|
from collections import namedtuple |
|
from copy import copy |
|
from itertools import permutations, chain |
|
import random |
|
import csv |
|
from io import StringIO |
|
from PIL import Image |
|
import numpy as np |
|
|
|
import modules.scripts as scripts |
|
import gradio as gr |
|
|
|
from modules import images, paths, sd_samplers |
|
from modules.hypernetworks import hypernetwork |
|
from modules.processing import process_images, Processed, StableDiffusionProcessingTxt2Img |
|
from modules.shared import opts, cmd_opts, state |
|
import modules.shared as shared |
|
import modules.sd_samplers |
|
import modules.sd_models |
|
import modules.sd_vae |
|
import glob |
|
import os |
|
import re |
|
|
|
|
|
def apply_field(field): |
|
def fun(p, x, xs): |
|
setattr(p, field, x) |
|
|
|
return fun |
|
|
|
|
|
def apply_prompt(p, x, xs): |
|
if xs[0] not in p.prompt and xs[0] not in p.negative_prompt: |
|
raise RuntimeError(f"Prompt S/R did not find {xs[0]} in prompt or negative prompt.") |
|
|
|
p.prompt = p.prompt.replace(xs[0], x) |
|
p.negative_prompt = p.negative_prompt.replace(xs[0], x) |
|
|
|
|
|
def apply_order(p, x, xs): |
|
token_order = [] |
|
|
|
|
|
for token in x: |
|
token_order.append((p.prompt.find(token), token)) |
|
|
|
token_order.sort(key=lambda t: t[0]) |
|
|
|
prompt_parts = [] |
|
|
|
|
|
for _, token in token_order: |
|
n = p.prompt.find(token) |
|
prompt_parts.append(p.prompt[0:n]) |
|
p.prompt = p.prompt[n + len(token):] |
|
|
|
|
|
prompt_tmp = "" |
|
for idx, part in enumerate(prompt_parts): |
|
prompt_tmp += part |
|
prompt_tmp += x[idx] |
|
p.prompt = prompt_tmp + p.prompt |
|
|
|
|
|
def apply_sampler(p, x, xs): |
|
sampler_name = sd_samplers.samplers_map.get(x.lower(), None) |
|
if sampler_name is None: |
|
raise RuntimeError(f"Unknown sampler: {x}") |
|
|
|
p.sampler_name = sampler_name |
|
|
|
|
|
def confirm_samplers(p, xs): |
|
for x in xs: |
|
if x.lower() not in sd_samplers.samplers_map: |
|
raise RuntimeError(f"Unknown sampler: {x}") |
|
|
|
|
|
def apply_checkpoint(p, x, xs): |
|
info = modules.sd_models.get_closet_checkpoint_match(x) |
|
if info is None: |
|
raise RuntimeError(f"Unknown checkpoint: {x}") |
|
modules.sd_models.reload_model_weights(shared.sd_model, info) |
|
p.sd_model = shared.sd_model |
|
|
|
|
|
def confirm_checkpoints(p, xs): |
|
for x in xs: |
|
if modules.sd_models.get_closet_checkpoint_match(x) is None: |
|
raise RuntimeError(f"Unknown checkpoint: {x}") |
|
|
|
|
|
def apply_hypernetwork(p, x, xs): |
|
if x.lower() in ["", "none"]: |
|
name = None |
|
else: |
|
name = hypernetwork.find_closest_hypernetwork_name(x) |
|
if not name: |
|
raise RuntimeError(f"Unknown hypernetwork: {x}") |
|
hypernetwork.load_hypernetwork(name) |
|
|
|
|
|
def apply_hypernetwork_strength(p, x, xs): |
|
hypernetwork.apply_strength(x) |
|
|
|
|
|
def confirm_hypernetworks(p, xs): |
|
for x in xs: |
|
if x.lower() in ["", "none"]: |
|
continue |
|
if not hypernetwork.find_closest_hypernetwork_name(x): |
|
raise RuntimeError(f"Unknown hypernetwork: {x}") |
|
|
|
|
|
def apply_clip_skip(p, x, xs): |
|
opts.data["CLIP_stop_at_last_layers"] = x |
|
|
|
|
|
def apply_upscale_latent_space(p, x, xs): |
|
if x.lower().strip() != '0': |
|
opts.data["use_scale_latent_for_hires_fix"] = True |
|
else: |
|
opts.data["use_scale_latent_for_hires_fix"] = False |
|
|
|
|
|
def find_vae(name: str): |
|
if name.lower() in ['auto', 'none']: |
|
return name |
|
else: |
|
vae_path = os.path.abspath(os.path.join(paths.models_path, 'VAE')) |
|
found = glob.glob(os.path.join(vae_path, f'**/{name}.*pt'), recursive=True) |
