse_qk_layer(name: str) -> tuple[str | None, int]:
|
| 446 |
+
"""
|
| 447 |
+
Parse a parameter name to check if it is a query/key projection layer
|
| 448 |
+
('wq', 'wk', 'q_proj', 'k_proj') and return (kind, layer_index).
|
| 449 |
+
|
| 450 |
+
Returns:
|
| 451 |
+
(kind, layer_idx) or (None, -1) if not matched.
|
| 452 |
+
|
| 453 |
+
Example:
|
| 454 |
+
'model.3.attn.wq.weight' -> ('wq', 3)
|
| 455 |
+
'model.5.attn.wk.weight' -> ('wk', 5)
|
| 456 |
+
'model.2.attn.q_proj.weight' -> ('q_proj', 2)
|
| 457 |
+
'model.7.attn.k_proj.weight' -> ('k_proj', 7)
|
| 458 |
+
'model.4.attn.v_proj.weight' -> (None, -1)
|
| 459 |
+
"""
|
| 460 |
+
parts = name.split('.')
|
| 461 |
+
if len(parts) < 3:
|
| 462 |
+
return None, -1
|
| 463 |
+
|
| 464 |
+
kind = parts[-2]
|
| 465 |
+
|
| 466 |
+
layer_idx = -1
|
| 467 |
+
for part in reversed(parts):
|
| 468 |
+
if part.isdigit():
|
| 469 |
+
layer_idx = int(part)
|
| 470 |
+
break
|
| 471 |
+
|
| 472 |
+
if kind in ('wq', 'wk', 'q_proj', 'k_proj'):
|
| 473 |
+
return kind, layer_idx
|
| 474 |
+
|
| 475 |
+
return None, -1
|
| 476 |
+
|
| 477 |
+
|
| 478 |
+
@dataclass
|
| 479 |
+
class QKClipInfo:
|
| 480 |
+
"""Per-parameter dynamic info computed from config + runtime logits."""
|
| 481 |
+
kind: Optional[str] # 'wq'/'q_proj' or 'wk'/'k_proj' or None
|
| 482 |
+
indices: List[int] # which heads to consider for clipping
|
| 483 |
+
head_dim: int # from config
|
| 484 |
+
threshold: float # from config
|
| 485 |
+
logit: Optional[torch.Tensor]
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
class Muon(torch.optim.Optimizer):
|
| 489 |
+
"""
|
| 490 |
+
Muon - MomentUm Orthogonalized by Newton-schulz
|
| 491 |
+
|
| 492 |
+
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
|
| 493 |
+
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
|
| 494 |
+
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
|
| 495 |
+
the advantage that it can be stably run in bfloat16 on the GPU.
|
| 496 |
+
|
| 497 |
+
Some warnings:
|
| 498 |
+
- We believe this optimizer is unlikely to work well for training with small batch size.
|
| 499 |
+
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
|
| 500 |
+
|
| 501 |
+
Arguments:
|
| 502 |
+
model: The model to be optimized by Muon.
|
| 503 |
+
is_muon_func: A function that takes a parameter and its name, and returns whether the parameter should be optimized by Muon.
|
| 504 |
+
lr: The learning rate. The updates will have spectral norm of `lr`. (0.02 is a good default)
|
| 505 |
+
momentum: The momentum used by the internal SGD. (0.95 is a good default)
|
| 506 |
+
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
|
| 507 |
+
ns_steps: The number of Newton-Schulz iterations to run. (6 is probably always enough)
|
| 508 |
+
weight_decay: The weight decay for Muon and AdamW.
|
| 509 |
+
{0, 1}-D or are detected as being the embed or lm_head will be optimized by AdamW as well.
|
| 510 |
+
adamw_lr: The learning rate for the internal AdamW.
|
| 511 |
+
adamw_betas: The betas for the internal AdamW.
|
| 512 |
+
adamw_eps: The epsilon for the internal AdamW.
|
| 513 |
+
none_grad: Whether to set p.grad to None after gathering the gradients. This can save memory.
|
| 514 |
+
debug: Whether to print debug information.
|
| 515 |
+
clip_info : Configuration for QK clipping. Expected keys:
|
| 516 |
+
- "q_indices" (list[int]): Indices of query heads to consider.
|
| 517 |
+
- "k_indices" (list[int]): Indices of key heads to consider.
