|
|
|
|
|
import pdb
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from .motion_module import get_motion_module
|
|
|
|
|
|
from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
|
|
from .transformer_3d import Transformer3DModel
|
|
|
|
|
|
def get_down_block(
|
|
down_block_type,
|
|
num_layers,
|
|
in_channels,
|
|
out_channels,
|
|
temb_channels,
|
|
add_downsample,
|
|
resnet_eps,
|
|
resnet_act_fn,
|
|
attn_num_head_channels,
|
|
resnet_groups=None,
|
|
cross_attention_dim=None,
|
|
downsample_padding=None,
|
|
dual_cross_attention=False,
|
|
use_linear_projection=False,
|
|
only_cross_attention=False,
|
|
upcast_attention=False,
|
|
resnet_time_scale_shift="default",
|
|
unet_use_cross_frame_attention=None,
|
|
unet_use_temporal_attention=None,
|
|
use_inflated_groupnorm=None,
|
|
use_motion_module=None,
|
|
motion_module_type=None,
|
|
motion_module_kwargs=None,
|
|
):
|
|
down_block_type = (
|
|
down_block_type[7:]
|
|
if down_block_type.startswith("UNetRes")
|
|
else down_block_type
|
|
)
|
|
if down_block_type == "DownBlock3D":
|
|
return DownBlock3D(
|
|
num_layers=num_layers,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
add_downsample=add_downsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
resnet_groups=resnet_groups,
|
|
downsample_padding=downsample_padding,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
use_inflated_groupnorm=use_inflated_groupnorm,
|
|
use_motion_module=use_motion_module,
|
|
motion_module_type=motion_module_type,
|
|
motion_module_kwargs=motion_module_kwargs,
|
|
)
|
|
elif down_block_type == "CrossAttnDownBlock3D":
|
|
if cross_attention_dim is None:
|
|
raise ValueError(
|
|
"cross_attention_dim must be specified for CrossAttnDownBlock3D"
|
|
)
|
|
return CrossAttnDownBlock3D(
|
|
num_layers=num_layers,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
add_downsample=add_downsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
resnet_groups=resnet_groups,
|
|
downsample_padding=downsample_padding,
|
|
cross_attention_dim=cross_attention_dim,
|
|
attn_num_head_channels=attn_num_head_channels,
|
|
dual_cross_attention=dual_cross_attention,
|
|
use_linear_projection=use_linear_projection,
|
|
only_cross_attention=only_cross_attention,
|
|
upcast_attention=upcast_attention,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
|
unet_use_temporal_attention=unet_use_temporal_attention,
|
|
use_inflated_groupnorm=use_inflated_groupnorm,
|
|
use_motion_module=use_motion_module,
|
|
motion_module_type=motion_module_type,
|
|
motion_module_kwargs=motion_module_kwargs,
|
|
)
|
|
raise ValueError(f"{down_block_type} does not exist.")
|
|
|
|
|
|
def get_up_block(
|
|
up_block_type,
|
|
num_layers,
|
|
in_channels,
|
|
out_channels,
|
|
prev_output_channel,
|
|
temb_channels,
|
|
add_upsample,
|
|
resnet_eps,
|
|
resnet_act_fn,
|
|
attn_num_head_channels,
|
|
resnet_groups=None,
|
|
cross_attention_dim=None,
|
|
dual_cross_attention=False,
|
|
use_linear_projection=False,
|
|
only_cross_attention=False,
|
|
upcast_attention=False,
|
|
resnet_time_scale_shift="default",
|
|
unet_use_cross_frame_attention=None,
|
|
unet_use_temporal_attention=None,
|
|
use_inflated_groupnorm=None,
|
|
use_motion_module=None,
|
|
motion_module_type=None,
|
|
motion_module_kwargs=None,
|
|
):
|
|
up_block_type = (
|
|
up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
|
)
|
|
if up_block_type == "UpBlock3D":
|
|
return UpBlock3D(
|
|
num_layers=num_layers,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
prev_output_channel=prev_output_channel,
|
|
temb_channels=temb_channels,
|
|
add_upsample=add_upsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
resnet_groups=resnet_groups,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
use_inflated_groupnorm=use_inflated_groupnorm,
|
|
use_motion_module=use_motion_module,
|
|
motion_module_type=motion_module_type,
|
|
motion_module_kwargs=motion_module_kwargs,
|
|
)
|
|
elif up_block_type == "CrossAttnUpBlock3D":
|
|
if cross_attention_dim is None:
|
|
raise ValueError(
|
|
"cross_attention_dim must be specified for CrossAttnUpBlock3D"
|
|
)
|
|
return CrossAttnUpBlock3D(
|
|
num_layers=num_layers,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
prev_output_channel=prev_output_channel,
|
|
temb_channels=temb_channels,
|
|
add_upsample=add_upsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
resnet_groups=resnet_groups,
|
|
cross_attention_dim=cross_attention_dim,
|
|
attn_num_head_channels=attn_num_head_channels,
|
|
dual_cross_attention=dual_cross_attention,
|
|
use_linear_projection=use_linear_projection,
|
|
only_cross_attention=only_cross_attention,
|
|
upcast_attention=upcast_attention,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
|
unet_use_temporal_attention=unet_use_temporal_attention,
|
|
use_inflated_groupnorm=use_inflated_groupnorm,
|
|
use_motion_module=use_motion_module,
|
|
motion_module_type=motion_module_type,
|
|
motion_module_kwargs=motion_module_kwargs,
|
|
)
|
|
raise ValueError(f"{up_block_type} does not exist.")