|
if found: |
|
return found[0] |
|
else: |
|
return 'auto' |
|
|
|
|
|
def apply_vae(p, x, xs): |
|
if x.lower().strip() == 'none': |
|
modules.sd_vae.reload_vae_weights(shared.sd_model, vae_file='None') |
|
else: |
|
found = find_vae(x) |
|
if found: |
|
v = modules.sd_vae.reload_vae_weights(shared.sd_model, vae_file=found) |
|
|
|
|
|
def apply_styles(p: StableDiffusionProcessingTxt2Img, x: str, _): |
|
p.styles = x.split(',') |
|
|
|
|
|
def format_value_add_label(p, opt, x): |
|
if type(x) == float: |
|
x = round(x, 8) |
|
|
|
return f"{opt.label}: {x}" |
|
|
|
|
|
def format_value(p, opt, x): |
|
if type(x) == float: |
|
x = round(x, 8) |
|
return x |
|
|
|
|
|
def format_value_join_list(p, opt, x): |
|
return ", ".join(x) |
|
|
|
|
|
def do_nothing(p, x, xs): |
|
pass |
|
|
|
|
|
def format_nothing(p, opt, x): |
|
return "" |
|
|
|
|
|
def str_permutations(x): |
|
"""dummy function for specifying it in AxisOption's type when you want to get a list of permutations""" |
|
return x |
|
|
|
AxisOption = namedtuple("AxisOption", ["label", "type", "apply", "format_value", "confirm"]) |
|
AxisOptionImg2Img = namedtuple("AxisOptionImg2Img", ["label", "type", "apply", "format_value", "confirm"]) |
|
|
|
|
|
axis_options = [ |
|
AxisOption("Nothing", str, do_nothing, format_nothing, None), |
|
AxisOption("Seed", int, apply_field("seed"), format_value_add_label, None), |
|
AxisOption("Var. seed", int, apply_field("subseed"), format_value_add_label, None), |
|
AxisOption("Var. strength", float, apply_field("subseed_strength"), format_value_add_label, None), |
|
AxisOption("Steps", int, apply_field("steps"), format_value_add_label, None), |
|
AxisOption("CFG Scale", float, apply_field("cfg_scale"), format_value_add_label, None), |
|
AxisOption("Prompt S/R", str, apply_prompt, format_value, None), |
|
AxisOption("Prompt order", str_permutations, apply_order, format_value_join_list, None), |
|
AxisOption("Sampler", str, apply_sampler, format_value, confirm_samplers), |
|
AxisOption("Checkpoint name", str, apply_checkpoint, format_value, confirm_checkpoints), |
|
AxisOption("Hypernetwork", str, apply_hypernetwork, format_value, confirm_hypernetworks), |
|
AxisOption("Hypernet str.", float, apply_hypernetwork_strength, format_value_add_label, None), |
|
AxisOption("Sigma Churn", float, apply_field("s_churn"), format_value_add_label, None), |
|
AxisOption("Sigma min", float, apply_field("s_tmin"), format_value_add_label, None), |
|
AxisOption("Sigma max", float, apply_field("s_tmax"), format_value_add_label, None), |
|
AxisOption("Sigma noise", float, apply_field("s_noise"), format_value_add_label, None), |
|
AxisOption("Eta", float, apply_field("eta"), format_value_add_label, None), |
|
AxisOption("Clip skip", int, apply_clip_skip, format_value_add_label, None), |
|
AxisOption("Denoising", float, apply_field("denoising_strength"), format_value_add_label, None), |
|
AxisOption("Upscale latent space for hires.", str, apply_upscale_latent_space, format_value_add_label, None), |
|
AxisOption("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight"), format_value_add_label, None), |
|
AxisOption("VAE", str, apply_vae, format_value_add_label, None), |
|
AxisOption("Styles", str, apply_styles, format_value_add_label, None), |
|
] |
|
|
|
|
|
def draw_xy_grid(p, xs, ys, x_labels, y_labels, cell, draw_legend, include_lone_images): |
|
ver_texts = [[images.GridAnnotation(y)] for y in y_labels] |
|
hor_texts = [[images.GridAnnotation(x)] for x in x_labels] |
|
|
|
|
|
|
|
image_cache = [] |
