|
|
|
from dataclasses import dataclass
|
|
from typing import Any, Dict, Optional
|
|
|
|
import torch
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
|
|
|
try:
|
|
from diffusers.models.embeddings import CaptionProjection
|
|
except:
|
|
from diffusers.models.embeddings import PixArtAlphaTextProjection as CaptionProjection
|
|
|
|
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
|
from diffusers.models.modeling_utils import ModelMixin
|
|
from diffusers.models.normalization import AdaLayerNormSingle
|
|
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, is_torch_version
|
|
from torch import nn
|
|
|
|
from .attention import BasicTransformerBlock
|
|
|
|
|
|
@dataclass
|
|
class Transformer2DModelOutput(BaseOutput):
|
|
"""
|
|
The output of [`Transformer2DModel`].
|
|
|
|
Args:
|
|
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
|
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
|
distributions for the unnoised latent pixels.
|
|
"""
|
|
|
|
sample: torch.FloatTensor
|
|
ref_feature: torch.FloatTensor
|
|
|
|
|
|
class Transformer2DModel(ModelMixin, ConfigMixin):
|
|
"""
|
|
A 2D Transformer model for image-like data.
|
|
|
|
Parameters:
|
|
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
|
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
|
in_channels (`int`, *optional*):
|
|
The number of channels in the input and output (specify if the input is **continuous**).
|
|
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
|
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
|
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
|
This is fixed during training since it is used to learn a number of position embeddings.
|
|
num_vector_embeds (`int`, *optional*):
|
|
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
|
Includes the class for the masked latent pixel.
|
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
|
num_embeds_ada_norm ( `int`, *optional*):
|
|
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
|
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
|
added to the hidden states.
|
|
|
|
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
|
attention_bias (`bool`, *optional*):
|
|
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
|
"""
|
|
|
|
_supports_gradient_checkpointing = True
|
|
|
|
@register_to_config
|
|
def __init__(
|
|
self,
|
|
num_attention_heads: int = 16,
|
|
attention_head_dim: int = 88,
|
|
in_channels: Optional[int] = None,
|
|
out_channels: Optional[int] = None,
|
|
num_layers: int = 1,
|
|
dropout: float = 0.0,
|
|
norm_num_groups: int = 32,
|
|
cross_attention_dim: Optional[int] = None,
|
|
attention_bias: bool = False,
|
|
sample_size: Optional[int] = None,
|
|
num_vector_embeds: Optional[int] = None,
|
|
patch_size: Optional[int] = None,
|
|
activation_fn: str = "geglu",
|
|
num_embeds_ada_norm: Optional[int] = None,
|
|
use_linear_projection: bool = False,
|
|
only_cross_attention: bool = False,
|
|
double_self_attention: bool = False,
|
|
upcast_attention: bool = False,
|
|
norm_type: str = "layer_norm",
|
|
norm_elementwise_affine: bool = True,
|
|
norm_eps: float = 1e-5,
|
|
attention_type: str = "default",
|
|
caption_channels: int = None,
|
|
):
|
|
super().__init__()
|
|
self.use_linear_projection = use_linear_projection
|
|
self.num_attention_heads = num_attention_heads
|
|
self.attention_head_dim = attention_head_dim
|
|
inner_dim = num_attention_heads * attention_head_dim
|
|
|
|
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
|
|
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
|
|
|
|
|
|
|
|
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
|
self.is_input_vectorized = num_vector_embeds is not None
|
|
self.is_input_patches = in_channels is not None and patch_size is not None
|
|
|
|
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
|
deprecation_message = (
|
|
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
|
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
|
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
|
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
|
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
|
)
|
|
deprecate(
|
|
"norm_type!=num_embeds_ada_norm",
|
|
"1.0.0",
|
|
deprecation_message,
|
|
standard_warn=False,
|
|
)
|
|
norm_type = "ada_norm"
|
|
|
|
if self.is_input_continuous and self.is_input_vectorized:
|
|
raise ValueError(
|
|
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
|
" sure that either `in_channels` or `num_vector_embeds` is None."
|
|
)
|
|
elif self.is_input_vectorized and self.is_input_patches:
|
|
raise ValueError(
|
|
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
|
" sure that either `num_vector_embeds` or `num_patches` is None."