|
|
|
|
|
|
class UNetMidBlock3DCrossAttn(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
temb_channels: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
resnet_pre_norm: bool = True,
|
|
attn_num_head_channels=1,
|
|
output_scale_factor=1.0,
|
|
cross_attention_dim=1280,
|
|
dual_cross_attention=False,
|
|
use_linear_projection=False,
|
|
upcast_attention=False,
|
|
unet_use_cross_frame_attention=None,
|
|
unet_use_temporal_attention=None,
|
|
use_inflated_groupnorm=None,
|
|
use_motion_module=None,
|
|
motion_module_type=None,
|
|
motion_module_kwargs=None,
|
|
):
|
|
super().__init__()
|
|
|
|
self.has_cross_attention = True
|
|
self.attn_num_head_channels = attn_num_head_channels
|
|
resnet_groups = (
|
|
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
|
)
|
|
|
|
|
|
resnets = [
|
|
ResnetBlock3D(
|
|
in_channels=in_channels,
|
|
out_channels=in_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
use_inflated_groupnorm=use_inflated_groupnorm,
|
|
)
|
|
]
|
|
attentions = []
|
|
motion_modules = []
|
|
|
|
for _ in range(num_layers):
|
|
if dual_cross_attention:
|
|
raise NotImplementedError
|
|
attentions.append(
|
|
Transformer3DModel(
|
|
attn_num_head_channels,
|
|
in_channels // attn_num_head_channels,
|
|
in_channels=in_channels,
|
|
num_layers=1,
|
|
cross_attention_dim=cross_attention_dim,
|
|
norm_num_groups=resnet_groups,
|
|
use_linear_projection=use_linear_projection,
|
|
upcast_attention=upcast_attention,
|
|
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
|
unet_use_temporal_attention=unet_use_temporal_attention,
|
|
)
|
|
)
|
|
motion_modules.append(
|
|
get_motion_module(
|
|
in_channels=in_channels,
|
|
motion_module_type=motion_module_type,
|
|
motion_module_kwargs=motion_module_kwargs,
|
|
)
|
|
if use_motion_module
|
|
else None
|
|
)
|
|
resnets.append(
|
|
ResnetBlock3D(
|
|
in_channels=in_channels,
|
|
out_channels=in_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
use_inflated_groupnorm=use_inflated_groupnorm,
|
|
)
|
|
)
|
|
|
|
self.attentions = nn.ModuleList(attentions)
|
|
self.resnets = nn.ModuleList(resnets)
|
|
self.motion_modules = nn.ModuleList(motion_modules)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
temb=None,
|
|
encoder_hidden_states=None,
|
|
attention_mask=None,
|
|
):
|
|
hidden_states = self.resnets[0](hidden_states, temb)
|
|
for attn, resnet, motion_module in zip(
|
|
self.attentions, self.resnets[1:], self.motion_modules
|
|
):
|
|
hidden_states = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
).sample
|
|
hidden_states = (
|
|
motion_module(
|
|
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
|
)
|
|
if motion_module is not None
|
|
else hidden_states
|
|
)
|
|
hidden_states = resnet(hidden_states, temb)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class CrossAttnDownBlock3D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
temb_channels: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
resnet_pre_norm: bool = True,
|
|
attn_num_head_channels=1,
|
|
cross_attention_dim=1280,
|
|
output_scale_factor=1.0,
|
|
downsample_padding=1,
|
|
add_downsample=True,
|
|
dual_cross_attention=False,
|
|
use_linear_projection=False,
|
|
only_cross_attention=False,
|
|
upcast_attention=False,
|
|
unet_use_cross_frame_attention=None,
|
|
unet_use_temporal_attention=None,
|
|
use_inflated_groupnorm=None,
|
|
use_motion_module=None,
|
|
motion_module_type=None,
|
|
motion_module_kwargs=None,
|
|
):
|
|
super().__init__()
|
|
resnets = []
|
|
attentions = []
|
|
motion_modules = []
|
|
|
|
self.has_cross_attention = True
|
|
self.attn_num_head_channels = attn_num_head_channels
|
|
|
|
for i in range(num_layers):
|
|
in_channels = in_channels if i == 0 else out_channels