|
|
|
processed_result = None |
|
cell_mode = "P" |
|
cell_size = (1,1) |
|
|
|
state.job_count = len(xs) * len(ys) * p.n_iter |
|
|
|
for iy, y in enumerate(ys): |
|
for ix, x in enumerate(xs): |
|
state.job = f"{ix + iy * len(xs) + 1} out of {len(xs) * len(ys)}" |
|
|
|
processed:Processed = cell(x, y) |
|
try: |
|
|
|
|
|
processed_image = processed.images[0] |
|
|
|
if processed_result is None: |
|
|
|
processed_result = copy(processed) |
|
cell_mode = processed_image.mode |
|
cell_size = processed_image.size |
|
processed_result.images = [Image.new(cell_mode, cell_size)] |
|
|
|
image_cache.append(processed_image) |
|
if include_lone_images: |
|
processed_result.images.append(processed_image) |
|
processed_result.all_prompts.append(processed.prompt) |
|
processed_result.all_seeds.append(processed.seed) |
|
processed_result.infotexts.append(processed.infotexts[0]) |
|
except: |
|
image_cache.append(Image.new(cell_mode, cell_size)) |
|
|
|
if not processed_result: |
|
print("Unexpected error: draw_xy_grid failed to return even a single processed image") |
|
return Processed() |
|
|
|
grid = images.image_grid(image_cache, rows=len(ys)) |
|
if draw_legend: |
|
grid = images.draw_grid_annotations(grid, cell_size[0], cell_size[1], hor_texts, ver_texts) |
|
|
|
processed_result.images[0] = grid |
|
|
|
return processed_result |
|
|
|
|
|
class SharedSettingsStackHelper(object): |
|
def __enter__(self): |
|
self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers |
|
self.hypernetwork = opts.sd_hypernetwork |
|
self.model = shared.sd_model |
|
self.use_scale_latent_for_hires_fix = opts.use_scale_latent_for_hires_fix |
|
self.vae = opts.sd_vae |
|
|
|
def __exit__(self, exc_type, exc_value, tb): |
|
modules.sd_models.reload_model_weights(self.model) |
|
modules.sd_vae.reload_vae_weights(self.model, vae_file=find_vae(self.vae)) |
|
|
|
hypernetwork.load_hypernetwork(self.hypernetwork) |
|
hypernetwork.apply_strength() |
|
|
|
opts.data["CLIP_stop_at_last_layers"] = self.CLIP_stop_at_last_layers |
|
opts.data["use_scale_latent_for_hires_fix"] = self.use_scale_latent_for_hires_fix |
|
|
|
|
|
re_range = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\(([+-]\d+)\s*\))?\s*") |
|
re_range_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\(([+-]\d+(?:.\d*)?)\s*\))?\s*") |
|
|
|
re_range_count = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\[(\d+)\s*\])?\s*") |
|
re_range_count_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\[(\d+(?:.\d*)?)\s*\])?\s*") |
|
|
|
class Script(scripts.Script): |
|
def title(self): |
|
return "X/Y plot" |
|
|
|
def ui(self, is_img2img): |
|
current_axis_options = [x for x in axis_options if type(x) == AxisOption or type(x) == AxisOptionImg2Img and is_img2img] |
|
|
|
with gr.Row(): |
|
x_type = gr.Dropdown(label="X type", choices=[x.label for x in current_axis_options], value=current_axis_options[1].label, type="index", elem_id="x_type") |
|
x_values = gr.Textbox(label="X values", lines=1) |
|
|
|
with gr.Row(): |
|
y_type = gr.Dropdown(label="Y type", choices=[x.label for x in current_axis_options], value=current_axis_options[0].label, type="index", elem_id="y_type") |
|
y_values = gr.Textbox(label="Y values", lines=1) |
|
|
|
draw_legend = gr.Checkbox(label='Draw legend', value=True) |
|
include_lone_images = gr.Checkbox(label='Include Separate Images', value=False) |
|
no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False) |
|
|
|
return [x_type, x_values, y_type, y_values, draw_legend, include_lone_images, no_fixed_seeds] |
|
|
|