|
| 518 |
+
- "head_dim" (int): Dimensionality of each attention head.
|
| 519 |
+
- "threshold" (float): Threshold value; heads whose QK logits exceed
|
| 520 |
+
this value will be scaled down.
|
| 521 |
+
Default is:
|
| 522 |
+
{
|
| 523 |
+
"q_indices": [],
|
| 524 |
+
"k_indices": [],
|
| 525 |
+
"head_dim": 128,
|
| 526 |
+
"threshold": 100
|
| 527 |
+
}
|
| 528 |
+
overlap_step : How many all2all gather, compute operations are launched in advance
|
| 529 |
+
before the corresponding all2all scatter steps begin.
|
| 530 |
+
A higher overlap_step increases memory usage but can improve
|
| 531 |
+
performance by overlapping communication.
|
| 532 |
+
Parallel muon only.
|
| 533 |
+
"""
|
| 534 |
+
|
| 535 |
+
def __init__(self,
|
| 536 |
+
params,
|
| 537 |
+
lr=1e-3,
|
| 538 |
+
momentum=0.95,
|
| 539 |
+
nesterov=True,
|
| 540 |
+
ns_steps=5,
|
| 541 |
+
weight_decay=0.1,
|
| 542 |
+
adamw_betas=(0.9, 0.95),
|
| 543 |
+
adamw_eps=1e-8,
|
| 544 |
+
none_grad=True,
|
| 545 |
+
debug=False,
|
| 546 |
+
clip_config={
|
| 547 |
+
"q_indices": [],
|
| 548 |
+
"k_indices": [],
|
| 549 |
+
"head_dim": 128,
|
| 550 |
+
"threshold": 100
|
| 551 |
+
},
|
| 552 |
+
overlap_step=5):
|
| 553 |
+
defaults = dict(
|
| 554 |
+
lr=lr,
|
| 555 |
+
weight_decay=weight_decay,
|
| 556 |
+
momentum=momentum,
|
| 557 |
+
nesterov=nesterov,
|
| 558 |
+
ns_steps=ns_steps,
|
| 559 |
+
adamw_betas=adamw_betas,
|
| 560 |
+
adamw_eps=adamw_eps,
|
| 561 |
+
none_grad=none_grad,
|
| 562 |
+
use_muon=True,
|
| 563 |
+
)
|
| 564 |
+
error_message = "The key 'use_muon' is not set in parameter group {idx}. Assuming all parameters in the group will use muon optimization, which may lead to unexpected behavior."
|
| 565 |
+
instruction_code = "\n\n please follow this code snippet \n```optimizer = get_kernel('motif-technologies/optimizer')\n\n\nparams = optimizer.muon.get_default_muon_param_groups(model)\n\noptim = optimizer.Muon(params, ...)```"
|
| 566 |
+
|
| 567 |
+
if isinstance(params, types.GeneratorType):
|
| 568 |
+
raise ValueError(error_message.format(idx=0) + instruction_code)
|
| 569 |
+
for _idx, param_group in enumerate(params):
|
| 570 |
+
if param_group.get("use_muon", None) is None:
|
| 571 |
+
raise ValueError(
|
| 572 |
+
error_message.format(idx=_idx) + instruction_code)
|
| 573 |
+
|
| 574 |
+
super().__init__(params, defaults)
|
| 575 |
+
|
| 576 |
+
self.rank = None
|
| 577 |
+
|
| 578 |
+
self.comm_stream = torch.cuda.Stream()
|
| 579 |
+
self.compute_stream = torch.cuda.Stream()
|
| 580 |
+
self.debug = debug
|
| 581 |
+
self.clip_config = clip_config
|
| 582 |
+
self.overlap_step = overlap_step
|
| 583 |
+
|
| 584 |
+
def _calc_flops(self, G, steps):
|
| 585 |
+
assert len(G.shape) == 2
|
| 586 |
+
M, N = G.shape
|
| 587 |
+
if M > N:
|
| 588 |
+
M, N = N, M
|
| 589 |
+
|
| 590 |
+
return steps * ((M**3) * 2 + (M**2 * N) * 4 + M * N * 2 + M**2 * 3)
|
| 591 |
+
|
| 592 |
+
def adjust_lr_for_muon(self, lr, param_shape):
|
| 593 |
+
A, B = param_shape[:2]
|
| 594 |
+
# We adjust the learning rate and weight decay based on the size of the parameter matrix
|
| 595 |
+
# as describted in the paper
|
| 596 |
+
adjusted_ratio = 0.2 * math.sqrt(max(A, B))
|
| 597 |
+
adjusted_lr = lr * adjusted_ratio
|
| 598 |
+
return adjusted_lr
|
| 599 |
+
|
| 600 |
+
def get_shard_mesh(self, p):
|
| 601 |
+
"""
|
| 602 |
+
Get the shard mesh for a parameter p on the given rank.