|
|
resnets.append(
|
|
ResnetBlock3D(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
use_inflated_groupnorm=use_inflated_groupnorm,
|
|
)
|
|
)
|
|
if dual_cross_attention:
|
|
raise NotImplementedError
|
|
attentions.append(
|
|
Transformer3DModel(
|
|
attn_num_head_channels,
|
|
out_channels // attn_num_head_channels,
|
|
in_channels=out_channels,
|
|
num_layers=1,
|
|
cross_attention_dim=cross_attention_dim,
|
|
norm_num_groups=resnet_groups,
|
|
use_linear_projection=use_linear_projection,
|
|
only_cross_attention=only_cross_attention,
|
|
upcast_attention=upcast_attention,
|
|
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
|
unet_use_temporal_attention=unet_use_temporal_attention,
|
|
)
|
|
)
|
|
motion_modules.append(
|
|
get_motion_module(
|
|
in_channels=out_channels,
|
|
motion_module_type=motion_module_type,
|
|
motion_module_kwargs=motion_module_kwargs,
|
|
)
|
|
if use_motion_module
|
|
else None
|
|
)
|
|
|
|
self.attentions = nn.ModuleList(attentions)
|
|
self.resnets = nn.ModuleList(resnets)
|
|
self.motion_modules = nn.ModuleList(motion_modules)
|
|
|
|
if add_downsample:
|
|
self.downsamplers = nn.ModuleList(
|
|
[
|
|
Downsample3D(
|
|
out_channels,
|
|
use_conv=True,
|
|
out_channels=out_channels,
|
|
padding=downsample_padding,
|
|
name="op",
|
|
)
|
|
]
|
|
)
|
|
else:
|
|
self.downsamplers = None
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
temb=None,
|
|
encoder_hidden_states=None,
|
|
attention_mask=None,
|
|
):
|
|
output_states = ()
|
|
|
|
for i, (resnet, attn, motion_module) in enumerate(
|
|
zip(self.resnets, self.attentions, self.motion_modules)
|
|
):
|
|
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module, return_dict=None):
|
|
def custom_forward(*inputs):
|
|
if return_dict is not None:
|
|
return module(*inputs, return_dict=return_dict)
|
|
else:
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet), hidden_states, temb
|
|
)
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(attn, return_dict=False),
|
|
hidden_states,
|
|
encoder_hidden_states,
|
|
)[0]
|
|
|
|
|
|
hidden_states = (
|
|
motion_module(
|
|
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
|
)
|
|
if motion_module is not None
|
|
else hidden_states
|
|
)
|
|
|
|
else:
|
|
hidden_states = resnet(hidden_states, temb)
|
|
hidden_states = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
).sample
|
|
|
|
|
|
hidden_states = (
|
|
motion_module(
|
|
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
|
)
|
|
if motion_module is not None
|
|
else hidden_states
|
|
)
|
|
|
|
output_states += (hidden_states,)
|
|
|
|
if self.downsamplers is not None:
|
|
for downsampler in self.downsamplers:
|
|
hidden_states = downsampler(hidden_states)
|
|
|
|
output_states += (hidden_states,)
|
|
|
|
return hidden_states, output_states
|
|
|
|
|
|
class DownBlock3D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
temb_channels: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
resnet_pre_norm: bool = True,
|
|
output_scale_factor=1.0,
|
|
add_downsample=True,
|
|
downsample_padding=1,
|
|
use_inflated_groupnorm=None,
|
|
use_motion_module=None,
|
|
motion_module_type=None,
|
|
motion_module_kwargs=None,
|
|
):
|
|
super().__init__()
|
|
resnets = []
|
|
motion_modules = []
|
|
|
|
|
|
for i in range(num_layers):
|
|
in_channels = in_channels if i == 0 else out_channels
|
|
resnets.append(
|
|
ResnetBlock3D(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
use_inflated_groupnorm=use_inflated_groupnorm,
|
|
)
|
|
)
|
|
motion_modules.append(
|
|
get_motion_module(
|
|
in_channels=out_channels,
|
|
motion_module_type=motion_module_type,
|
|
motion_module_kwargs=motion_module_kwargs,
|
|
)
|
|
if use_motion_module
|
|
else None
