Commit
•
d5928fd
1
Parent(s):
e0861d5
Update README.md
Browse files
README.md
CHANGED
@@ -1,70 +1,46 @@
|
|
1 |
---
|
2 |
-
license: mit
|
3 |
base_model: microsoft/deberta-v3-xsmall
|
|
|
|
|
4 |
tags:
|
5 |
-
-
|
6 |
-
|
7 |
-
-
|
8 |
-
|
9 |
-
|
10 |
-
results: []
|
11 |
---
|
12 |
|
13 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
-
should probably proofread and complete it, then remove this comment. -->
|
15 |
-
|
16 |
-
# deberta-v3-xsmall-zeroshot-v1.1-none
|
17 |
-
|
18 |
-
This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on an unknown dataset.
|
19 |
-
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.2072
|
21 |
-
- F1 Macro: 0.6369
|
22 |
-
- F1 Micro: 0.7013
|
23 |
-
- Accuracy Balanced: 0.6751
|
24 |
-
- Accuracy: 0.7013
|
25 |
-
- Precision Macro: 0.6439
|
26 |
-
- Recall Macro: 0.6751
|
27 |
-
- Precision Micro: 0.7013
|
28 |
-
- Recall Micro: 0.7013
|
29 |
-
|
30 |
-
## Model description
|
31 |
-
|
32 |
-
More information needed
|
33 |
-
|
34 |
-
## Intended uses & limitations
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
|
|
41 |
|
42 |
-
##
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
- train_batch_size: 32
|
49 |
-
- eval_batch_size: 128
|
50 |
-
- seed: 42
|
51 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
-
- lr_scheduler_type: linear
|
53 |
-
- lr_scheduler_warmup_ratio: 0.06
|
54 |
-
- num_epochs: 3
|
55 |
|
56 |
-
|
57 |
|
58 |
-
|
|
59 |
-
|
60 |
-
|
|
61 |
-
| 0.
|
62 |
-
| 0.1727 | 3.0 | 92370 | 0.4228 | 0.8306 | 0.8461 | 0.8297 | 0.8461 | 0.8315 | 0.8297 | 0.8461 | 0.8461 |
|
63 |
|
64 |
|
65 |
-
### Framework versions
|
66 |
|
67 |
-
- Transformers 4.33.3
|
68 |
-
- Pytorch 2.1.2+cu121
|
69 |
-
- Datasets 2.14.7
|
70 |
-
- Tokenizers 0.13.3
|
|
|
1 |
---
|
|
|
2 |
base_model: microsoft/deberta-v3-xsmall
|
3 |
+
language:
|
4 |
+
- en
|
5 |
tags:
|
6 |
+
- text-classification
|
7 |
+
- zero-shot-classification
|
8 |
+
pipeline_tag: zero-shot-classification
|
9 |
+
library_name: transformers
|
10 |
+
license: mit
|
|
|
11 |
---
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
# deberta-v3-xsmall-zeroshot-v1.1-all-33
|
15 |
|
16 |
+
This model was fine-tuned using the same pipeline as described in
|
17 |
+
the model card for [MoritzLaurer/deberta-v3-large-zeroshot-v1.1-all-33](https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-v1.1-all-33)
|
18 |
+
and in this [paper](https://arxiv.org/pdf/2312.17543.pdf).
|
19 |
+
|
20 |
+
The foundation model is [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall).
|
21 |
+
The model only has 22 million backbone parameters and 128 million vocabulary parameters.
|
22 |
+
The backbone parameters are the main parameters active during inference, providing a significant speedup over larger models.
|
23 |
+
The model is 241 MB small.
|
24 |
|
25 |
+
This model was trained to provide a small and highly efficient zeroshot option,
|
26 |
+
especially for edge devices or in-browser use-cases with transformers.js.
|
27 |
|
28 |
+
## Usage and other details
|
29 |
+
For usage instructions and other details refer to
|
30 |
+
this model card [MoritzLaurer/deberta-v3-large-zeroshot-v1.1-all-33](https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-v1.1-all-33)
|
31 |
+
and this [paper](https://arxiv.org/pdf/2312.17543.pdf).
|
32 |
|
33 |
+
## Metrics:
|
34 |
|
35 |
+
I didn't not do zeroshot evaluation for this model to save time and compute.
|
36 |
+
The table below shows standard accuracy for all datasets the model was trained on (note that the NLI datasets are binary).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
General takeaway: the model is much more efficient than its larger sisters, but it performs less well.
|
39 |
|
40 |
+
|Datasets|mnli_m|mnli_mm|fevernli|anli_r1|anli_r2|anli_r3|wanli|lingnli|wellformedquery|rottentomatoes|amazonpolarity|imdb|yelpreviews|hatexplain|massive|banking77|emotiondair|emocontext|empathetic|agnews|yahootopics|biasframes_sex|biasframes_offensive|biasframes_intent|financialphrasebank|appreviews|hateoffensive|trueteacher|spam|wikitoxic_toxicaggregated|wikitoxic_obscene|wikitoxic_identityhate|wikitoxic_threat|wikitoxic_insult|manifesto|capsotu|
|
41 |
+
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
42 |
+
|Accuracy|0.925|0.923|0.886|0.732|0.633|0.661|0.814|0.887|0.722|0.872|0.944|0.925|0.967|0.774|0.734|0.627|0.762|0.745|0.465|0.888|0.702|0.94|0.853|0.863|0.914|0.926|0.921|0.635|0.968|0.897|0.918|0.915|0.935|0.9|0.505|0.701|
|
43 |
+
|Inference text/sec (A100, batch=128)|1573.0|1630.0|683.0|1282.0|1352.0|1072.0|2325.0|2008.0|4781.0|2743.0|677.0|228.0|238.0|2357.0|5027.0|4323.0|3247.0|3129.0|941.0|1643.0|335.0|1517.0|1452.0|1498.0|2367.0|974.0|2634.0|353.0|2284.0|260.0|252.0|256.0|254.0|259.0|1941.0|2080.0|
|
|
|
44 |
|
45 |
|
|
|
46 |
|
|
|
|
|
|
|
|