|
| 603 |
+
"""
|
| 604 |
+
assert isinstance(
|
| 605 |
+
p, DTensor), "Parallel Muon only supports DTensor parameters."
|
| 606 |
+
|
| 607 |
+
if p.placements == (Shard(dim=0), ):
|
| 608 |
+
# Case for FSDP
|
| 609 |
+
process_group = p.device_mesh.get_group(mesh_dim=0)
|
| 610 |
+
if self.rank is None:
|
| 611 |
+
self.rank = dist.get_rank(group=process_group)
|
| 612 |
+
else:
|
| 613 |
+
assert self.rank == dist.get_rank(group=process_group)
|
| 614 |
+
return p.device_mesh.mesh, p.device_mesh.get_group(mesh_dim=0)
|
| 615 |
+
elif p.placements == (Replicate(), Shard(dim=0)):
|
| 616 |
+
# Case for HSDP
|
| 617 |
+
process_group = p.device_mesh.get_group(mesh_dim=1)
|
| 618 |
+
if self.rank is None:
|
| 619 |
+
self.rank = dist.get_rank(group=process_group)
|
| 620 |
+
else:
|
| 621 |
+
assert self.rank == dist.get_rank(group=process_group)
|
| 622 |
+
for i, shard_mesh in enumerate(p.device_mesh.mesh):
|
| 623 |
+
if self.rank in shard_mesh:
|
| 624 |
+
return shard_mesh, p.device_mesh.get_group(mesh_dim=1)
|
| 625 |
+
else:
|
| 626 |
+
raise ValueError(f"Unsupported placements ({p.placements}).")
|
| 627 |
+
|
| 628 |
+
def init_state_and_assign_params(self, names, params, group, qk_logits):
|
| 629 |
+
param_to_state = {}
|
| 630 |
+
param_to_flops = {}
|
| 631 |
+
|
| 632 |
+
total_flops = 0
|
| 633 |
+
for p in params:
|
| 634 |
+
g = p.grad
|
| 635 |
+
if g is None:
|
| 636 |
+
continue
|
| 637 |
+
assert g.ndim == 2, "Muon only supports 2D parameters."
|
| 638 |
+
|
| 639 |
+
flops = self._calc_flops(g, group["ns_steps"])
|
| 640 |
+
param_to_flops[id(p)] = flops
|
| 641 |
+
total_flops += flops
|
| 642 |
+
|
| 643 |
+
if self.debug:
|
| 644 |
+
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs",
|
| 645 |
+
flush=True)
|
| 646 |
+
|
| 647 |
+
paired = list(zip(names, params))
|
| 648 |
+
|
| 649 |
+
paired_sorted = sorted(paired,
|
| 650 |
+
key=lambda x: param_to_flops[id(x[1])],
|
| 651 |
+
reverse=True)
|
| 652 |
+
|
| 653 |
+
names_sorted, params_sorted = zip(*paired_sorted)
|
| 654 |
+
ordered_names = list(names_sorted)
|
| 655 |
+
ordered_params = list(params_sorted)
|
| 656 |
+
|
| 657 |
+
round_robin = 0
|
| 658 |
+
mesh = None
|
| 659 |
+
shard_mesh = None
|
| 660 |
+
process_group = None
|
| 661 |
+
for n, p in zip(ordered_names, ordered_params):
|
| 662 |
+
if mesh is None:
|
| 663 |
+
mesh = p.device_mesh
|
| 664 |
+
shard_mesh, process_group = self.get_shard_mesh(p)
|
| 665 |
+
elif mesh != p.device_mesh:
|
| 666 |
+
raise ValueError("All parameters must be on the same mesh.")