|
|
)
|
|
|
|
self.resnets = nn.ModuleList(resnets)
|
|
self.motion_modules = nn.ModuleList(motion_modules)
|
|
|
|
if add_downsample:
|
|
self.downsamplers = nn.ModuleList(
|
|
[
|
|
Downsample3D(
|
|
out_channels,
|
|
use_conv=True,
|
|
out_channels=out_channels,
|
|
padding=downsample_padding,
|
|
name="op",
|
|
)
|
|
]
|
|
)
|
|
else:
|
|
self.downsamplers = None
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
|
|
output_states = ()
|
|
|
|
for resnet, motion_module in zip(self.resnets, self.motion_modules):
|
|
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module):
|
|
def custom_forward(*inputs):
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet), hidden_states, temb
|
|
)
|
|
if motion_module is not None:
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(motion_module),
|
|
hidden_states.requires_grad_(),
|
|
temb,
|
|
encoder_hidden_states,
|
|
)
|
|
else:
|
|
hidden_states = resnet(hidden_states, temb)
|
|
|
|
|
|
hidden_states = (
|
|
motion_module(
|
|
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
|
)
|
|
if motion_module is not None
|
|
else hidden_states
|
|
)
|
|
|
|
output_states += (hidden_states,)
|
|
|
|
if self.downsamplers is not None:
|
|
for downsampler in self.downsamplers:
|
|
hidden_states = downsampler(hidden_states)
|
|
|
|
output_states += (hidden_states,)
|
|
|
|
return hidden_states, output_states
|
|
|
|
|
|
class CrossAttnUpBlock3D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
prev_output_channel: int,
|
|
temb_channels: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
resnet_pre_norm: bool = True,
|
|
attn_num_head_channels=1,
|
|
cross_attention_dim=1280,
|
|
output_scale_factor=1.0,
|
|
add_upsample=True,
|
|
dual_cross_attention=False,
|
|
use_linear_projection=False,
|
|
only_cross_attention=False,
|
|
upcast_attention=False,
|
|
unet_use_cross_frame_attention=None,
|
|
unet_use_temporal_attention=None,
|
|
use_motion_module=None,
|
|
use_inflated_groupnorm=None,
|
|
motion_module_type=None,
|
|
motion_module_kwargs=None,
|
|
):
|
|
super().__init__()
|
|
resnets = []
|
|
attentions = []
|
|
motion_modules = []
|
|
|
|
self.has_cross_attention = True
|
|
self.attn_num_head_channels = attn_num_head_channels
|
|
|
|
for i in range(num_layers):
|
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
|
|
|
resnets.append(
|
|
ResnetBlock3D(
|
|
in_channels=resnet_in_channels + res_skip_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
use_inflated_groupnorm=use_inflated_groupnorm,
|
|
)
|
|
)
|
|
if dual_cross_attention:
|
|
raise NotImplementedError
|
|
attentions.append(
|
|
Transformer3DModel(
|
|
attn_num_head_channels,
|
|
out_channels // attn_num_head_channels,
|
|
in_channels=out_channels,
|
|
num_layers=1,
|
|
cross_attention_dim=cross_attention_dim,
|
|
norm_num_groups=resnet_groups,
|
|
use_linear_projection=use_linear_projection,
|
|
only_cross_attention=only_cross_attention,
|
|
upcast_attention=upcast_attention,
|
|
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
|
unet_use_temporal_attention=unet_use_temporal_attention,
|
|
)
|
|
)
|
|
motion_modules.append(
|
|
get_motion_module(
|
|
in_channels=out_channels,
|
|
motion_module_type=motion_module_type,
|
|
motion_module_kwargs=motion_module_kwargs,
|
|
)
|
|
if use_motion_module
|
|
else None
|
|
)
|
|
|
|
self.attentions = nn.ModuleList(attentions)
|
|
self.resnets = nn.ModuleList(resnets)
|
|
self.motion_modules = nn.ModuleList(motion_modules)
|
|
|
|
if add_upsample:
|
|
self.upsamplers = nn.ModuleList(
|
|
[Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]
|
|
)
|
|
else:
|
|
self.upsamplers = None
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
res_hidden_states_tuple,
|
|
temb=None,
|
|
