|
import math |
|
|
|
import torch |
|
|
|
from modules import prompt_parser, devices |
|
from modules.shared import opts |
|
|
|
def get_target_prompt_token_count(token_count): |
|
return math.ceil(max(token_count, 1) / 75) * 75 |
|
|
|
|
|
class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module): |
|
def __init__(self, wrapped, hijack): |
|
super().__init__() |
|
self.wrapped = wrapped |
|
self.hijack = hijack |
|
|
|
def tokenize(self, texts): |
|
raise NotImplementedError |
|
|
|
def encode_with_transformers(self, tokens): |
|
raise NotImplementedError |
|
|
|
def encode_embedding_init_text(self, init_text, nvpt): |
|
raise NotImplementedError |
|
|
|
def tokenize_line(self, line, used_custom_terms, hijack_comments): |
|
if opts.enable_emphasis: |
|
parsed = prompt_parser.parse_prompt_attention(line) |
|
else: |
|
parsed = [[line, 1.0]] |
|
|
|
tokenized = self.tokenize([text for text, _ in parsed]) |
|
|
|
fixes = [] |
|
remade_tokens = [] |
|
multipliers = [] |
|
last_comma = -1 |
|
|
|
for tokens, (text, weight) in zip(tokenized, parsed): |
|
i = 0 |
|
while i < len(tokens): |
|
token = tokens[i] |
|
|
|
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i) |
|
|
|
if token == self.comma_token: |
|
last_comma = len(remade_tokens) |
|
elif opts.comma_padding_backtrack != 0 and max(len(remade_tokens), 1) % 75 == 0 and last_comma != -1 and len(remade_tokens) - last_comma <= opts.comma_padding_backtrack: |
|
last_comma += 1 |
|
reloc_tokens = remade_tokens[last_comma:] |
|
reloc_mults = multipliers[last_comma:] |
|
|
|
remade_tokens = remade_tokens[:last_comma] |
|
length = len(remade_tokens) |
|
|
|
rem = int(math.ceil(length / 75)) * 75 - length |
|
remade_tokens += [self.id_end] * rem + reloc_tokens |
|
multipliers = multipliers[:last_comma] + [1.0] * rem + reloc_mults |
|
|
|
if embedding is None: |
|
remade_tokens.append(token) |
|
multipliers.append(weight) |
|
i += 1 |
|
else: |
|
emb_len = int(embedding.vec.shape[0]) |
|
iteration = len(remade_tokens) // 75 |
|
if (len(remade_tokens) + emb_len) // 75 != iteration: |
|
rem = (75 * (iteration + 1) - len(remade_tokens)) |
|
remade_tokens += [self.id_end] * rem |
|
multipliers += [1.0] * rem |
|
iteration += 1 |
|
fixes.append((iteration, (len(remade_tokens) % 75, embedding))) |
|
remade_tokens += [0] * emb_len |
|
multipliers += [weight] * emb_len |
|
used_custom_terms.append((embedding.name, embedding.checksum())) |
|
i += embedding_length_in_tokens |
|
|
|
token_count = len(remade_tokens) |
|
prompt_target_length = get_target_prompt_token_count(token_count) |
|
tokens_to_add = prompt_target_length - len(remade_tokens) |
|
|
|
remade_tokens = remade_tokens + [self.id_end] * tokens_to_add |
|
multipliers = multipliers + [1.0] * tokens_to_add |
|
|
|
return remade_tokens, fixes, multipliers, token_count |
|
|
|
def process_text(self, texts): |
|
used_custom_terms = [] |
|
remade_batch_tokens = [] |
|
hijack_comments = [] |
|
hijack_fixes = [] |
|
token_count = 0 |
|
|
|
cache = {} |
|
batch_multipliers = [] |
|
for line in texts: |
|
if line in cache: |
|
remade_tokens, fixes, multipliers = cache[line] |
|
else: |
|
remade_tokens, fixes, multipliers, current_token_count = self.tokenize_line(line, used_custom_terms, hijack_comments) |
|