|
| 667 |
+
num_ranks = dist.get_world_size(group=process_group)
|
| 668 |
+
param_to_state[id(p)] = _muon_state()
|
| 669 |
+
param_to_state[id(
|
| 670 |
+
p)].worker_rank = shard_mesh[round_robin].item() % num_ranks
|
| 671 |
+
param_to_state[id(p)].process_group = process_group
|
| 672 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 673 |
+
param_to_state[id(p)].qk_clip_state = qk_clip_state
|
| 674 |
+
round_robin = (round_robin + 1) % len(shard_mesh)
|
| 675 |
+
|
| 676 |
+
return param_to_state, ordered_params
|
| 677 |
+
|
| 678 |
+
def base(self, names, params, group, lr, weight_decay, momentum,
|
| 679 |
+
qk_logits):
|
| 680 |
+
# generate weight updates in distributed fashion
|
| 681 |
+
for n, p in zip(names, params):
|
| 682 |
+
g = p.grad
|
| 683 |
+
if g is None:
|
| 684 |
+
continue
|
| 685 |
+
if g.ndim > 2:
|
| 686 |
+
g = g.view(g.size(0), -1)
|
| 687 |
+
assert g is not None
|
| 688 |
+
|
| 689 |
+
# calc update
|
| 690 |
+
state = self.state[p]
|
| 691 |
+
if "momentum_buffer" not in state:
|
| 692 |
+
state["momentum_buffer"] = torch.zeros_like(g)
|
| 693 |
+
buf = state["momentum_buffer"]
|
| 694 |
+
buf.mul_(momentum).add_(g)
|
| 695 |
+
if group["nesterov"]:
|
| 696 |
+
g = g.add(buf, alpha=momentum)
|
| 697 |
+
else:
|
| 698 |
+
g = buf
|
| 699 |
+
|
| 700 |
+
u = _zeropower_via_newtonschulz5(g.to(COMM_DTYPE),
|
| 701 |
+
steps=group["ns_steps"])
|
| 702 |
+
|
| 703 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 704 |
+
Muon._update_p(p, u, lr, adjusted_lr, weight_decay)
|
| 705 |
+
|
| 706 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 707 |
+
|
| 708 |
+
scales_full = self._compute_scales(p, qk_clip_state)
|
| 709 |
+
if scales_full is not None:
|
| 710 |
+
Muon._qk_clip(p, scales_full, qk_clip_state.head_dim)
|
| 711 |
+
|
| 712 |
+
def _update_g(self, p, g, group, momentum):
|
| 713 |
+
# calc update
|
| 714 |
+
state = self.state[p]
|
| 715 |
+
buf = state.setdefault("momentum_buffer", torch.zeros_like(g))
|
| 716 |
+
torch.add(g, buf, alpha=momentum, out=buf)
|
| 717 |
+
if group["nesterov"]:
|
| 718 |
+
g.add_(buf, alpha=momentum)
|
| 719 |
+
return g
|
| 720 |
+
return buf
|
| 721 |
+
|
| 722 |
+
@staticmethod
|
| 723 |
+
def _update_p(p, u, lr, adjusted_lr, weight_decay):
|
| 724 |
+
# apply weight decay
|
| 725 |
+
p.data.mul_(1 - lr * weight_decay)
|
| 726 |
+
# apply update
|
| 727 |
+
p.data.add_(u, alpha=-adjusted_lr)
|
| 728 |
+
|
| 729 |
+
def get_qk_clip_info(self, n, qk_logits):
|
| 730 |
+
head_dim = self.clip_config.get('head_dim')
|
| 731 |
+
threshold = self.clip_config.get('threshold')
|
| 732 |
+
kind, layer_idx = parse_qk_layer(n)
|
| 733 |
+
|
| 734 |
+
logit, indices = None, []
|
| 735 |
+