encoder_hidden_states=None,
|
|
upsample_size=None,
|
|
attention_mask=None,
|
|
):
|
|
for i, (resnet, attn, motion_module) in enumerate(
|
|
zip(self.resnets, self.attentions, self.motion_modules)
|
|
):
|
|
|
|
res_hidden_states = res_hidden_states_tuple[-1]
|
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
|
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module, return_dict=None):
|
|
def custom_forward(*inputs):
|
|
if return_dict is not None:
|
|
return module(*inputs, return_dict=return_dict)
|
|
else:
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet), hidden_states, temb
|
|
)
|
|
hidden_states = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
).sample
|
|
if motion_module is not None:
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(motion_module),
|
|
hidden_states.requires_grad_(),
|
|
temb,
|
|
encoder_hidden_states,
|
|
)
|
|
|
|
else:
|
|
hidden_states = resnet(hidden_states, temb)
|
|
hidden_states = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
).sample
|
|
|
|
|
|
hidden_states = (
|
|
motion_module(
|
|
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
|
)
|
|
if motion_module is not None
|
|
else hidden_states
|
|
)
|
|
|
|
if self.upsamplers is not None:
|
|
for upsampler in self.upsamplers:
|
|
hidden_states = upsampler(hidden_states, upsample_size)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class UpBlock3D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
prev_output_channel: int,
|
|
out_channels: int,
|
|
temb_channels: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
resnet_pre_norm: bool = True,
|
|
output_scale_factor=1.0,
|
|
add_upsample=True,
|
|
use_inflated_groupnorm=None,
|
|
use_motion_module=None,
|
|
motion_module_type=None,
|
|
motion_module_kwargs=None,
|
|
):
|
|
super().__init__()
|
|
resnets = []
|
|
motion_modules = []
|
|
|
|
|
|
for i in range(num_layers):
|
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
|
|
|
resnets.append(
|
|
ResnetBlock3D(
|
|
in_channels=resnet_in_channels + res_skip_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
use_inflated_groupnorm=use_inflated_groupnorm,
|
|
)
|
|
)
|
|
motion_modules.append(
|
|
get_motion_module(
|
|
in_channels=out_channels,
|
|
motion_module_type=motion_module_type,
|
|
motion_module_kwargs=motion_module_kwargs,
|
|
)
|
|
if use_motion_module
|
|
else None
|
|
)
|
|
|
|
self.resnets = nn.ModuleList(resnets)
|
|
self.motion_modules = nn.ModuleList(motion_modules)
|
|
|
|
if add_upsample:
|
|
self.upsamplers = nn.ModuleList(
|
|
[Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]
|
|
)
|
|
else:
|
|
self.upsamplers = None
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
res_hidden_states_tuple,
|
|
temb=None,
|
|
upsample_size=None,
|
|
encoder_hidden_states=None,
|
|
):
|
|
for resnet, motion_module in zip(self.resnets, self.motion_modules):
|
|
|
|
res_hidden_states = res_hidden_states_tuple[-1]
|
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
|
|
|
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module):
|
|
def custom_forward(*inputs):
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet), hidden_states, temb
|
|
)
|
|
if motion_module is not None:
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(motion_module),
|
|
hidden_states.requires_grad_(),
|
|
temb,
|
|
encoder_hidden_states,
|
|
)
|
|
else:
|
|
hidden_states = resnet(hidden_states, temb)
|
|
hidden_states = (
|
|
motion_module(
|
|
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
|
)
|
|
if motion_module is not None
|
|
else hidden_states
|
|
)
|
|
|
|
if self.upsamplers is not None:
|
|
for upsampler in self.upsamplers:
|
|
hidden_states = upsampler(hidden_states, upsample_size)
|
|
|
|
return hidden_states
|
|
|