|
|
)
|
|
elif (
|
|
not self.is_input_continuous
|
|
and not self.is_input_vectorized
|
|
and not self.is_input_patches
|
|
):
|
|
raise ValueError(
|
|
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
|
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
|
)
|
|
|
|
|
|
self.in_channels = in_channels
|
|
|
|
self.norm = torch.nn.GroupNorm(
|
|
num_groups=norm_num_groups,
|
|
num_channels=in_channels,
|
|
eps=1e-6,
|
|
affine=True,
|
|
)
|
|
if use_linear_projection:
|
|
self.proj_in = linear_cls(in_channels, inner_dim)
|
|
else:
|
|
self.proj_in = conv_cls(
|
|
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
|
)
|
|
|
|
|
|
self.transformer_blocks = nn.ModuleList(
|
|
[
|
|
BasicTransformerBlock(
|
|
inner_dim,
|
|
num_attention_heads,
|
|
attention_head_dim,
|
|
dropout=dropout,
|
|
cross_attention_dim=cross_attention_dim,
|
|
activation_fn=activation_fn,
|
|
num_embeds_ada_norm=num_embeds_ada_norm,
|
|
attention_bias=attention_bias,
|
|
only_cross_attention=only_cross_attention,
|
|
double_self_attention=double_self_attention,
|
|
upcast_attention=upcast_attention,
|
|
norm_type=norm_type,
|
|
norm_elementwise_affine=norm_elementwise_affine,
|
|
norm_eps=norm_eps,
|
|
attention_type=attention_type,
|
|
)
|
|
for d in range(num_layers)
|
|
]
|
|
)
|
|
|
|
|
|
self.out_channels = in_channels if out_channels is None else out_channels
|
|
|
|
if use_linear_projection:
|
|
self.proj_out = linear_cls(inner_dim, in_channels)
|
|
else:
|
|
self.proj_out = conv_cls(
|
|
inner_dim, in_channels, kernel_size=1, stride=1, padding=0
|
|
)
|
|
|
|
|
|
self.adaln_single = None
|
|
self.use_additional_conditions = False
|
|
if norm_type == "ada_norm_single":
|
|
self.use_additional_conditions = self.config.sample_size == 128
|
|
|
|
|
|
self.adaln_single = AdaLayerNormSingle(
|
|
inner_dim, use_additional_conditions=self.use_additional_conditions
|
|
)
|
|
|
|
self.caption_projection = None
|
|
if caption_channels is not None:
|
|
self.caption_projection = CaptionProjection(
|
|
in_features=caption_channels, hidden_size=inner_dim
|
|
)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def _set_gradient_checkpointing(self, module, value=False):
|
|
if hasattr(module, "gradient_checkpointing"):
|
|
module.gradient_checkpointing = value
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
timestep: Optional[torch.LongTensor] = None,
|
|
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
|
class_labels: Optional[torch.LongTensor] = None,
|
|
cross_attention_kwargs: Dict[str, Any] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
|
return_dict: bool = True,
|
|
):
|
|
"""
|
|
The [`Transformer2DModel`] forward method.
|
|
|
|
Args:
|
|
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
|
Input `hidden_states`.
|
|
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
|
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
|
self-attention.
|
|
timestep ( `torch.LongTensor`, *optional*):
|
|
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
|
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
|
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
|
`AdaLayerZeroNorm`.
|
|
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
`self.processor` in
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
attention_mask ( `torch.Tensor`, *optional*):
|
|
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
|
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
|
negative values to the attention scores corresponding to "discard" tokens.
|
|
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
|
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
|
|
|
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
|
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
|
|
|
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
|
above. This bias will be added to the cross-attention scores.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
|
tuple.
|
|
|
|
Returns:
|
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
|
`tuple` where the first element is the sample tensor.
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.ndim == 2:
|
|
|
|
|
|
|
|
|
|
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
|
attention_mask = attention_mask.unsqueeze(1)
|
|
|
|
|
|
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
|
encoder_attention_mask = (
|
|
1 - encoder_attention_mask.to(hidden_states.dtype)
|
|
) * -10000.0
|
|
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
|
|
|
|
|
lora_scale = (
|
|
cross_attention_kwargs.get("scale", 1.0)
|
|
if cross_attention_kwargs is not None
|
|
else 1.0
|
|
)
|
|
|
|
|
|
batch, _, height, width = hidden_states.shape
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
if not self.use_linear_projection:
|
|
hidden_states = (
|
|
self.proj_in(hidden_states, scale=lora_scale)
|
|
if not USE_PEFT_BACKEND
|
|
else self.proj_in(hidden_states)
|
|
)
|
|
inner_dim = hidden_states.shape[1]
|
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
|
batch, height * width, inner_dim
|
|
)
|
|
else:
|
|
inner_dim = hidden_states.shape[1]
|
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
|
batch, height * width, inner_dim
|
|
)
|
|
hidden_states = (
|
|
self.proj_in(hidden_states, scale=lora_scale)
|
|
if not USE_PEFT_BACKEND
|
|
else self.proj_in(hidden_states)
|
|
)
|
|
|
|
|
|
if self.caption_projection is not None:
|
|
batch_size = hidden_states.shape[0]
|
|
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
|
encoder_hidden_states = encoder_hidden_states.view(
|
|
batch_size, -1, hidden_states.shape[-1]
|
|
)
|
|
|
|
ref_feature = hidden_states.reshape(batch, height, width, inner_dim)
|
|
for block in self.transformer_blocks:
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module, return_dict=None):
|
|
def custom_forward(*inputs):
|
|
if return_dict is not None:
|
|
return module(*inputs, return_dict=return_dict)
|
|
else:
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
ckpt_kwargs: Dict[str, Any] = (
|
|
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
|
)
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(block),
|
|
hidden_states,
|
|
attention_mask,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
timestep,
|
|
cross_attention_kwargs,
|
|
class_labels,
|
|
**ckpt_kwargs,
|
|
)
|
|
else:
|
|
hidden_states = block(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
timestep=timestep,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
class_labels=class_labels,
|
|
)
|
|
|
|
|
|
if self.is_input_continuous:
|
|
if not self.use_linear_projection:
|
|
hidden_states = (
|
|
hidden_states.reshape(batch, height, width, inner_dim)
|
|
.permute(0, 3, 1, 2)
|
|
.contiguous()
|
|
)
|
|
hidden_states = (
|
|
self.proj_out(hidden_states, scale=lora_scale)
|
|
if not USE_PEFT_BACKEND
|
|
else self.proj_out(hidden_states)
|
|
)
|
|
else:
|
|
hidden_states = (
|
|
self.proj_out(hidden_states, scale=lora_scale)
|
|
if not USE_PEFT_BACKEND
|
|
else self.proj_out(hidden_states)
|
|
)
|
|
hidden_states = (
|
|
hidden_states.reshape(batch, height, width, inner_dim)
|
|
.permute(0, 3, 1, 2)
|
|
.contiguous()
|
|
)
|
|
|
|
output = hidden_states + residual
|
|
if not return_dict:
|
|
return (output, ref_feature)
|
|
|
|
return Transformer2DModelOutput(sample=output, ref_feature=ref_feature)
|
|
|