if qk_logits is not None and kind is not None:
|
| 736 |
+
logit = qk_logits[layer_idx]
|
| 737 |
+
indices_key = 'q_indices' if 'q' in kind else 'k_indices'
|
| 738 |
+
indices = self.clip_config.get(indices_key, []) or []
|
| 739 |
+
|
| 740 |
+
return QKClipInfo(
|
| 741 |
+
kind=kind,
|
| 742 |
+
indices=indices,
|
| 743 |
+
head_dim=head_dim,
|
| 744 |
+
threshold=threshold,
|
| 745 |
+
logit=logit,
|
| 746 |
+
)
|
| 747 |
+
|
| 748 |
+
@staticmethod
|
| 749 |
+
def _compute_scales(p, qk_clip_state):
|
| 750 |
+
kind = qk_clip_state.kind
|
| 751 |
+
indices = qk_clip_state.indices
|
| 752 |
+
head_dim = qk_clip_state.head_dim
|
| 753 |
+
threshold = qk_clip_state.threshold
|
| 754 |
+
logit = qk_clip_state.logit
|
| 755 |
+
|
| 756 |
+
H_global = p.shape[0] // head_dim
|
| 757 |
+
scales_full = torch.ones(H_global, device=p.data.device)
|
| 758 |
+
scaling = 0
|
| 759 |
+
|
| 760 |
+
for logit_idx, head_idx in enumerate(indices):
|
| 761 |
+
v_ele = float(logit[logit_idx])
|
| 762 |
+
if v_ele > threshold:
|
| 763 |
+
new_scale = math.sqrt(threshold / v_ele)
|
| 764 |
+
if new_scale < scales_full[head_idx]:
|
| 765 |
+
scales_full[head_idx] = new_scale
|
| 766 |
+
logger.info(
|
| 767 |
+
f"[{kind}] Head {head_idx} exceeded threshold "
|
| 768 |
+
f"(value={v_ele:.4f}, threshold={threshold:.4f}) -> applying scale={new_scale:.4f}"
|
| 769 |
+
)
|
| 770 |
+
scaling += 1
|
| 771 |
+
|
| 772 |
+
return scales_full if scaling > 0 else None
|
| 773 |
+
|
| 774 |
+
@staticmethod
|
| 775 |
+
def _qk_clip(p, scales, head_dim):
|
| 776 |
+
W = p.data.view(-1, head_dim, p.data.shape[1])
|
| 777 |
+
W.mul_(scales.view(-1, 1, 1))
|
| 778 |
+
|
| 779 |
+
def parallel(self, names, params, group, lr, weight_decay, momentum,
|
| 780 |
+
qk_logits):
|
| 781 |
+
"""
|
| 782 |
+
Perform a parallel optimization step using Muon.
|
| 783 |
+
"""
|
| 784 |
+
|
| 785 |
+
for p in params:
|
| 786 |
+
g = p.grad
|
| 787 |
+
if g is None:
|
| 788 |
+
continue
|
| 789 |
+
if g.ndim > 2:
|
| 790 |
+
g = g.view(g.size(0), -1)
|
| 791 |
+
|
| 792 |
+
# Update g in the local rank
|
| 793 |
+
g = self._update_g(
|
| 794 |
+
p,
|
| 795 |
+
g,
|
| 796 |
+
group,
|
| 797 |
+
momentum=momentum,
|
| 798 |
+
)
|
| 799 |
+
p.grad = g
|
| 800 |
+
|
| 801 |
+
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 802 |
+
names, params, group, qk_logits)
|
| 803 |
+
|
| 804 |
+
assert self.rank is not None
|
| 805 |
+
|
| 806 |
+
def enqueue_all2all_gather(start_idx, chunk_size):
|
| 807 |
+
target_params = ordered_params[start_idx:start_idx + chunk_size]
|
| 808 |
+
if target_params:
|
| 809 |
+
alloc_event = _alloc_gathered_grad(target_params,
|
| 810 |
+
param_to_state, self.rank,
|
| 811 |
+