def run(self, p, x_type, x_values, y_type, y_values, draw_legend, include_lone_images, no_fixed_seeds): |
|
if not no_fixed_seeds: |
|
modules.processing.fix_seed(p) |
|
|
|
if not opts.return_grid: |
|
p.batch_size = 1 |
|
|
|
def process_axis(opt, vals): |
|
if opt.label == 'Nothing': |
|
return [0] |
|
|
|
valslist = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(vals)))] |
|
|
|
if opt.type == int: |
|
valslist_ext = [] |
|
|
|
for val in valslist: |
|
m = re_range.fullmatch(val) |
|
mc = re_range_count.fullmatch(val) |
|
if m is not None: |
|
start = int(m.group(1)) |
|
end = int(m.group(2))+1 |
|
step = int(m.group(3)) if m.group(3) is not None else 1 |
|
|
|
valslist_ext += list(range(start, end, step)) |
|
elif mc is not None: |
|
start = int(mc.group(1)) |
|
end = int(mc.group(2)) |
|
num = int(mc.group(3)) if mc.group(3) is not None else 1 |
|
|
|
valslist_ext += [int(x) for x in np.linspace(start=start, stop=end, num=num).tolist()] |
|
else: |
|
valslist_ext.append(val) |
|
|
|
valslist = valslist_ext |
|
elif opt.type == float: |
|
valslist_ext = [] |
|
|
|
for val in valslist: |
|
m = re_range_float.fullmatch(val) |
|
mc = re_range_count_float.fullmatch(val) |
|
if m is not None: |
|
start = float(m.group(1)) |
|
end = float(m.group(2)) |
|
step = float(m.group(3)) if m.group(3) is not None else 1 |
|
|
|
valslist_ext += np.arange(start, end + step, step).tolist() |
|
elif mc is not None: |
|
start = float(mc.group(1)) |
|
end = float(mc.group(2)) |
|
num = int(mc.group(3)) if mc.group(3) is not None else 1 |
|
|
|
valslist_ext += np.linspace(start=start, stop=end, num=num).tolist() |
|
else: |
|
valslist_ext.append(val) |
|
|
|
valslist = valslist_ext |
|
elif opt.type == str_permutations: |
|
valslist = list(permutations(valslist)) |
|
|
|
valslist = [opt.type(x) for x in valslist] |
|
|
|
|
|
if opt.confirm: |
|
opt.confirm(p, valslist) |
|
|
|
return valslist |
|
|
|
x_opt = axis_options[x_type] |
|
xs = process_axis(x_opt, x_values) |
|
|
|
y_opt = axis_options[y_type] |
|
ys = process_axis(y_opt, y_values) |
|
|
|
def fix_axis_seeds(axis_opt, axis_list): |
|
if axis_opt.label in ['Seed','Var. seed']: |
|
return [int(random.randrange(4294967294)) if val is None or val == '' or val == -1 else val for val in axis_list] |
|
else: |
|
return axis_list |
|
|
|
if not no_fixed_seeds: |
|
xs = fix_axis_seeds(x_opt, xs) |
|
ys = fix_axis_seeds(y_opt, ys) |
|
|
|
if x_opt.label == 'Steps': |
|
total_steps = sum(xs) * len(ys) |
|
elif y_opt.label == 'Steps': |
|
total_steps = sum(ys) * len(xs) |
|
else: |
|
total_steps = p.steps * len(xs) * len(ys) |
|
|
|
if isinstance(p, StableDiffusionProcessingTxt2Img) and p.enable_hr: |
|
total_steps *= 2 |
|
|
|
print(f"X/Y plot will create {len(xs) * len(ys) * p.n_iter} images on a {len(xs)}x{len(ys)} grid. (Total steps to process: {total_steps * p.n_iter})") |
|
shared.total_tqdm.updateTotal(total_steps * p.n_iter) |
|
|
|
def cell(x, y): |
|
pc = copy(p) |
|
x_opt.apply(pc, x, xs) |
|
y_opt.apply(pc, y, ys) |
|
|
|
return process_images(pc) |
|
|
|
with SharedSettingsStackHelper(): |
|
processed = draw_xy_grid( |
|
p, |
|
xs=xs, |
|
ys=ys, |
|
x_labels=[x_opt.format_value(p, x_opt, x) for x in xs], |
|
y_labels=[y_opt.format_value(p, y_opt, y) for y in ys], |
|
cell=cell, |
|
draw_legend=draw_legend, |
|
include_lone_images=include_lone_images |
|
) |
|
|
|
if opts.grid_save: |
|
images.save_image(processed.images[0], p.outpath_grids, "xy_grid", extension=opts.grid_format, prompt=p.prompt, seed=processed.seed, grid=True, p=p) |
|
|
|
return processed |
|
|