token_count = max(current_token_count, token_count) |
|
|
|
cache[line] = (remade_tokens, fixes, multipliers) |
|
|
|
remade_batch_tokens.append(remade_tokens) |
|
hijack_fixes.append(fixes) |
|
batch_multipliers.append(multipliers) |
|
|
|
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count |
|
|
|
def process_text_old(self, texts): |
|
id_start = self.id_start |
|
id_end = self.id_end |
|
maxlen = self.wrapped.max_length |
|
used_custom_terms = [] |
|
remade_batch_tokens = [] |
|
hijack_comments = [] |
|
hijack_fixes = [] |
|
token_count = 0 |
|
|
|
cache = {} |
|
batch_tokens = self.tokenize(texts) |
|
batch_multipliers = [] |
|
for tokens in batch_tokens: |
|
tuple_tokens = tuple(tokens) |
|
|
|
if tuple_tokens in cache: |
|
remade_tokens, fixes, multipliers = cache[tuple_tokens] |
|
else: |
|
fixes = [] |
|
remade_tokens = [] |
|
multipliers = [] |
|
mult = 1.0 |
|
|
|
i = 0 |
|
while i < len(tokens): |
|
token = tokens[i] |
|
|
|
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i) |
|
|
|
mult_change = self.token_mults.get(token) if opts.enable_emphasis else None |
|
if mult_change is not None: |
|
mult *= mult_change |
|
i += 1 |
|
elif embedding is None: |
|
remade_tokens.append(token) |
|
multipliers.append(mult) |
|
i += 1 |
|
else: |
|
emb_len = int(embedding.vec.shape[0]) |
|
fixes.append((len(remade_tokens), embedding)) |
|
remade_tokens += [0] * emb_len |
|
multipliers += [mult] * emb_len |
|
used_custom_terms.append((embedding.name, embedding.checksum())) |
|
i += embedding_length_in_tokens |
|
|
|
if len(remade_tokens) > maxlen - 2: |
|
vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()} |
|
ovf = remade_tokens[maxlen - 2:] |
|
overflowing_words = [vocab.get(int(x), "") for x in ovf] |
|
overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words)) |
|
hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n") |
|
|
|
token_count = len(remade_tokens) |
|
remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens)) |
|
remade_tokens = [id_start] + remade_tokens[0:maxlen - 2] + [id_end] |
|
cache[tuple_tokens] = (remade_tokens, fixes, multipliers) |
|
|
|
multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers)) |
|
multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0] |
|
|
|
remade_batch_tokens.append(remade_tokens) |
|
hijack_fixes.append(fixes) |
|
batch_multipliers.append(multipliers) |
|
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count |
|
|
|
def forward(self, text): |
|
use_old = opts.use_old_emphasis_implementation |
|
if use_old: |
|
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text_old(text) |
|
else: |
|
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text(text) |
|
|
|
self.hijack.comments += hijack_comments |
|
|
|
if len(used_custom_terms) > 0: |
|
self.hijack.comments.append("Used embeddings: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms])) |
|
|
|
if use_old: |
|
self.hijack.fixes = hijack_fixes |
|
return self.process_tokens(remade_batch_tokens, batch_multipliers) |
|
|
|
z = None |
|
i = 0 |
|
while max(map(len, remade_batch_tokens)) != 0: |
|
rem_tokens = [x[75:] for x in remade_batch_tokens] |
|
rem_multipliers = [x[75:] for x in batch_multipliers] |
|
|
|
self.hijack.fixes = [] |
|
for unfiltered in hijack_fixes: |
|
fixes = [] |
|
for fix in unfiltered: |