self.compute_stream)
|
| 812 |
+
_all2all_gather(target_params, param_to_state, self.rank,
|
| 813 |
+
self.comm_stream, group["none_grad"],
|
| 814 |
+
alloc_event)
|
| 815 |
+
|
| 816 |
+
def enqueue_computes(start_idx, chunk_size):
|
| 817 |
+
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
| 818 |
+
state = param_to_state[id(p)]
|
| 819 |
+
_compute_u(p, state, group["ns_steps"], self.rank,
|
| 820 |
+
self.compute_stream)
|
| 821 |
+
|
| 822 |
+
def enqueue_all2all_scatter(start_idx, chunk_size):
|
| 823 |
+
target_params = ordered_params[start_idx:start_idx + chunk_size]
|
| 824 |
+
if target_params:
|
| 825 |
+
alloc_event = _alloc_scattered_u(target_params, param_to_state,
|
| 826 |
+
self.rank,
|
| 827 |
+
self.compute_stream)
|
| 828 |
+
_all2all_scatter(target_params, param_to_state, self.rank,
|
| 829 |
+
self.comm_stream, alloc_event)
|
| 830 |
+
|
| 831 |
+
def enqueue_update_param(start_idx, chunk_size):
|
| 832 |
+
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
| 833 |
+
state = param_to_state[id(p)]
|
| 834 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 835 |
+
_update_param(p, state, lr, adjusted_lr, weight_decay,
|
| 836 |
+
self.rank, self.compute_stream)
|
| 837 |
+
|
| 838 |
+
chunk_size = dist.get_world_size(param_to_state[id(
|
| 839 |
+
params[0])].process_group)
|
| 840 |
+
|
| 841 |
+
# Wait grad update
|
| 842 |
+
self.comm_stream.wait_stream(torch.cuda.current_stream())
|
| 843 |
+
|
| 844 |
+
overlap_step = self.overlap_step
|
| 845 |
+
for i in range(0, overlap_step):
|
| 846 |
+
enqueue_all2all_gather(i * chunk_size, chunk_size)
|
| 847 |
+
enqueue_computes(i * chunk_size, chunk_size)
|
| 848 |
+
|
| 849 |
+
for i in range(0, len(params) + chunk_size - 1, chunk_size):
|
| 850 |
+
enqueue_all2all_scatter(i, chunk_size)
|
| 851 |
+
enqueue_all2all_gather(i + overlap_step * chunk_size, chunk_size)
|
| 852 |
+
enqueue_update_param(i, chunk_size)
|
| 853 |
+
enqueue_computes(i + overlap_step * chunk_size, chunk_size)
|
| 854 |
+
|
| 855 |
+
# Wait the last update_param to finish
|
| 856 |
+
torch.cuda.current_stream().wait_stream(self.compute_stream)
|
| 857 |
+
|
| 858 |
+
@staticmethod
|
| 859 |
+
def _fused_adamw(
|
| 860 |
+
params: list[torch.Tensor],
|
| 861 |
+
grads: list[torch.Tensor],
|
| 862 |
+
exp_avgs: list[torch.Tensor],
|
| 863 |
+
exp_avg_sqs: list[torch.Tensor],
|
| 864 |
+
max_exp_avg_sqs: list[torch.Tensor],
|
| 865 |
+
state_steps: list[torch.Tensor],
|
| 866 |
+
amsgrad: bool,
|
| 867 |
+
beta1: float,
|
| 868 |
+
beta2: float,
|
| 869 |
+
lr: Union[float, torch.Tensor],
|
| 870 |
+
weight_decay: float,
|
| 871 |
+
eps: float,
|
| 872 |
+
maximize: bool,
|
| 873 |
+
) -> None:
|
| 874 |
+
if not params:
