activation / tests /test_fused_add_rms_norm.py
TaehyunKim
Fix fused add rms norm (#4)
a1e5ca8 unverified
import random
import pytest
import torch
import activation
from .utils import assert_close, opcheck
DTYPES = [torch.float, torch.bfloat16, torch.half]
NUM_TOKENS = [7, 83, 256, 2048] # Arbitrary values for testing
D = [1, 7, 512, 13824] # Arbitrary values for testing
SEEDS = [0]
CUDA_DEVICES = [
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
]
def add_rms_norm_all_naive(x: torch.Tensor, residual: torch.Tensor,
weight: torch.Tensor, eps: float) -> torch.Tensor:
h = x + residual
return torch.nn.functional.rms_norm(h, weight.shape, weight, eps) + h
#use rms_norm kernel
def add_rms_norm_partial_naive(x: torch.Tensor, residual: torch.Tensor,
weight: torch.Tensor,
eps: float) -> torch.Tensor:
h = x + residual
return activation.rms_norm(h, weight, eps) + h
def fused_add_rms_norm(x: torch.Tensor, residual: torch.Tensor,
weight: torch.Tensor, eps: float) -> torch.Tensor:
out, h = activation.fused_add_rms_norm(x, residual, weight, eps)
return out + h
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("d", D)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_fused_add_rms_norm(
num_tokens: int,
d: int,
dtype: torch.dtype,
seed: int,
device: str,
) -> None:
random.seed(seed)
torch.manual_seed(seed)
torch.set_default_device(device)
x = torch.randn(num_tokens, d, dtype=dtype, requires_grad=True)
residual = torch.randn(num_tokens, d, dtype=dtype, requires_grad=True)
weight = torch.randn(d, dtype=dtype, requires_grad=True)
eps = 1e-05
x.retain_grad()
residual.retain_grad()
weight.retain_grad()
# To separate gradient computation, clone the inputs
x_ref = x.detach().clone().requires_grad_(True)
residual_ref = residual.detach().clone().requires_grad_(True)
weight_ref = weight.detach().clone().requires_grad_(True)
x_ref2 = x.detach().clone().requires_grad_(True)
residual_ref2 = residual.detach().clone().requires_grad_(True)
weight_ref2 = weight.detach().clone().requires_grad_(True)
torch_fn = add_rms_norm_all_naive
torch_fn2 = add_rms_norm_partial_naive
op = activation.ops.fused_add_rms_norm
fn = fused_add_rms_norm
layer = activation.layers.FusedAddRMSNorm(d, eps)
layer.weight = torch.nn.Parameter(weight)
out = torch.empty(x.shape, dtype=x.dtype, device=x.device)
add_out = torch.empty(x.shape, dtype=x.dtype, device=x.device)
opcheck(op, (out, add_out, x, residual, weight, eps))
out = fn(x, residual, weight, eps)
mod_out, mod_a_out = layer(x, residual)
mod_out = mod_out + mod_a_out
ref_out = torch_fn(x_ref, residual_ref, weight_ref, eps)
ref_out2 = torch_fn2(x_ref2, residual_ref2, weight_ref2, eps)
assert_close(out, ref_out, atol=0.05, rtol=0.05)
assert_close(out, ref_out2)
assert_close(mod_out, out, atol=0.0, rtol=0.0)
# test backward pass
out_grad = torch.randn_like(out)
out_grad = out_grad / out_grad.norm()
ref_out.backward(out_grad)
ref_out2.backward(out_grad)
mod_out.backward(out_grad)
assert_close(x.grad, x_ref.grad)
assert_close(x.grad, x_ref2.grad)
assert_close(residual.grad, residual_ref.grad)
assert_close(residual.grad, residual_ref2.grad)
assert_close(layer.weight.grad, weight_ref.grad, rtol=0.05)
assert_close(layer.weight.grad, weight_ref2.grad, rtol=0.05)