|
if fix[0] == i: |
|
fixes.append(fix[1]) |
|
self.hijack.fixes.append(fixes) |
|
|
|
tokens = [] |
|
multipliers = [] |
|
for j in range(len(remade_batch_tokens)): |
|
if len(remade_batch_tokens[j]) > 0: |
|
tokens.append(remade_batch_tokens[j][:75]) |
|
multipliers.append(batch_multipliers[j][:75]) |
|
else: |
|
tokens.append([self.id_end] * 75) |
|
multipliers.append([1.0] * 75) |
|
|
|
z1 = self.process_tokens(tokens, multipliers) |
|
z = z1 if z is None else torch.cat((z, z1), axis=-2) |
|
|
|
remade_batch_tokens = rem_tokens |
|
batch_multipliers = rem_multipliers |
|
i += 1 |
|
|
|
return z |
|
|
|
def process_tokens(self, remade_batch_tokens, batch_multipliers): |
|
if not opts.use_old_emphasis_implementation: |
|
remade_batch_tokens = [[self.id_start] + x[:75] + [self.id_end] for x in remade_batch_tokens] |
|
batch_multipliers = [[1.0] + x[:75] + [1.0] for x in batch_multipliers] |
|
|
|
tokens = torch.asarray(remade_batch_tokens).to(devices.device) |
|
|
|
if self.id_end != self.id_pad: |
|
for batch_pos in range(len(remade_batch_tokens)): |
|
index = remade_batch_tokens[batch_pos].index(self.id_end) |
|
tokens[batch_pos, index+1:tokens.shape[1]] = self.id_pad |
|
|
|
z = self.encode_with_transformers(tokens) |
|
|
|
|
|
batch_multipliers_of_same_length = [x + [1.0] * (75 - len(x)) for x in batch_multipliers] |
|
batch_multipliers = torch.asarray(batch_multipliers_of_same_length).to(devices.device) |
|
original_mean = z.mean() |
|
z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape) |
|
new_mean = z.mean() |
|
z *= original_mean / new_mean |
|
|
|
return z |
|
|
|
|
|
class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase): |
|
def __init__(self, wrapped, hijack): |
|
super().__init__(wrapped, hijack) |
|
self.tokenizer = wrapped.tokenizer |
|
|
|
vocab = self.tokenizer.get_vocab() |
|
|
|
self.comma_token = vocab.get(',</w>', None) |
|
|
|
self.token_mults = {} |
|
tokens_with_parens = [(k, v) for k, v in vocab.items() if '(' in k or ')' in k or '[' in k or ']' in k] |
|
for text, ident in tokens_with_parens: |
|
mult = 1.0 |
|
for c in text: |
|
if c == '[': |
|
mult /= 1.1 |
|
if c == ']': |
|
mult *= 1.1 |
|
if c == '(': |
|
mult *= 1.1 |
|
if c == ')': |
|
mult /= 1.1 |
|
|
|
if mult != 1.0: |
|
self.token_mults[ident] = mult |
|
|
|
self.id_start = self.wrapped.tokenizer.bos_token_id |
|
self.id_end = self.wrapped.tokenizer.eos_token_id |
|
self.id_pad = self.id_end |
|
|
|
def tokenize(self, texts): |
|
tokenized = self.wrapped.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"] |
|
|
|
return tokenized |
|
|
|
def encode_with_transformers(self, tokens): |
|
outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers) |
|
|
|
if opts.CLIP_stop_at_last_layers > 1: |
|
z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers] |
|
z = self.wrapped.transformer.text_model.final_layer_norm(z) |
|
else: |
|
z = outputs.last_hidden_state |
|
|
|
return z |
|
|
|
def encode_embedding_init_text(self, init_text, nvpt): |
|
embedding_layer = self.wrapped.transformer.text_model.embeddings |
|
ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"] |
|
embedded = embedding_layer.token_embedding.wrapped(ids.to(embedding_layer.token_embedding.wrapped.weight.device)).squeeze(0) |
|
|
|
return embedded |
|
|