|
| 875 |
+
return
|
| 876 |
+
|
| 877 |
+
# We only shuffle around the lr when it is a Tensor and on CUDA, otherwise, we prefer
|
| 878 |
+
# treating it as a scalar.
|
| 879 |
+
lr_dict: Optional[DeviceDict] = ({
|
| 880 |
+
lr.device: lr
|
| 881 |
+
} if isinstance(lr, torch.Tensor) and str(lr.device) != "cpu" else
|
| 882 |
+
None)
|
| 883 |
+
grouped_tensors = torch.optim.Optimizer._group_tensors_by_device_and_dtype(
|
| 884 |
+
[
|
| 885 |
+
params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs,
|
| 886 |
+
state_steps
|
| 887 |
+
] # type: ignore[list-item]
|
| 888 |
+
)
|
| 889 |
+
for (device, _), (
|
| 890 |
+
(
|
| 891 |
+
device_params_,
|
| 892 |
+
device_grads_,
|
| 893 |
+
device_exp_avgs_,
|
| 894 |
+
device_exp_avg_sqs_,
|
| 895 |
+
device_max_exp_avg_sqs,
|
| 896 |
+
device_state_steps_,
|
| 897 |
+
),
|
| 898 |
+
_,
|
| 899 |
+
) in grouped_tensors.items():
|
| 900 |
+
device_params = cast(list[torch.Tensor], device_params_)
|
| 901 |
+
device_grads = cast(list[torch.Tensor], device_grads_)
|
| 902 |
+
device_exp_avgs = cast(list[torch.Tensor], device_exp_avgs_)
|
| 903 |
+
device_exp_avg_sqs = cast(list[torch.Tensor], device_exp_avg_sqs_)
|
| 904 |
+
device_state_steps = cast(list[torch.Tensor], device_state_steps_)
|
| 905 |
+
|
| 906 |
+
if lr_dict is not None and device not in lr_dict:
|
| 907 |
+
lr_dict[device] = lr.to(
|
| 908 |
+
device=device,
|
| 909 |
+
non_blocking=True) # type: ignore[union-attr]
|
| 910 |
+
lr = lr_dict[device]
|
| 911 |
+
torch._foreach_add_(device_state_steps, 1)
|
| 912 |
+
func = torch._fused_adamw_
|
| 913 |
+
func(
|
| 914 |
+
device_params,
|
| 915 |
+
device_grads,
|
| 916 |
+
device_exp_avgs,
|
| 917 |
+
device_exp_avg_sqs,
|
| 918 |
+
device_max_exp_avg_sqs, # type: ignore[arg-type]
|
| 919 |
+
device_state_steps,
|
| 920 |
+
amsgrad=amsgrad,
|
| 921 |
+
lr=lr, # type: ignore[arg-type]
|
| 922 |
+
beta1=beta1,
|
| 923 |
+
beta2=beta2,
|
| 924 |
+
weight_decay=weight_decay,
|
| 925 |
+
eps=eps,
|
| 926 |
+
maximize=maximize,
|
| 927 |
+
)
|
| 928 |
+
|
| 929 |
+
def step(self, closure=None, qk_logits=None):
|
| 930 |
+
"""Perform a single optimization step.
|
| 931 |
+
|
| 932 |
+
Args:
|
| 933 |
+
closure (Callable, optional): A closure that reevaluates the model
|
| 934 |
+
and returns the loss.
|
| 935 |
+
qk_logits (dict[int, Tensor], optional): A dictionary mapping layer indices
|
| 936 |
+
to 1D tensors of shape (num_heads,), representing the maximum
|
| 937 |
+
QK logits across all tokens, computed as
|
| 938 |
+
(1 / sqrt(head_dim)) * (Q @ K^T).
|
| 939 |
+
"""
|
| 940 |
+
loss = None
|
| 941 |
+
if closure is not None:
|
| 942 |
+
with torch.enable_grad():
|
| 943 |
+
loss = closure()
|
| 944 |
+
|
| 945 |
+
for group in self.param_groups:
|
| 946 |
+
params = group["params"]
|
| 947 |
+
|
| 948 |
+
if group["use_muon"]:
|
| 949 |
+
############################
|
| 950 |
+
# Muon #
|
| 951 |
+
############################
|
| 952 |
+
lr = group["lr"]
|
| 953 |
+
weight_decay = group["weight_decay"]
|
| 954 |
+
momentum = group["momentum"]
|
| 955 |
+
names = group["names"]
|
| 956 |
+
|
| 957 |
+
param_dtensors = []
|
| 958 |
+
param_tensors = []
|
| 959 |
+
name_dtensors = []
|
| 960 |
+
name_tensors = []
|
| 961 |
+
|
| 962 |
+
for n, p in zip(names, params):
|
| 963 |
+
if p is None or p.grad is None:
|
| 964 |
+
continue
|
| 965 |
+
if isinstance(p.data, DTensor):
|
| 966 |
+
if all(
|
| 967 |
+
isinstance(placement, Replicate)
|
| 968 |
+
for placement in p.placements):
|
| 969 |
+
param_tensors.append(p)
|
| 970 |
+
name_tensors.append(n)
|
| 971 |
+
else:
|
| 972 |
+
param_dtensors.append(p)
|
| 973 |
+
name_dtensors.append(n)
|
| 974 |
+
elif isinstance(p.data, torch.Tensor):
|
| 975 |
+
param_tensors.append(p)
|
| 976 |
+
name_tensors.append(n)
|
| 977 |
+
else:
|
| 978 |
+
raise TypeError(
|
| 979 |
+
f"Unsupported parameter type: {type(p.data)}")
|
| 980 |
+
|
| 981 |
+
if self.debug:
|
| 982 |
+
print(
|
| 983 |
+
f"[Muon] {len(param_dtensors)} DTensors, {len(param_tensors)} Tensors",
|
| 984 |
+
flush=True,
|
| 985 |
+
)
|
| 986 |
+
|
| 987 |
+
if len(param_dtensors) > 0:
|
| 988 |
+
if not dist.is_initialized():
|
| 989 |
+
raise RuntimeError(
|
| 990 |
+
"Parallel Muon requires torch.distributed to be initialized."
