MoodChartAI
commited on
Upload 2 files
Browse files- format_data.py +105 -0
- run_model.py +44 -0
format_data.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from peft import PeftModel
|
3 |
+
import pandas as pd
|
4 |
+
import shelve
|
5 |
+
from datasets import Dataset
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForLanguageModeling, BitsAndBytesConfig
|
7 |
+
from transformers import AutoModelForCausalLM
|
8 |
+
import torch
|
9 |
+
from datasets import load_dataset, Dataset
|
10 |
+
import datasets
|
11 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForLanguageModeling, BitsAndBytesConfig
|
12 |
+
from peft import LoraConfig, get_peft_model
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
#model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B", torch_dtype="auto", trust_remote_code=True)
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B", trust_remote_code=True)
|
18 |
+
tokenizer.pad_token = tokenizer.eos_token
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
moodb = shelve.open('mood.db')
|
23 |
+
happy, sad = moodb['happy'][1].split('\n'), moodb['sad'][1].split('\n')
|
24 |
+
|
25 |
+
for i, h in enumerate(happy):
|
26 |
+
happy[i] = "Prompt:"+h+"Completion: You're feeling happy"
|
27 |
+
|
28 |
+
|
29 |
+
for i, s in enumerate(sad):
|
30 |
+
sad[i] = "Prompt:"+s+"Completion: You're feeling sad"
|
31 |
+
|
32 |
+
happy = list(zip(happy, ["You're happy" for d in range(len(happy))]))
|
33 |
+
sad = list(zip(sad, ["You're sad" for d in range(len(sad))]))
|
34 |
+
|
35 |
+
data = sad+happy
|
36 |
+
#print(data)
|
37 |
+
df = pd.DataFrame(data, columns=['Prompt', 'Completion'])
|
38 |
+
|
39 |
+
#print(df)
|
40 |
+
def tokenize(sample):
|
41 |
+
tokenized_text = tokenizer(sample['Prompt'], padding=True, truncation=True, max_length=512)
|
42 |
+
return tokenized_text
|
43 |
+
|
44 |
+
|
45 |
+
data = Dataset.from_pandas(df)
|
46 |
+
|
47 |
+
tokenized_data = data.map(tokenize, batched=True, desc="Tokenizing data", remove_columns=data.column_names)
|
48 |
+
|
49 |
+
|
50 |
+
bnb_config = BitsAndBytesConfig(
|
51 |
+
load_in_4bit=True,
|
52 |
+
bnb_4bit_use_double_quant=True,
|
53 |
+
bnb_4bit_quant_type="nf4",
|
54 |
+
bnb_4bit_compute_dtype=torch.float16
|
55 |
+
)
|
56 |
+
|
57 |
+
model = AutoModelForCausalLM.from_pretrained(
|
58 |
+
"EleutherAI/gpt-neo-1.3B",
|
59 |
+
device_map={"":0},
|
60 |
+
trust_remote_code=True,
|
61 |
+
quantization_config=bnb_config
|
62 |
+
)
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
lora_config = LoraConfig(
|
68 |
+
r=16,
|
69 |
+
lora_alpha=16,
|
70 |
+
target_modules=["Wqkv", "out_proj"],
|
71 |
+
lora_dropout=0.05,
|
72 |
+
bias="none",
|
73 |
+
task_type="CAUSAL_LM"
|
74 |
+
)
|
75 |
+
|
76 |
+
model = get_peft_model(model, lora_config)
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
training_arguments = TrainingArguments(
|
81 |
+
output_dir="Multi-lingual-finetuned-med-text",
|
82 |
+
per_device_train_batch_size=4,
|
83 |
+
gradient_accumulation_steps=1,
|
84 |
+
learning_rate=2e-4,
|
85 |
+
lr_scheduler_type="cosine",
|
86 |
+
save_strategy="epoch",
|
87 |
+
logging_steps=1000,
|
88 |
+
max_steps=55550,
|
89 |
+
num_train_epochs=1
|
90 |
+
)
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
trainer = Trainer(
|
95 |
+
model=model,
|
96 |
+
train_dataset=tokenized_data,
|
97 |
+
args=training_arguments,
|
98 |
+
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False)
|
99 |
+
)
|
100 |
+
trainer.train()
|
101 |
+
#peft_model = PeftModel.from_pretrained(model, "/root/projects/Multi-lingual-finetuned-med-text/checkpoint-10/", from_transformers=True)
|
102 |
+
|
103 |
+
#model = peft_model.merge_and_unload()
|
104 |
+
|
105 |
+
# model
|
run_model.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
import torch
|
3 |
+
from peft import PeftModel, PeftConfig
|
4 |
+
|
5 |
+
import gc
|
6 |
+
|
7 |
+
gc.collect()
|
8 |
+
|
9 |
+
model_name = "MoodChartAI/basicmood"
|
10 |
+
adapters_name = ""
|
11 |
+
|
12 |
+
|
13 |
+
torch.cuda.empty_cache()
|
14 |
+
|
15 |
+
|
16 |
+
os.system("sudo swapoff -a; swapon -a")
|
17 |
+
|
18 |
+
print(f"Starting to load the model {model_name} into memory")
|
19 |
+
|
20 |
+
m = AutoModelForCausalLM.from_pretrained(
|
21 |
+
model_name,
|
22 |
+
#load_in_4bit=True,
|
23 |
+
).to(device='cpu:7')
|
24 |
+
|
25 |
+
print(f"Loading the adapters from {adapters_name}")
|
26 |
+
m = PeftModel.from_pretrained(m, adapters_name)
|
27 |
+
|
28 |
+
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B", trust_remote_code=True)
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
while True:
|
34 |
+
mood_input = input("Mood: ")
|
35 |
+
|
36 |
+
inputs = tokenizer("Prompt: %s Completions: You're feeling"%mood_input, return_tensors="pt", return_attention_mask=True)
|
37 |
+
inputs.to(device='cpu:8')
|
38 |
+
outputs = m.generate(**inputs, max_length=12)
|
39 |
+
|
40 |
+
print(tokenizer.batch_decode(outputs)[0])
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|