|
| 991 |
+
)
|
| 992 |
+
|
| 993 |
+
self.parallel(
|
| 994 |
+
name_dtensors,
|
| 995 |
+
param_dtensors,
|
| 996 |
+
group,
|
| 997 |
+
lr=lr,
|
| 998 |
+
weight_decay=weight_decay,
|
| 999 |
+
momentum=momentum,
|
| 1000 |
+
qk_logits=qk_logits,
|
| 1001 |
+
)
|
| 1002 |
+
|
| 1003 |
+
if len(param_tensors) > 0:
|
| 1004 |
+
self.base(
|
| 1005 |
+
name_tensors,
|
| 1006 |
+
param_tensors,
|
| 1007 |
+
group,
|
| 1008 |
+
lr=lr,
|
| 1009 |
+
weight_decay=weight_decay,
|
| 1010 |
+
momentum=momentum,
|
| 1011 |
+
qk_logits=qk_logits,
|
| 1012 |
+
)
|
| 1013 |
+
|
| 1014 |
+
else:
|
| 1015 |
+
############################
|
| 1016 |
+
# AdamW backup #
|
| 1017 |
+
############################
|
| 1018 |
+
|
| 1019 |
+
params_with_grads = []
|
| 1020 |
+
grads = []
|
| 1021 |
+
moment1 = []
|
| 1022 |
+
moment2 = []
|
| 1023 |
+
max_exp_avg_sqs = []
|
| 1024 |
+
state_steps = []
|
| 1025 |
+
lr = group["lr"]
|
| 1026 |
+
beta1, beta2 = group["adamw_betas"]
|
| 1027 |
+
eps = group["adamw_eps"]
|
| 1028 |
+
weight_decay = group["weight_decay"]
|
| 1029 |
+
|
| 1030 |
+
for p in params:
|
| 1031 |
+
g = p.grad
|
| 1032 |
+
if g is None:
|
| 1033 |
+
continue
|
| 1034 |
+
state = self.state[p]
|
| 1035 |
+
params_with_grads.append(p)
|
| 1036 |
+
grads.append(g)
|
| 1037 |
+
if "step" not in state:
|
| 1038 |
+
state["step"] = (torch.zeros((),
|
| 1039 |
+
dtype=torch.float32,
|
| 1040 |
+
device=p.device))
|
| 1041 |
+
state["moment1"] = torch.zeros_like(g)
|
| 1042 |
+
state["moment2"] = torch.zeros_like(g)
|
| 1043 |
+
moment1.append(state["moment1"])
|
| 1044 |
+
moment2.append(state["moment2"])
|
| 1045 |
+
if not isinstance(state["step"], torch.Tensor):
|
| 1046 |
+
step_tensor = torch.tensor(state["step"],
|
| 1047 |
+
dtype=torch.float32,
|
| 1048 |
+
device=p.device)
|
| 1049 |
+
else:
|
| 1050 |
+
step_tensor = state["step"]
|
| 1051 |
+
state_steps.append(step_tensor)
|
| 1052 |
+
|
| 1053 |
+
self._fused_adamw(
|
| 1054 |
+
params_with_grads,
|
| 1055 |
+
grads,
|
| 1056 |
+
moment1,
|
| 1057 |
+
moment2,
|
| 1058 |
+
max_exp_avg_sqs,
|
| 1059 |
+
state_steps,
|
| 1060 |
+
amsgrad=False,
|
| 1061 |
+
beta1=beta1,
|
| 1062 |
+
beta2=beta2,
|
| 1063 |
+
lr=lr,
|
| 1064 |
+
weight_decay=weight_decay,
|
| 1065 |
+
eps=eps,
|
| 1066 |
+
maximize=False,
|
| 1067 |
+
)
|
| 1068 |
+
|
| 1069 |
+
return loss
|